Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дейтерий, применение при изучении

    Статья Кембола посвящена каталитическому обмену углеводородов с дейтерием. Применение дейтерия как изотопного индикатора открыло возможность более глубоко заглянуть во внутренний механизм ряда таких важных реакций, как гидро- и дегидрогенизация, изомеризация и др. Простейшей реакцией такого рода является дейтерообмен, интересный не только сам по себе, но и как реакция, изучение которой много дает для понимания [c.5]


    С начала 30-х гг., когда дейтерий стал доступным, весьма большое число работ по исследованию каталитических реакций проводится с применением тяжелого водорода [1—4]. Из-за ограниченности времени можно упомянуть лишь о нескольких случаях использования дейтерия и трития как меченых атомов. Возможно, что наибольшее значение имеет применение дейтерия при изучении [3] реакции [c.724]

    Более подробные литературные данные о применении дейтерия к изучению реакций органической химии приведены в обзоре [185]. [c.246]

    Таким образом, применение дейтерия к изучению кето-энольной таутомерии оказало значительную помощь в окончательном выяснении ее механизма. [c.264]

    Работа с веществами, содержащими меченые атомы. Громадное развитие физики и химии стабильных и радиоактивных изотопов многих элементов создало необозримые возможности для изучения многих научных вопросов также в области органической химии, биохимии, в медицине и др. Пользуясь точными методами обнаружения и определения изотопных веществ, можно решать такие вопросы, которые были недоступны для решения обычными химическими методами. Для проведения таких работ необходимо во многих случаях иметь органические вещества, в молекулы которых введены простые или радиоактивные (рад.) изотопы дейтерий (О), тритий (рад.), тяжелый кислород Ю, сера или (рад.), С (рад.), (рад.) и др. Так как соединения с мечеными атомами очень дороги, а в ряде случаев весьма опасны для здоровья, от химика требуется большая тщательность в работе с очень малыми количествами вещества, часто с применением особых мер предосторожности. Это, однако, пе останавливает исследователей, и подобные работы очень энергично развиваются. [c.398]

    Известны только три работы по изучению реакции высших олефинов с дейтерием на никелевых катализаторах с применением масс-спектрометрического анализа продуктов [32, 48, 49]. Имеющиеся другие работы по исследованию реакции изомеризации будут рассмотрены в следующем разделе. Работы по одновременному изучению как обмена, так и изомеризации отсутствуют. [c.373]

    Результаты изучения реакции этилена с дейтерием на родии, нанесенном на окись алюминия [31], а также некоторые примеры распределений, рассчитанных по вышеуказанному методу, приведены в табл. 19. Содержание дейтерированных этиленов в начальных продуктах реакции возрастает от 30% при—18° до 75% при 110°. В противоположность реакции на палладии главным продуктом реакции на родии является этан-йг, причем при всех используемых температурах, кроме наименьшей, наблюдался значительный водородный обмен. Примененные при расчетах параметры указывают на сильное влияние температуры на вероятность десорбции этилена, которая повышается от 25% при —18° до 62% при 110°. Вероятность же обратного превращения в алкильный радикал относительно мало зависит от температуры. Другим отличием от реакции на палладии является то, что на родии вероятность присоединения дейтерия на стадии гидрогенизации больше, [c.399]


    Метод меченых атомов нашел применение вначале для изучения подвижности или реакционной способности различных атомов в молекуле данного соединения или в молекулах различных соединений (в частности, в реакциях изотопного обмена). Первые исследования этих реакций были осуществлены Хевеши и Панетом [951], изучавшими обмен изотопов естественно-радиоактивных элементов. Однако систематические исследования реакций изотопного обмена и других реакций с использованием меченых атомов начались с открытием дейтерия и получением искусственно-радиоактивных и стабильных изотопов, других элементов. [c.43]

    Качественный и количественный анализы не исчерпывают всех возможных применений инфракрасной спектрометрии. Этот метод широко используется для исследования структуры неорганических комплексов, межмолекулярных водородных связей, симметрии молекул, а также для изучения взаимодействия между растворителем и растворенным веществом. С некоторой модификацией его применяют для исследования адсорбции на поверхности твердых тел, изомеров, влияния замещения водорода дейтерием, а также кристаллической структуры полимеров. С помощью инфракрасной спектрометрии контролируют физические и химические процессы, а также выполняют определение многих составляющих в сложных образцах. [c.160]

    Весьма перспективны методы кинетической ИК-спектроскопии [12—14], развитые специально для исследования Н-обмена. Эти методы сочетают высокую чувствительность с высокой временной разрешающей способностью. В комбинации с техникой остановленной струи [15] ИК-спектроскопия применима к изучению Н-обмена в растворах с периодом полуобмена до нескольких миллисекунд. При этом методики, основанные на использовании ИК-спектроскопии, требуют применения меченых (как правило, дейтерированных) соединений, что приводит к необходимости рассмотрения влияния изотопных эффектов [16, 17]. На рис. 3 и 4 приведены примеры спектроскопических исследований Н-обмена в растворе методами ИКС и ЯМР. Из других методик отметим применяемый для изучения медленного дейтеро-обмена химический анализ с отбором проб [18] несколько работ выполнено с помощью метода ЭПР (см., например, [19]).,  [c.275]

    Характер восстановления пиридиннуклеотида изучен наиболее тонко посредством применения дейтерия [30]. В основу этого метода был положен точно такой же принцип, что и при использовании изотопа для прослеживания превращений углерода. Дейтерий и водород ведут себя в химических и ферментативных реакциях совершенно одинаково [c.228]

    Эти методики резко увеличили предельные молекулярные массы соединений, исследуемых методом масс-спектрометрии. Плазменная десорбция с применением бомбардировки продуктами деления радиоактивного калифорния-252 позволила получить молекулярные ионы с массой 23 ООО из полипептида трипсина. Метод бомбардировки быстрыми атомами (РАВ) обеспечил получение подробных сведений о строении гликопротеина с молекулярной массой около 15 ООО. С помощью полевой и лазерной десорбции удалось получить масс-спектры молекулярных ионов, что дает возможность определять распределение олигомеров во фрагментах ДНК. Выпускаемые в настоящее время промышленностью приборы позволяют измерять молекулярные массы до 20 ООО при разрешении 150 ООО. Еще более высокого (в 5—10 раз) разрешения можно достичь, используя метод фурье-преобразования, но он пригоден для ионов относительно малых масс. Предельно высокое разрешение может быть особенно полезным в тех случаях, когда необходимо отличить в масс-спектре массы одного дейтерия от массы двух атомов водорода (разность масс всего 0,007) или массу одного атома от массы фрагмента —Н (разность масс 0,003). При изучении масс-спектров больших молекул эти задачи становятся чрезвычайно важными, поскольку и дейтерий и присутствуют в природе. Достаточно, например, вспомнить, что в молекулу с массой 900 может входить 60 и более атомов углерода, и если содержание соответствует природному (1,1%), то примерно в половине таких молекул имеется по крайней мере один атом углерода-13. [c.227]

    Промышленное применение реакций гидрогенизации олефиновых и ацетиленовых углеводородов стало возможно, в частности, благодаря работам Сабатье, который установил, что некоторые переходные металлы проявляют активность в реакциях гидрогенизации этилена и ацетилена. В последнее время для выяснения механизма реакций каталитической гидрогенизации использовались следующие методы 1) масс-снектрометрия — для идентификации промежуточных соединений в случае применения дейтерия для контроля за ходом реакции 2) метод инфракрасной спектроскопии — для исследования адсорбированного состояния 3) обычные методы изучения хемосорбции и кинетики. Интерпретация результатов таких исследований довольно сложна, так как одновременно с гидрогенизацией происходят реакции обмена и полимеризации, что усложняет кинетику реакции и состав продуктов. [c.332]


    Метод меченых атомов нашел применение вначале для изучения подвижности или реакционной способности различных атомов в молекуле данного соединения или в молекулах различных соединений (в частности, в реакциях изотопного обмена). Однако систематические исследования реакций изотопного обмена и других реакций с использованием меченых атомов начались с открытием дейтерия и получением искусственно-радиоактивных и стабильных изотопов других элемептоБ. [c.21]

    С другой стороны, изучение реакций атомарного дейтери г с газообразными алканами дало более точные данные для вычисления энергий активации элементарных радикальных реакций замещения [59, 60]. В этих работах обмен водорода на дейтерий с образованием дейтеро-замещенных алканов был применен как метод изучения механизма элементарных реакций, при которых возникают дейтеро-соединения, позволяющие следить за отдельной реакцией в сложном процессе. [c.31]

    При этом дейтеризация продуктов связана с накоплением дейтерия в этилене в результате обмена на атомы дейтерия. В случае молекулярного механизма крекинга подобный обмен происходить не может. Для полностью за торможение г N0 и незаторможенного распада пропана при одинаковой глубине превращения наблюдался в этилене одинако1Вый обмен. Поскольку обмен связан с глубиной превращения и не зависит от времени достижения ее, то эти опыты нельзя объяснить как результат образования дейтерированных продуктов по реакциям обмена, не зависимым от процесса крекинга [65]. Важно было показать также, что обмен при различных глубинах превращения пропорционален этим глубинам. Это показано в других исследованиях, описанных ниже. Этот метод был применен также для доказательства процессов миграции свободной валентности в радикалах, т. е. изомеризации некоторых свободных радикалов [90, 91, 921, и при изучении дейтеризации метана (образующегося в системах алкен-1)2-0 при различных концентрациях атомов дейтерия и, в частности, при очень малых концентрациях), контролируемой масспектрометрическим методом анализа [931. [c.44]

    В качестве одного из простых примеров применения меченных дейтерием молекул для изучения подвижности атомов водорода в зависимости от положения их в молекуле рассмотрим реакцию метильного радикала СНз с молекулой метиламина H3NH2. Эта реакция может идти двумя путями  [c.43]

    Прямые применения изотопов в катализе начались сразу же после открытия дейтерия и искусственной радиоактивности, хотя отдельные результаты, интересные в каталитическом отношении, были получены значительно раньше при изучении поверхностной диффузии, эманирую-ш,ей способности, адсорбции и захвата примесей при помощи природных радиоактивных веществ [1]. За двадцать лет по изотопам в катализе на-конлен огромный экспериментальный материал, только в небольшой части охваченный имеющимися обзорами [2]. В своем докладе я попытаюсь наметить ведущие направления применения изотопов в катализе и охарактеризовать основные тенденции и перспективы дальнейшего взаимодействия химии изотопов и катализа (см. также [127]). [c.5]

    Ни один из стабильных изотопов кислорода, азота, углерода или водорода не был открыт масс-спектроскопически, хотя первые точные определения распространенности были сделаны именно этим методом. В ранних работах кислород был признан элементом, состоящим из одного изотопа, и масса была выбрана в качестве эталона масс. Открытие в атмосферном кислороде и в результате изучения полос поглощения кислорода было осуществлено в 1929 г. [738, 739]. За этим быстро последовало открытие и С, проведенное также оптическими методами. Дейтерий не был идентифицирован до 1932 г. Первые определения относительной распространенности изотопов кислорода [81], азота [2076], углерода [82] и водорода [224] масс-спектрометрическим методом были осуществлены несколько лет спустя после открытия изотопов. В отличие от ранних работ, где ошибки возникали при обнаружении и интерпретации массовых линий, поздние измерения проводились с применением масс-спектрометра и ионного источника с электронной бомбардировкой. Возросшая точность идентификации ионов, относимых к каждому массовому пику, привела к открытию многих новых изотопов. Примером прогресса, вызванного более широкими возможностями используемых источников, может служить открытие Ниром [1492] изотопов кальция с массами 46 и 48. Более ранняя работа [83] свидетельствовала о наличии изотопов с массами 40, 42, 43 и 44. Для получения ионного пучка Нир испарял металлический кальций в пучок электронов и получил ионный ток больше 10 а для наименее распространенного изотопа кальция ( Са), присутствующего в количестве лишь 0,003% от изотопа <>Са. При изменении температуры печи в пределах, соответствующих 10-кратному изменению давления, пики с массами 46 и 48 оставались в постоянном соотношении к пикам с массой 40. Это доказывало, что указанные выше пики относятся к малораспространенным изотопам кальция, а не вызваны наличием примесей. Дальнейшее подтверждение существования малораспространенных изотопов было получено изменением энергии ионизирующих электронов и установлением зависимости между изменением интенсивности пучка ионов для каждой массы и изменением энергии электронов. В пределах ошибки эксперимента все ионы обладали одним и тем же потенциалом появления и одной и той же формой кривой эффективности ионизации. Сходные измерения были проведены с использованием двухзарядных атомных ионов. На пики с массами 24 и 23 налагались пики, обусловленные примесью магния и натрия. Эти ионы примесей могли быть обнаружены по их гораздо более низкому потенциалу появления по сравнению с потенциалами двухзарядных ионов кальция. Оказалось возможным провести измерение ионов ( Са) , вводя поправку на присутствующие ионы однако более значительные количества < Ыа) помешали определению ионов кальция при этом отношении массы к заряду. [c.71]

    Химические методы изучения колебаний относительной распространенности изотопов, основанные на точном измерении атомного веса, не обладгют достаточной чувствительностью. Для демонстрации колебаний в естественной распространенности элементов, содержащих лишь стабильные изотопы, химический метод может быть применен лишь в случае бора [274]. При измерениях распространенности изотопов водорода и кислорода широко применяется метод определения плотности образцов воды. В частности, этот метод был использован [2139] для подтверждения константы равновесия для реакции (26), однако его применение связано с приготовлением специальных образцов. Например, в указанной выше работе использовалась вода, свободная от дейтерия. [c.101]

    Отщепление воды от молекулярных ионов цикланолов протекает в различной степени в зависимости от величины цикла (ср. рис. 2-7,Л, Б, В) оно особенно заметно в случае циклогексанола, на примере которого этот процесс был детально изучен 111, 29] с применением аналогов, меченных дейтерием во всех положениях. [c.60]

    Соответствующий эфир бензофенон-4-уксусной кислоты (88) дал олефин (89) (55%) и два лактона (90) (17%) и (91) (4%) вместе с межмолекулярным пинаконом (16%). Механизм образования олефина был детально изучен с применением дейтерироваи-ного производного (92), содержащего 83% дейтерия при С-15. Полученный в результате облучения продукт (93) содержал 78% дейтерия, присоединенного к бензгидрольному углеродному атому. Это свидетельствует о том, что механизм реакции заключается в отщеплении атома водорода от С-14 (в большей степени, чем от С-15) возбужденной карбонильной группой с образованием про- [c.808]

    Ясно, что изучение дейтерообмена при изомеризации может быть использовано для оценки вероятности этих схем. Примером такого исследования может служить работа [30]. В ней установлено, что между скоростями дейтерообмена и изомеризации не наблюдается корреляции, если в качестве катализа-. тора использовать платиновую пленку. Этот результат согласуется с полученными ранее данными для кислотных катализаторов (стр. 137). Однако применение твердого катализатора позволило использовать оригинальную методику исследования, предусматривавшую присутствие дейтерия как в реагирующей газовой смеси, так и на поверхности катализатора. В опытах, описанных в работе [30], платиновую пленку нагревали в вакууме и обрабатывали дейтерием. Затем при 300 °С через дей-терированную пленку пропускали смесь дейтерия и неопентана при мольном соотношении 10 1. В продукте изомеризации— изопентане — были обнаружены молекулы, содержащие один или два атома дейтерия. Этот результат отличается от наблюдаемых в случае катализа кислотами, когда продукты изомеризации могли содержать и большее число атомов дейтерия в молекуле. [c.159]

    При заданном значении- д Р == ф(У[1]/[М.])- Очевидно, что р существенно выше в процессах олигомеризации, в которых используются в 10—15 раз большие концентрации инициатора и в 2—3 раза меньшие концентрации мономера, чем при синтезе высо-кополимеров в массе. Характерно, что реакции передачи цепи радикалами инициатора вообще не рассматриваются в классической теории радикальной полимеризации, разработанной применительно к процессам синтеза высокомолекулярных соединений. Интересные результаты получены при изучении реакций передачи цепи радикалами инициаторов на растворители, которые служат источником образования монофункциональных макромоле кул. Применение радиометрического метода, а также ЯМР-спек-троскопии на ядрах дейтерия показало, что конетанты передачи на толуол и ацетон — наиболее распространенные растворители при синтезе РО—имеют неожиданно низкие значения 0,01—0,03, что почти в 50 раз меньше соответствующих констант передачи цепи на полибутадиен радикалами диацилпероксидов [141]. Со держание монофункциональных макромолекул в олигодиенах при инициировании азодинитрильными соединениями составляет 4— [c.105]

    Впервые метод изотопных индикаторов для изучения химических процессов был применен В. И. Спициным в 1917 г. Однако употребление меченых атомов для изучения биологических процессов началось только с 1923 г. в работах Хевеши. Обычно используются или стабильные изотопы элементов, отличающиеся по массе от обычных элементов, или радиоактивные изотопы. В соответствии с этим применяют и различные методы их обнаружения — либо по массе, применяя, например, масс-спектрометр, либо по радиоактивности, измеряя радиацию при помощи специальных счетчиков. Из стабильных изотопов применение в биохимии нашли водород с массой 2 (В, дейтерий, №), азот с массой 15 (Н ) и углерод с массой 13 (С ). Из радиоактивных изотопов применение нашел изотоп фосфора (Р ) используются также изотопы углерода (С и С ), серы (5 ), йода (Л 1), железа (Ре ), натрия (Ыа ), кальция (Са ) и др. [c.212]

    Фермент, катализирующий эту реакцию, — триптофандесмолаза (триптофансинтетаза) — получен в очищенном виде найдено, что в его действии участвует пиридоксальфосфат. Возможно, что в этой системе какую-то роль играет цинк [730]. Для изучения механизма синтеза триптофана из индола и серина был применен препарат серина, меченного дейтерием в а- и р-положениях, в р-углеродном атоме и Установлено, что в процессе конденсации освобождается половина атомов дейтерия. Эти данные указывают на внутримолекулярную дегидратацию серина, за которой следует присоединение индола к двойной связи образовавшейся а-аминоакриловой кислоты [729]. По-видимому, в ходе реакции возникает шиффово основание, состоящее из аминоакриловой кислоты и пиридоксальфосфата [731]. [c.397]

    Многие радиационно-химические исследования основаны на обстоятельном изучении образования водорода, поскольку таким путем можно проверить различные модели-предположения. В случае применения излучения с малым ЛПЭ к чистым ароматическим углеводородам только малая доля суммарного реакционного процесса и примерно меньше 0,5% поглощенной энергии приводят к образованию водорода. Соответственно должны учитываться даже те первичные процессы, которые играют исключительно малую роль в реакционном процессе как целом. Образование водорода частично вызвано мономолекулярными и частично бимолекулярными диссоциативными процессами, как можно видеть из изотопного соотношения На НВ Вз, получаемого для облученных смесей дейтерированных и недейтерированных ароматических соединений [35, 100, 103, 104, ЬЗб, 202]. Шулер [202] доказывает, что для отношения 0(Н) С(В) (69% 31%), измеренного им в бензоле, статистическое распределение водорода и дейтерия должно приводить к отношению Нз НО Вз = 43 47 10. Поэтому наблюдаемое отношение 52,1 33,1 14,8 соответствует 14,7% Щ + 5,8% + (37,5% Н + + 34,2% НВ Ц- 7,8% Ва), где числа в скобках представляют часть, для которой распределение изотопов—статистическое. Избыток Нд и В около 23%, вызванный мономолекулярными реакциями, представляет малый вклад в общее образование водорода. Барр и Скарбо-роу [35] показали, что в жидкой смеси дифенила с дифенилом- щ вклад мономолекулярного и некоторых видов бимолекулярного разложения в образование водорода почти одинаков. Сравнивая выходы водорода из смесей дейтерированных в определенных положениях толуолов, Ингаллс [136] предположил, что примерно 38% водорода, образующегося из атомов водорода, связанных с ароматическим ядром толуола, производится по внутримолекулярным и 62% — по меж-молекулярным реакциям. В то же время для водорода, выделяющегося из метильных групп, 18% связаны с внутримолекулярным и 82% — с межмолекулярным процессами. [c.140]


Смотреть страницы где упоминается термин Дейтерий, применение при изучении: [c.152]    [c.333]    [c.113]    [c.186]    [c.247]    [c.692]    [c.186]    [c.430]    [c.192]    [c.321]    [c.274]    [c.634]    [c.461]    [c.274]   
Ферменты Т.3 (1982) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Дейтерий



© 2024 chem21.info Реклама на сайте