Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поливиниловый получение и свойства

    Свойства полиацеталей зависят от типа альдегида, степени замещения гидроксильных групп, содержания в поливиниловом спирте ацетатных групп и, наконец, от молекулярного веса поливинилового спирта. Свойства полиацеталей (при одинаковой степени замещения), полученных действием на поливиниловый спирт различных альдегидов алифатического ряда, изменяются в зависимости от типа радикала альдегидной группы. С увеличением размера этого радикала возрастают водостойкость, морозостойкость и эластичность полиацеталя, но понижаются температура его размягчения, твердость и прочность (рис. V. 12), увеличивается ползучесть при нагружении или при повышении температуры. Нр которых полиацеталей  [c.354]


    Свойства полиацеталей (при одинаковой степени замещения), полученных действием на поливиниловый спирт различных альдегидов алифатического ряда, изменяются в зависимости от ха-1)актера радикала альдегидной группы. С увеличением молекулярного веса этого радикала возрастают водостойкость, морозостойкость и эластичность полиацеталя, но снижается температура его размягчения, твердость и прочность (табл. 15 и рис. 85), а также увеличивается ползучесть в нагруженном состоянии или при повышении температуры. [c.290]

    Когда появились синтетические полимеры, единственным способом изменения их состава и свойств был подбор новых исходных мономеров. Однако, как выяснилось впоследствии, некоторые полимеры нельзя получить непосредственным синтезом из низкомолекулярных соединений вследствие неустойчивости этих мономеров. Так, например, поливиниловый спирт, используемый для производства синтетического волокна, а также в качестве эмульгатора, для шлихтовки тканей и в пищевой промышленности, не может быть получен полимеризацией мономера. Его получают омылением готового полимера — поливинилаце-тата. Ацеталированием поливинилового спирта получают различные поливинилацетали, используемые в производстве лаков и покрытий. [c.210]

    Перспективной и быстро развивающейся областью использования стабилизации дисперсных систем различной природы являются процессы микрокапсулирования порошков и капель жидкости. Микро-капсулирование — это создание на поверхности малых капель или частиц защитных пленок, предотвращающих контакт защищаемого вещества с внешней средой. Такие пленки, образованные высокомолекулярными веществами, в некотором смысле близки по структуре и назначению к мембранам клеток. Основными путями микрокапсулирования являются адсорбция пленкообразующих высокомолекулярных веществ, либо выделение на поверхности частиц пленки новой жидкой фазы (коацервация) пленки подвергаются обработке (введение дубителей, изменение pH, температуры) с целью придания им твердообразных свойств. Для получения пленок используются различные природные н синтетические вещества белки (желатина, альбумин), полисахариды, производные целлюлозы, поливиниловый спирт, поли-винилацетат и др. [c.304]

    В настоящее время поливиниловый спирт (ПВС) как волокнообразующий материал приобрел большое значение. Промышленные волокна ПВС изготовляются главным образом методом гидродинамической и термомеханической ориентации. От условий изготовления в значительной степени зависят структура и свойства волокон. Несомненный интерес-представляет изучение возможности получения фибриллярных структур-ПВС непосредственно из растворов без какой-либо дополнительной ориентации. [c.119]


    Важной задачей физико-химической механики является получение структурированных полимерных фибриллярных систем, обладающих определенными механическими и физико-химическими свойствами [Г. Особый интерес представляет получение волокнистых систем непосредственно в растворах без необходимости проведения дополнительных волокнообразующих процессов. С этой точки зрения был изучен нерастворимый в воде ассоциат поливиниловый спирт — полиметакриловая кислота (ПВС — ПМАК), образующийся при взаимодействии компонентов, каждый из которых в отдельности при обычных условиях растворяется в воде. [c.125]

    Анализ представленных экспериментально полученных данных приводит к заключению о весьма слабом структурировании исследуемой системы. Если трехмерная пространственная сетка и пронизывает всю систему 10% раствора поливинилового спирта в воде, подобно тому как это обычно имеет место в жидкообразных структурированных системах типа гелей нафтената алюминия в органических растворителях, подробное изучение реологических свойств которых нами было проведено в более ранних работах [11], то локальные связи ее, обеспечивающие структуру сцепления, очень слабы, вследствие чего кривые кинетики нарастания напряжения во времени с включением начальной стадии деформирования отвечают монотонной зависимости, без максимумов, соответствующих прочности системы, даже в области высоких градиентов скоростей. Возможно, что пространственная сетка в водных растворах поливинилового спирта низких концентраций (до 10%) отсутствует совсем. Область же эффективной, падающей вязкости в среднем диапазоне напряжений сдвига связана скорее с ориентационным эффектом в стационарном потоке, чем с разрушением структуры системы. [c.181]

    Интересным представлялось изучить проявление тиксотропных свойств данного геля, полученного путем введения в раствор поливинилового спирта структурирующей присадки высокой концентрации. [c.182]

    Полученные нами данные по изменению структурно-механических свойств в широком диапазоне градиентов скоростей и напряжений сдвига, в зависимости от содержания дисперсной фазы в водных растворах поливинилового спирта и введения структурообразующих присадок, позволяют более глубоко вникнуть в механизм пластифицирования поливинилового спирта такими совместимыми добавками, как глицерины, полиэтиленгликоли и другие желатинирующие присадки, содержащие гидроксильные группы. [c.189]

    Благодаря хорошим адгезионным свойствам поливинилаце-татные эмульсии широко применяют в производстве клеев.. Кроме того, поливинилацетат используют для получения поливинилового спирта [c.171]

    Возможность более простой регистрации, когда не полностью стереорегулярный полимер получается в кристаллической форме непосредственно в ходе его приготовления, определяется конкретными условиями полимеризации. Еще задолго до детальных исследований процессов полимеризации, приводящих к образованию стереорегулярных полимеров, было известно, что -некоторые полимеры (например, поливинилхлорид, полиакрилонитрил, политрифторхлорэтилен и поливиниловый спирт) получаются обычно сразу в кристаллической форме, несмотря на больщую вероятность стереохимических нерегулярностей. Нередко в подобных случаях рентгеноструктурный анализ не подтверждает с полной определенностью наличие развитой кристалличности. Однако особенно для поливинилхлорида [46, 47] и полиакрилонитрила [48], анализ свойств этих полимеров в растворе и механических свойств дал явные подтверждения их кристалличности. Последующее получение указанных полимеров новыми методами, обеспечивающими повыщенную регулярность цепей, также подтвердило эти наблюдения [36, 49]. [c.111]

    Применение. Поливиниловый спирт применяется для получения синтетического волокна (винилон, куралон), производство которого в Японии составило в 1953 г. 2500 т [94, 95]. Преимуществами этого волокна являются низкая стоимость, сходство с целлюлозными волокнами по строению, возможность широкого изменения свойств [96]. В Японии эти волокна применяются для изготовления изделий широкого потребления. Опубликованы работы по производству искусственных и синтетических волокон из поливинилового спирта [97—100]. [c.342]

    Полимер может кристаллизоваться и в С. второго типа. В высококонцентрированной матричной фазе вследствие большого пересыщения кристаллизация может протекать значительно быстрее, чем в исходном р-ре. Это характерно для таких медленно кристаллизующихся полимеров, как поливиниловый спирт. У С., полученных добавлением нерастворителя в водный р-р этого полимера, с течением времени степень кристалличности возрастет и соответственно изменяются механич. свойства. [c.281]

    Основные научные работы относятся к химии и технологии химических волокон. Исследовал процессы полимеризации винилацетата и омыления поливинилацетата до поливинилового спирта. Изучал технологию, способы получения свойства химических волокон на основе поливинилового спирта получил (1939) волокно виналон . Предложил способы крашения синтетических волокон. [c.305]


    Поскольку последний пример является примером несимметричного разветвленного высокомолекулярного алифатического углеводорода, то следует указать также па полимеры, полученные Котманом [8] восстановлением поливиниловых хлоридов. Эти полимеры по некоторым физическим свойствам подобны полиэтилену. Их инфракрасные спектры качественно напоминают таковые полиэтилена. Однако количественное определение показывает, что соотношение метильных групп к метиленным составляет здесь лишь величину порядка 1 100. Эта величина значительно меньше, чем соотношения, наблюдавшиеся у большинства полиэтиленов, и свидетельствует о том, что поливинилхлорид несколько более разветвлен, чем большинство полиэтиленов. Плотности этих продуктов в литературе не приводятся. [c.170]

    Поливинилен, полученный путем химических превращений поливинилхлорида или поливинилового спирта, по молекулярной массе близок к исходным полимерам. Макромолекулы такого полимера построены из больших поливиниленовых участков, разделенных звеньями исходного полимера. Исследование поливинилеиов показало, что в них не происходит полного выравнивания связей. Это косвенно свидетельствует о прерывности системы сопряжения и позволяет предположить, что полимер построен из больших блоков сопряжения. Высокомолекулярные поливинилены по электрическим и магнитным свойствам близки к полиацетиленам. [c.414]

    В статье изложены результаты исследований по разработке способа введения биологически активного компонента (пепсина) в полимерну ю ма17)ицу поливинилового спирта, обеспечивающего сохранение биологической активности вводимого соединения, изучения функциональных свойств полученных систем и структурно-морфологических превращений полимерной матрицы в процессе иммобилизации Разработанный биологически активный полимерный материал обладает комплексом свойств, необходимым для его использования в различных отраслях пищевой промышленности [c.213]

    Ранее в рамках научной тематики по Министерству образования, нами были изучены полимерно-солевые композиции (ПСК), с водорастворимыми неионогенными полимерами (поливиниловый спирт - ПВС, по-ливинилпирролидон - ПВП, метилцеллюлоза, полиакриламид и др.) и солями РЗЭ, ЩЗЭ, d-металлов (нитраты, ацетаты, формиаты и пр.). Разработаны физико-химические основы получения сложнооксидных материалов с заданными свойствами в виде покрытий, керамики путем пиролиза ПСК сверхпроводящих купратов, ферритов, каталитических материалов - ко-бальтитов, манганитов. [c.125]

    Описаны методы получения, технология производства, свойства и применение полнвинилацетата и его полимераналогов поливинилового спирта и по-ливинилацеталей. Значительное внимание уделено взаимосвязи строения н свойств этих полимеров. Показано применение поливинилацетатных пластиков в различных отраслях народного хозяйства. [c.2]

    Полимераналогачные превращения происходят в результате химических реакций, обычно функциональных групп, а иногда других реакционноспособных центров полимеров, приводящие к получению полиме-раналогов приблизительно с той же длиной макромолекул и прежним химическим строением основной их цепи. Эти реакции часто используют на практике для модификации свойств полимеров. В результате полимераналогичных превращений образуются новые функциональные боковые группы, сложные фуппировки в виде циклов и других структур, а также, наоборот, происходит раскрытие боковых циклических группировок. Очень часто невозможно достигнуть полного превращения исходного полимера в целевой продукт из-за сложности конверсии функциональных групп, являющихся частью всей макромолекулы, которые имеют сложное пространственное строение. Типичным примером полимераналогичных превращений с образованием новых функциональных фупп является получение поливинилового спирта из поливинилацетата [c.99]

    В упомянутом примере полимераналогичного омыления поливинилацетата свойства исходного и конечного продукта различР1ы, однако степени полимеризации обоих полимеров одинаковы. Полученный омылением поливиниловый спирт можно этерифицировать с образованием поливинилацетата исходной молекулярной массы, обладающего теми же свойствами. В то же время, если в процессе этих превращений происходит разрыв цепи, то это определяется по характеристической вязкости переацеталированного полимера (опыт 5-01). Кроме таких реакций, в которых должны участвовать все мономерные звенья полимерной цепи, протекают реакции с участием двух соседних звеньев. Например, практически важной является реакция между соседними гидроксильными группами, которая протекает при ацеталировании поливинилового спирта с образованием цикла, содержащего карбонильную альдегидную группу. В силу статистических условий в лучшем случае только 86,5% всех функциональных групп могут претерпевать превращения в таких реакциях (см. раздел 2.1.6.1). [c.238]

    Полимераналогичные превращения поливинилового спирта и целлюлозы используются для получения волокон, медицинских нитей, тканей и нетканых материалов с бактерицидными и окислительно-восстановительными свойствами [5], для повышения водостойкости полимера (цианоэтиловый эфир) (см. с, 607)  [c.606]

    При смешивании водных растворов поливинилового спирта и поли-метакриловой кислоты образуются гели, количество и свойства которых определяются общей концентрацией исходных растворов, соотношением компонентов, а также температурой, pH и временем старения растворов. Существенно, что практически независимо от условий получения ассо-циата ПВС — ПМАК его состав почти полностью соответствует эквимолекулярному соотношению ПВС и ПМАК, т. е. в ассоциате соотношение мономерных групп составляет 1 1. Гетерогенность растворов, связанная с образованием нерастворимого ассоциата, исчезает при понижении температуры растворов до О—4° С, т. е. водные растворы ПВС и ПМАК представляют собой трехкомпонентные расслаивающиеся смеси с нижней критической температурой смешения (рис. 1). Ассоциат разрушается не только при охлаждении растворов, но также и при добавлении полярных растворителей, таких, как спирт, диметилформамид, ацетон, диоксан и др. Задолго до макрорасслоения в системе наблюдается микрорасслоение, выявляющееся при изучении ряда характеристик процесса ассоциации. В частности, наличие микрогетерогенности растворов ассоциата подтверждается нефелометрическими измерениями. Наибольшее ослабление падающего излучения имеет место при эквимолекуляр- [c.125]

    В процессе изучения зависимости кинетики нарастания напряжения сдвига Р во времени при 8-= onst [полученные кривые Р(т) представлены на рис. 3] 10% водной системы поливинилового спирта после введения глицерина до 50% были обнаружены резко выражегшые максимумы Рт, отвечающие наличию прочностных свойств в исследуемой системе. При этом экстремальные значения кривых зависимости Р е) = onst, соответствующие прочности системы, проявляются при очень малых скоростях деформирования системы, порядка 3-10 сек к [c.181]

    Одни.м из примеров подобного направления исследований может служить получение и изучение свойств соиолимеров этилена и винилацетата и продуктов их омыления. Такие материалы интересны с различных точек зрения. Замещение ацетатных групп на гидроксильные приводит к изменению физических свойств из-за способности гидроксильных груии к образованию водородных связей, как и в случае омыления иоливинилацетата. Кроме того, такг.е омыленные сополимеры проявляют способность к сокристаллизации, когда при низкой концентрации гидроксильных групп они замещают метиленовые группы кристаллической решетки полизтилена, а при высокой концентрации гидроксильных групп метиленовые группы заменяют гидроксильные в узлах кристаллической решетки поливинилового спирта [2— 41. [c.117]

    Методика приготовления УБД с защитной пленкой. С. В. Плугард (1974) предложены УБД с защитной пленкой с целью депонирования ингредиентов, длительного сохранения свойств, стандартизации, придания им механической прочности и твердости. Для приготовления УБД с защитной пленкой 1 г углевода растворяют в 2 мл фосфатного буфера (pH 8) при подогревании до 70—90°С. Добавляют 0,5 мл водного раствора фенолового красного в разведении 1 100 и полученной схмесью пропитывают кружок хроматографической бумаги площадью в 70 см , сушат в сухожаровом шкафу и наносят пленкообразующий полимер (2,5 мл 5—10% рягткоря поливинилового спирта). Затем вновь подсушивают, разрезают на диски диаметром 0,5—1 см или квадраты 1 см пластинок содержит 10—15 мг углевода и 0,05—0,07. мг индикатора, имеет розово-красный цвет. [c.202]

    Методом суспензионной полимеризации в США производится основная часть поливинилхлорида. Реакцию проводят в водной дисперсии хлористого винила. Свойства полученного полимера зависят от подбора суспендирующего агента, который определяет размер частиц полимера, их форму и пористость. В свою очередь от характера частиц зависят насыпной вес полимера, его сыпучесть, способность абсорбировать пластификатор и легкость переработки. Типичными суспендирующими агентами являются поливиниловый спирт, водорастворимые производные целлюлозы и желатина, которые используют в концентрации 0,05—0,5% по весу. Иногда к полимеризационной смеси добавляют также 0,03—0,07% (по весу) эмульгатора, например сульфированного масла или сложного эфира, облегчающего регулирование размера и формы диспергированных частиц. Полимеризацию проводят в присутствии свободнорадикального инициатора, растворимого в мономере (например, перекиси доде-цила), при температуре 50—60°С и давлении около 0,7МН/м2 (7 атм). Продолжительность реакции в этих условиях обычно [c.246]

    Большое влияние оказывает структура волокна и на его термостойкость. В отличиё от природных волокон, которые вследствие своей полярности разлагаются без плавления, синтетические волокна в большинстве случаев термопластичны. Некоторые из них достаточно устойчивы при нагревании выше температуры плавления, что позволяет проводить формование волокна прямо из расплава полимера (таковы, например, найлон-6, найлон-6,6, полиэтилентерефталат и полипропилен). Формование волокон из термически нестойких полимеров, особенно полиак-рилонитрила, ацетатов целлюлозы, поливинилового спирта и поливинилхлорида, производится более трудоемким способом полимер растворяют в подходящем растворителе и полученный раствор выдавливают через отверстия фильеры в поток горячего воздуха, вызывающего испарение растворителя, или в осадительную ванну. Безусловно, формование из расплава (там, где оно возможно) является наиболее предпочтительным методом получения волокна. Низкоплавкие волокна во многих случаях имеют очевидные недостатки. Например, одежда и обивка мебели, изготовленные из таких волокон, легко прожигаются перегретым утюгом, тлеющим табачным пеплом или горящей сигаретой. Желательно, чтобы волокно сохраняло свою форму при нагревании до 100 или даже 150 °С, так как от этого зависит максимально допустимая температура его текстильной обработки, а также максимальная температура стирки и химической чистки полученных из него изделий. Очень важным свойством волокна является окрашиваемость. Если природные волокна обладают высоким сродством к водорастворимым красителям и содержат большое число реакционноспособных функциональных групп, на которых сорбируется красящее вещество, то синтетические волокна более гидрофобны, и для них пришлось разработать новые красители и специальные методы крашения. В ряде случаев волокнообразующий полимер модифицируют путем введения в него звеньев второго мономера, которые не только нарушают регулярность структуры и тем самым повышают реакционную способность полимера, но и несут функциональные группы, способные сорбировать красители (гл. Ю). Поскольку почти все синтетические волокна бесцветны, их можно окрасить в любой желаемый цвет. Исключение составляют лишь некоторые термостойкие волокна специального назначения, полученные на основе полимеров с конденсированными ароматическими ядрами. Матирование синтетических волокон производится с помощью добавки неорганического пигмента, обычно двуокиси титана. Фотоинициированное окисление [c.285]

    Укида, Найто, Каминами [165] установили, что поливинил-ацетат имеет большую разветвленность, если его получают при более высокой температуре это отражается на свойствах полимера и полученного из него поливинилового спирта. [c.61]

    Использование И. в. вместо гранулированных ионообменных смол создает во многих случаях существенные преимущества. Благодаря высокоразвитой активной поверхности И. в. скорость ионного обмена (как сорбции, так и десорбции) на них значительно выше (в 20— 30 раз). Повышенная гидрофильность волокон, полученных на основе гидрофильных полимеров (целлюлоза или поливиниловый спирт), обусловливает большую степень набухания И. в. и, следовательно, высокие скорости диффузионных процессов. Использование И. в. в виде тканей дает возможность рационализировать аппаратурное оформление процесса ионного обмена (применепие бесконечной ленты, фильтрпрессов с зарядкой ионообменной ткани). Ионообменные ткани могут применяться также в качестве мембран ионообменных. Возможно использование И. в. для хроматографич. разделения белков, для очистки нек-рых гормонов и др. Особое значение имеет использование И. в. для очистки сточных вод от ртути, фенола, никеля и др., для улавливания ценных металлов и иода из разб. водных р-ров, для разделения смесей ионов металлов. Так, И. в. из полимеров, содержащих фосфорнокислые группы, м. б. использованы для разделения смеси катионов Fe +, u +, Ni +, для улавливания ионов С1 +, U0 +, и +, Th + и др., разделения двухкомпонентных смесей катионов Bi + и РЬ +, Сц + и d + и др. И. в. могут использоваться как исходные продукты для сгтнтеза других типов волокон со специальными свойствами, напр, антимикробных волокон. [c.432]

    Широко используют все виды ПАВ при получении и применении синтетич. полимеров. Важнейшая область потребления мицеллообразующих ПАВ — производство полимеров методом эмульсионной полимеризации. От типа и концентрации выбранных ПАВ (эмульгаторов) во многом зависят технологич. и физико-химич. свойства получаемых латексов (см. Эмульсионная полимеризация, Латексы синтетические). ПАВ (гл. обр. высокомолекулярные) применяют также для облегчения концентрирования каучуковых латексов методом сливкоотделения, для повышения агрегативной устойчивости натурального или синтетич. латекса. Иногда в латекс с целью его сенсибилизации, т. е. увеличения чувствительности к действию коагулирующих факторов, вводят ПАВ, ослабляющие защитное действие стабилизаторов. ПАВ используют также при суспензионной полимеризации. Обычно применяют высокомолекулярные ПАВ — водорастворимые полимеры (поливиниловый спирт, производные целлюлозы, растительные клеи и т. п.). ПАВ как обязательные компоненты содержатся в водных дисперсиях полимеров, получаемых механич. диспергированием или путем образования новой полимерной фазы из пересыщенного р-ра. Смешением лаков или жидких масляносмоляных композиций с водой в присутствии эмульгаторов получают эмульсии, применяемые при изготовлении пластмасс, кожзаменителей, нетканых материалов, импрегнированных тканей, водоразбавляемых красок и т. д. [c.337]

    Описаны волокнообразующие полимеры, получаемые реакцией диизоцианатов с целлюлозой и поливиниловым спиртом. Так, Тьебо [2193] исследовал возможность образования трехмерных нерастворимых полимеров взаимодействием диизоцианатов с целлюлозой. Исследовалась реакция гексаметилендиизоцианата и ж-толуилен-2,4-диизоцианата с целлюлозой и вискозным волокном, а также с ацетилцеллюлозой различной степени ацетилирования. Реакция контролировалась измерением инфракрасных спектров, определением содержания азота и исследованием механических свойств полученных продуктов. В случае присоединения диизоцианатов к гидроксильным группам производных целлюлозы образуются уретаны. В гетерогенной среде реакция происходит лишь в незначительной степени. При проведении реакции в растворе образование мостиков может происходить с каждой ОН-группой. [c.186]

    Петце [382] описал получение механическим способом сополимеров полиорганосилоксанов с полиэфирами, поливиниловыми и другими полимерными соединениями, которые отличаются хорошими механическими и электротехническими свойствами и находят применение на практике. [c.58]


Смотреть страницы где упоминается термин Поливиниловый получение и свойства: [c.186]    [c.318]    [c.433]    [c.216]    [c.157]    [c.211]    [c.28]    [c.85]    [c.187]    [c.187]   
Химия высокомолекулярных соединений (1950) -- [ c.371 ]




ПОИСК





Смотрите так же термины и статьи:

Поливиниловый химические свойства, получение сложных эфиров

Получение и свойства поливинилового спирта

получение и свойства



© 2025 chem21.info Реклама на сайте