Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фазовые состояния поверхностных слое

    Рентгенографические методы анализа щироко используются для изучения структуры, состава и свойств различных материалов, и в том числе, строительных. Широкому распространению рентгенографического анализа способствовала его объективность, универсальность, быстрота многих его методов, точность и возможность решения разнообразных задач, часто не доступных для других методов исследования. С помощью рентгенографического анализа исследуют качественный и количественный минералогический и фазовый состав материалов (рентгенофазовый анализ) тонкую структуру кристаллических веществ — форму, размер и тип элементарной ячейки, симметрию кристалла. Координаты атомов в пространстве (рентгеноструктурный анализ) степень совершенства кристаллов и наличие в них зональных напряжений размер мозаичных блоков в монокристаллах тип твердых растворов, степень их упорядоченности и границы растворимости размер и ориентировку частиц в дисперсных системах текстуру веществ и состояние поверхностных слоев различных материалов плотность, коэффициент термического расширения, толщину листовых материалов и покрытий внутренние микродефекты в изделиях (дефектоскопия) поведение веществ при низких и высоких температурах и давлениях и т. д. [c.74]


    Представления о строении полимерных тел прошли сложную эволюцию от мицеллярных теорий к современным концепциям структурной физики полимеров (см. Структура, Надмолекулярная структура. Кристаллическое состояние, Аморфное состояние. Коллоидные полимерные системы). Несостоятельность мицеллярных теорий строения линейных гомополимеров с однородными по строению цепями макромолекул (напр,, целлюлозы, натурального каучука) заключается в отсутствии физич. причин существования устойчивых фазовых частиц коллоидных размеров. Развитие представлений о макромолекулах, не отличающихся от малых молекул природой сил межмолекулярного взаимодействия, исключило возможность научного обоснования мицеллярных представлений о строении полимеров и их р-ров. Здесь следует еще раз подчеркнуть, что имеются в виду макромолекулы, лишенные дифильности в упомянутом выше смысле. Гибкие макромолекулы, содержащие разнородные по полярности участки, в определенных условиях могут давать микро-гетерогенные системы типа лиофильных золей. При этом лиофобные группы макромолекул объединяются в ядре коллоидной частицы (напр., белковой глобулы), а лиофильные образуют ее поверхностный слой. [c.129]

    Барьерный механизм по своему существу должен быть чувствителен к конкретной природе и состоянию поверхностного слоя, включая покровные пленки, и поэтому при взаимодействии тела с активной средой может приводить как к повышению пластичности, так и к ее снижению (с упрочнением) в зависимости от результата протекания поверхностных химических (электрохимических) реакций. Так, при растяжении монокристалла никеля в растворе серной кислоты под анодным током поляризации при потенциалах пассивации наблюдалось упрочнение и снижение пластичности по сравнению с деформацией на воздухе вследствие образования прочных фазовых окисных пленок (толщиной около 5 нм) [127] в результате анодной реакции в области потенциалов пассивации. [c.144]

    V. Теория предполагает постоянство площади, приходящейся на молекулу в поверхностном слое и не учитывает возможных изменений агрегатного состояния поверхностного слоя. Таким образо.м, теория не включает фазовых переходов (изменяющих Л), к рассмотрению которых мы далее обратимся, отметив в заключение, что принципиальные основы теории БЭТ до настоящего времени сохраняют свое значение и она находит большое применение в современных работах и, в частности, для нахождения величины so. [c.148]


    Природа упрочняющего эффекта во многом ост.ается еще неясной. Экспериментальные данные свидетельствуют, что упрочнение стали при обработке кислыми ингибированными растворами сопровождается выглаживанием дна концентраторов напряжений и образованием на поверхности металла защитной фазовой пленки.. Это напоминает известный эффект Иоффе. Однако свести. эффект упрочнения к эффекту Иоффе нельзя, так как не все ингибиторы вызывают его а лишь некоторые, т. е. наблюдается специфичность действия ингибиторов. Эффект упрочнения в некотором роде противоположен эффекту Ребиндера и связан с изменением физико-химических свойств поверхностных слоев стали. Л ожно предположить, что поверхностно-активное вещество, взаимодействуя с поверхностью металла, повышает его поверхностную энергию а и, в соответствии с уравнением Гриффитса, прочность Р = Т/ Е а/С возрастает. Таким образом, ингибированный раствор формирует определенное благоприятное физико-механическое состояние поверхностных слоев стали. [c.92]

    Рентгеновская дифракционная картина отражает состояние решетки в объеме образца, так как глубина проникновения рентгеновских лучей колеблется в зависимости от природы образца и излучения от сотых до десятых долей миллиметра, а размеры элементарной ячейки, как правило, порядка нескольких ангстрем или десятков ангстрем. Поэтому дифракционная картина поверхностного слоя практически полностью затемняется картиной от объема. В катализе, как известно, существенную роль играет как раз состояние поверхностного слоя катализаторов. Для изучения фазового состава поверхностного слоя катализаторов пользуются методом электронографии [13—14], так как глубина проникновения электронных лучей гораздо меньше рентгеновских и составляет величину порядка десятков и сотен ангстрем. Для изучения порошковых катализаторов удобнее пользоваться методом отраженных электронных лучей. [c.389]

    Прежде всего выясним, как отражается наличие поверхностного фазового перехода на диаграммах поверхностного натяжения и состава поверхностного слоя. Для равновесия двух объемных фаз и поверхностного слоя число степеней свободы равно п и на единицу превосходит вариантность той же системы при наличии двух поверхностных фаз. Это значит, что на кривых зависимости поверхностного натяжения от температуры, давления и любых параметров состояния объемных фаз состояние равновесия двух объемных и двух поверхностных фаз изобразится одной точкой. Если мы, например, рассмотрим изотерму поверхностного натяжения, описываемую уравнением (V. 6), или зависимость поверхностного натяжения от температуры по уравнению (III. 1), то они будут иметь смысл до и после точки поверхностного фазового превращения, происходящего в нонвариантных условиях. Поскольку поверхностный фазовый переход приводит к качественному изменению состояния поверхностного слоя, на соответствующих кривых в точке перехода должен появиться излом. Оценим его величину по уравнениям (V. 6) и (III. 1). [c.363]

    Несмотря на кажущуюся простоту, метод ЭДС представляет большие экспериментальные трудности. Величина потенциала исследуемого электрода определяется фазовым составом поверхностного слоя и последний, очевидно, должен полностью соответствовать фазовому составу в объеме электрода. Нарушение этого требования приводит к возникновению так называемых смешанных потенциалов и, следовательно, к искажению равновесных значений ЭДС. Так как диффузионные процессы и реакции взаимодействия в фазах, содержащих тугоплавкие металлы, окислы и соли, даже при сравнительно высоких температурах протекают крайне медленно, недопустимо какое бы то ни было изменение состава фаз поверхности электрода как вследствие взаимодействия электродов с окислителями и восстановителями в атмосфере прибора, так и вследствие поляризации элемента, возможной из-за его замыкания через нагретые изоляторы . Поэтому используемая, нами конструкция зажима [49], в которой помещалась гальваническая ячейка, обеспечивая надежный контакт между твердыми электродами и твердым электролитом, в то же время исключала самопроизвольное замыкание элемента через нагретые изоляторы, а равновесное состояние электродов, приготовленных из наиболее чистых препаратов, обеспечивалось длительным отжигом (около 150—300 часов) при температурах, близких к рабочим, в эвакуированных кварцевых ампулах, между двойными стенками которых помещался геттер. Опыты проводились в условиях, обеспечивающих отсутствие (или по крайней мере сведение к возможному минимуму) взаимодействия электродов с окружающей атмосферой — остаточными газами (если опыты проводились в вакууме) и окислительно-восстановительными примесями при работе в атмосфере инертного газа. Последний подвергался дополнительной очистке в специальной циркуляционной системе [41]. [c.216]


    Все предшествующее рассмотрение дает возможность поставить вопрос о фазовом состоянии поверхностных и межфазных слоев полимеров в дисперсных системах. Несмотря на неоднородность структуры поверхностных и межфазных слоев, они могут быть охарактеризованы присущими им размерами (протяженностью), термодинамическими функциями (энтропией, энтальпией, удельным объемом) и отличием средних локальных свойств от свойств полимера в объеме. В ряде случаев эти различия могут приближаться к различиям свойств между аморфными и кристаллическими областями в полукристаллических полимерах. Перераспределение в поверхностных слоях фракций разных молекулярных масс с учетом ограниченной термодинамической совместимости полимергомологов [302] также дает основание рассматривать переходной слой как фазу. [c.116]

    Съемка поликристаллических образцов в характеристическом излучении для фазового анализа, качественной оценки степени дисперсности агрегата, для определения состояния поверхностных слоев и т. д. [c.22]

    Так как полимерные материалы часто используются в узлах трения и в качестве покрытий, большое практическое значение имеет изучение механизмов их трения и износа. Процессы трения низкомолекулярных твердых тел и полимеров при разных температурах имеют и общие черты, и существенные отличия. Наиболее специфично проявляется трение у полимеров, находящихся в высокоэластическом состоянии. Существенная зависимость характера изменения силы трения при разных скоростях скольжения свидетельствует о релаксационном характере этого процесса. Важное значение имеет правильный учет площади фактического контакта при изменении взаимного расположения трущихся поверхностей. Наиболее резкие изменения трение претерпевает в областях кинетических (стеклование, размягчение) и фазовых (кристаллизация, плавление) переходов, что связано с изменением его механизма. Трение полимеров всегда связано с их износом. При этом износ может рассматриваться как процесс, характеризующий усталость поверхностных слоев полимеров (аналогично тому, как длительное разрушение характеризует объемную усталость). Механизмы износа твердых полимеров и эластомеров, как и характер их. внешнего проявления, существенно отличаются. [c.384]

    Гетерогенный катализ характеризуется тем, что катализатор находится в ином фазовом состоянии по сравнению с реагирующими веществами. Например, в контактном способе получения серной кислоты окисление SO 2 кислородом осуществляется в присутствии твердого катализатора. Механизм гетерогенного катализа гораздо сложнее, чем гомогенного. Одной из начальных стадий является процесс адсорбции реагирующих веществ на поверхности катализатора с последующим образованием промежуточных соединений между молекулами реагента и атомами (или ионами), расположенными в поверхностном слое катализатора. Далее промежуточные продукты, характеризующиеся гораздо меньшей энергией активации, легко реагируют друг с другом. Следовательно, основная суть катализа — снижение энергии активации реагирующих веществ. [c.83]

    В предыдущих главах мы познакомились с некоторыми свойствами дисперсных систем, связанными с движением частиц дисперсной фазы и их размерами. Однако основные и наиболее характерные свойства коллоидного состояния определяются особым состоянием вещества в поверхностных слоях на границах разделов фаз. Поэтому Б настоящей главе мы приступим к центральному разделу курса, к изучению поверхностных слоев — их свойств, структуры, состава, неразрывно связанному с учением о поверхностных силах и поверхностной энергии. В этой части курса, которая для удобства разделена на несколько глав, мы отвлечемся от дисперсных систем и будем изучать физику и химию поверхностных слоев на фазовых границах, независимо от их протяженности, с целью установления наиболее общих закономерностей. Эти закономерности выходят, вообще говоря, за рамки коллоидных объектов, охватывая также и явления непосредственно с дисперсностью не связанные, например, растворение металлов в кислотах, нанесение тонких слоев, трение твердых тел и т. д. [c.50]

    Согласно последним данным [64] об активности индивидуальных фосфатов в процессе дегидрирования и о фазовом составе кальций-никель-фосфатного катализатора, ответственными за активность КНФ являются соединения никеля. По данным рентгенографического анализа, фосфат кальция в этой каталитической системе играет роль своеобразного носителя, стабилизирующего ионы никеля путем образования твердого раствора, в котором ионы кальция замещены ионами никеля без нарушения ионной структуры катализатора. Ионы никеля находятся в поверхностном слое в таком состоянии, когда под влиянием паро-газовой смеси они способны частично менять свою валентность, не выделяясь на поверхность в виде отдельной [c.157]

    Согласно современным теориям, такой процесс попеременного восстановления и окисления не связан с изменением фазового состояния катализатора — происходит образование и разрушение промежуточных поверхностных соединений реагентов с катализатором. В данном случае при взаимодействии окиси углерода с поверхностным кислородом окиси меди образуется СОг, в результате чего поверхностный слой СиО обедняется кислородом (стадия (1)). Во второй стадии происходит адсорбция кислорода, пополняющая его убыль, на поверхности, так что катализатор регенерируется. При таком подходе каталитический процесс рассматривается как простая совокупность указанных стадий. Изучив в отдельности термодинамику и кинетику каждой стадии (что является сравнительно простой задачей), можно было бы легко построить теорию процесса в целом и использовать ее для подбора катализаторов. [c.64]

    Монография посвящена изучению процесса тонкого измельчения твердых тел. В ней рассмотрены различные стороны влияния поверхиостно-активных веществ на интенсивность разрушения и взаимодействие дисперсных частиц, механизм их хрупкого разрушения с учетом изменения разлтеров частиц и общие закономерности процесса диспергирования. Изложены результаты исследований влияния механической обработки на некоторые физикохимические свойства твердых тел, фазовые превращения в них, структуру и энергетическое состояние поверхностных слоев. Здесь же рассмотрены особенности взаимодействия газов и паров со свежеобразованными в момент разрушения поверхностями твердых тел. [c.7]

    Фазовое состояние, в котором находятся асфальтены, будет определяться природой нефти, количеством смолисто-асфальтеновых веществ, температурой системы [220]. В высокоароматизированной углеводородной среде, при небольшой концентрации асфальтенов сравнительно невысокой молекулярной массы образуется истинный раствор. Увеличение молекулярной массы и концентрации, снижение температуры и ароматично сти дисперсионной среды приводят к появлению ассоциатов и образуется термодинамически неустойчивая лиофобная система. Образуют ли выделившиеся асфальтены дисперсную фазу и коллоидный раствор или, агрегируясь, образуют самостоятельную псевдофазу [219] будет зависеть от концентрации и растворяющей способности смол, вязкости среды [218]. Смолистые фракции, играя роль поверхностно-активных веществ, образуют в ассоциате сольватный слой, так как они ориентированы к асфальтеновому ассоциату полярными фрагментами, а углеводородными к дисперсионной среде. Они представляют собой барьер, препятствующий укрупнению частиц. Устойчивость таких систем будет определяться толщиной сольватной оболочки. Неустойчивые системы стремятся к разделению фазы. Результатом этого может быть расслоение продукта в процессе хранения и компаундирования, при нагреве в змеевиках и др. [c.94]

    Подробно описан критерий достижения в нефтяной системе критического состояния и возникновения структурного фазового перехода. Этот критерий связывается с достижением критического уровня "рыхлости" граничных областей растущего элемента. Это означает следующее если растущий элемент имеет топологическую размерность О, то в момент приближения свойств поверхностного слоя (в данном случае формальным критерием является значение фрактальной размерности самопо- [c.52]

    Пассивацию могут вызывать также и солевые пленки, образующиеся при растворении металла. Согласно адсорбционно-электрохимической теории пассивности пассивация связана с появлением на поверхности металла монослоя или даже долей монослоя адсорбированного кислорода. Адсорбированный кислород изменяет энергетическое состояние поверхностных атомов, блокирует активные центры растворения металла и изменяет структуру двойного слоя. Иногда необходимо учитывать одновременно пассивацию за счет образования как фазовых, так и двумерных оксидных или гидрооксидных слоев. Поэтому пленочную и адсорбционно-электрохимическую теории не следует противопоставлять друг другу. [c.367]

    Пассивацию могут вызывать солевые пленки, образующиеся при растворении металла. Пленочная теория развивалась в работах В. А. Кистяковского, Н. А. Изгарыщева, Г. В. Акимова, Ю. Эванса и др. Согласно адсорбционно-электрохимической теории пассивности (Б. В. Эршлер, Б. Н. Кабанов, Я. М. Колотыркин и др.) пассивация связана с появлением на поверхности металла монослоя или даже долей монослоя адсорбированного кислорода. Адсорбированный кислород изменяет энергетическое состояние поверхностных атомов, блокирует активные центры растворения металла и изменяет структуру двойного слоя. Иногда необходимо учитывать одновременно пассивацию за счет образования как фазовых, так и двумерных окисных или гидроокисных слоев. Поэтому пленочную и адсорбционно-электро-химическую теории не следует противопоставлять друг другу. [c.382]

    Таким образом, скорость изменения дисперсности системы определяется растворимостью вещества дисперсной фазы в дисперсионной среде, коэффициентом диффузии его через дисперсионную среду и поверхностным натяжением границы раздела фаз. Коэффициент диффузии О, в свою очередь, существенно зависит от фазового состояния дисперсионной срёды (очень малые значения характерны для твердых сред), в меньшей степени — от размеров молекул дисперсной фазы и, как правило, не может быть значительно изменен в объеме дисперсионной среды введением каких-либо добавок в систему. Вместе с тем наличие адсорбционных слоев на поверхности частиц (особенно в концентрированных системах, где эти слои составляют основную часть прослоек между частицами) может заметно тормозить процесс изотермической перегонки. Это связано с пониженной проницаемостью таких слоев для молекул дисперсной фазы как за счет снижения коэффи-щ ента диффузии в слое, так и в результате снижения в нем растворимости вещества. Снижение скорости роста частиц при изотермической перегонке может достигаться также вследствие снижения поверхностного натяжения в пределе — при переходе к лиофильным коллоидным системам — процесс перегонки вообще прекращается. Растворимость вещества дисперсной фазы в дисперсионной среде слабо зависит от введения добавок, но сильно меняется в зависимости от природы этих фаз. Дисперсные фазы большинства устойчивых к изотермической перегонке лиофобных систем состоят из веществ, практически нерастворимых в дисперсионной среде. [c.269]

    Сплошные карбидные структуры возникают в результате непосредственного химического взаимодействия металла с углеродом разлагающейся при трении смазки путем реакционной диффузии. Для образования карбидов совершенно не обязательно нагревание поверхностных слоев до температур, превышающих точку фазового перехода (в аустенит), как и охлаждение с большой скоростью. В связи с этим появления карбидных слоев при трении можно ожидать при умеренных температурах и на любых карбидообразующих металлах и их сплавах, в том числе таких, которые в твердом состоянии углерод не растворяют. Подтверждением этого служат полученные на поверхности трения нетравящиеся структуры, состоящие из карбидов хрома и железа (на хроме), карбидов никеля и железа (на никеле) и карбидов хрома, никеля, железа (на нихроме). [c.27]

    К первому типу относятся продукты коррозии, сформировавшиеся в средах с пониженным содержанием ионов кальция (менее 300 мг/л) (рисунок 2.2). Это плотные, хорошо сцепленные с металлом слои, которые до определенного времени хорошо защищают поверхность металла от контакта с коррозионной средой. Типичный вид таких многослойных продуктов коррозии, образовавшихся на поверхности трубы из стали 20, представлен на рисунке 2.3. Видно, что продукты коррозии состоят из чередующихся слоев фаз оксидов РезОд, карбонатов РеСОз и их сочетанием. На поверхности продуктов коррозии наблюдается вьщеление слоя макиновита Ре8. Для сравнения на рисунке 2.4 приведена структура (шлиф) и фазовый состав прокатной окалины на поверхности трубы в состоянии поставки. Сравнивая приведенные микрофотографии, видно, что при взаимодействии с коррозионно-активной средой происходят значительные изменения поверхностных слоев. [c.488]

    При изотермической кристаллизации полипропилена, полипро-пиленоксида и полиэтиленсебацината в слоях толщиной 1—70 мкм на подложках, различающихся поверхностной энергией и фазовым состоянием, было найдено, что на ингибирование ро та сферолитов основное влияние оказывает поверхностная энергия [138, 142]. Полимерные подложки не влияют на скорость линейного роста сферолитов, а стекло ингибирует этот процесс. Сплавы металлов в кристаллическом и жидком состоянии замедляют процесс роста в пленках толщиной менее 20 мкм. [c.73]

    В итоге концентрационная зависимость коэффициента взаимодиффузии антибатна с диаграммой состояния твердых растворов, т. е. в случае отрицательных отклонений от закона Рауля кривая О(Ы) имеет максимум [40]. Основной вклад в изменение С вносит именно изменение энергии смешения с составом сплава, а не изменение коэффициентов самодиффузии. Согласно численной оценке [181], проведенной для сплавов, систем Си—Аи, при достижении точки фазового перехода порядок — беспорядок , сопровождающегося образованием сверхструктур на базе соединений СиАи и СиДи, коэффициент взаимодиффузии скачкообразно возрастает примерно в 50 раз. Не исключено, что увеличение степени ближнего упорядочивания от нуля до единицы также приводит к интенсификации атомарного взаимообмена в поверхностных слоях сплава. В итоге как СР электроотрицательного компонента, так и рекристаллизация положительного будут значительно облегчены, причем при составе сплава, отвечающем одной из таммановских границ стойкости. [c.170]

    Замечено, что при нанесении и обжиге эмалевого покрытия фазовый состав пленок, образующихся в результате предварительного окисления металла, не изменяется. Однако при этом наблюдается интенсивный переход поверхностного слоя стали из однофазного аустенитного состояния в двуфазное аустенитно-ферритное, что, очевидно, связано с диффузией хрома в окис-ную пленку и эмалевое покрытие. [c.88]

    СВЕРХПРОВОДИМОСТЬ — свойство материалов не оказывать сопротивления электрнческому току при температурах ниже характерной для них критической температуры. Материалы, обладающие таким св-вом, наз. сверхпроводящими материалами. Если т-ра ниже критической, удельное электрическое сопротивление сверхпроводника теоретически равно нулю (экспериментально определен лишь верхний предел — пиже 10 ом-см). Магн. индукция массивного сверхпроводника при т-ре ниже критической равна нулю — магн. поле выталкивается из объема материала ири переходе его в сверхпроводящее состояние и остается лишь в тонком поверхностном слое (толщиной 10 —см). Различают сверхпроводники первого рода — чистые металлы и сверхпроводники второго рода — сплавы (однородные, однофазные). Чтобы материал пз сверхпроводящего состояния перешел в нормальное (не сверхпроводящее), его нагревают до т-ры выше критической или повышают (при т-ре ниже критической) напряженность внешнего магн. поля (либо поля протекающего тока) выше определенного критического значения. Критическая напрягкенность внешнего магн. поля растет с понижением т-ры ниже критической и достигает макс. значения при т-ре О К. Если значение напряженности внешнего магн. ноля становится выше критического, сопротивление материала скачкообразно восстанавливается (при. малом коэфф. размагничения), магн. поле проникает в материал. Критические т-ра и напряженность внешнего ноля сверхпроводника зависят от внешнего давления и упругого растяжения. Переход в сверхпроводящее состояние в отсутствие внешнего магн. поля — фазовый переход второго рода, во внешнем магн. поле — фазовый переход первого рода. Сверхпроводники первого рода переходят в сверхпроводящее состояние при определенном значении магп. поля, сверхпроводники второго рода — в широком интервале этих значений. С. обусловлена сверхтекучестью элект- [c.344]

    Поверхностное состояние атомов в ковалентных кристаллах f43m исследуется с помощью дифракции медленных электронов, а также нуклонов. На атомночистых гранях куба и октаэдра обнаруживаются модулированные сверхструктуры с периодами повторяемости, заметно превышающими периоды повторяемости идеальных двухмерных решеток (100) и (111). Сверхструктурный эффект имеет высокомолекулярную природу и связан с переходом значительного числа поверхностных а-радикалов в делокали-зованные я-состояння. Не испытавшая фазового поверхностного перехода часть а-радикалов стабилизируется за счет образования различных двух-мериоупорядочеиных конфигураций. Относительное смещение атомов в поверхностных слоях Si и Ge по отношению к межатомным расстояниям в [c.51]

    При анодной поляризации металлов параллельно с реакцией их растворения по реакции типа (12.11) почти всегда образуются поверхностные слои адсорбированного кислорода, а также фазовые слои (пленки) нз оксидов или солей металла. Кис-лородсодержаии1е слои часто возникают также при контакте металла с раствором (без анодной поляризации), а также при контакте его с воздухом — воздушно-окисленное состояние поверхности. [c.332]

    Коррозионным, электрохимическим и физическим исследованиям сплавов Си — N1 посвящено много работ в связи с изучением природы пассивного состояния металлов [1] и границ химической стойкости твердых растворов [2, 3]. Установлено, что сплавы, содержащие более 60 ат. % меди, теряют свойственную никелю способность пассивироваться и в ряде коррозионных сред ведут себя подобно меди.. Область медноникелевых сплавов, в которых проявляется пассивность, приблизительно совпадает с областью существования свободных электронных вакансий в й-уровнях никеля, взаимодействие которыми, по мнению ряда авторов [1], обусловливает прочную хемосорбционную связь металла с кислородом и тем самым его пассивность. При полном заполнении ( -уровней никеля электронами меди (что происходит при содержании в сплаве более 60 ат. % меди) способность сплава к образованию ковалентных (электронных) связей с кислородом исчезает, металл вступает в ионную связь с кислородом, образуя фазовые окислы, не обладающие защитными свойствами. Скорчеллетти с сотрудниками [3] считают заполнение -уровней никеля не единственной и не главной причиной изменения химической стойкости меднопикелевых сплавов с изменением их состава. Большое значение придается свойствам коррозионной среды, под воздействием которой может изменяться структура и состав поверхностного слоя сплава, определяющего его коррозионное поведение. Этот слой в зависимости от агрессивности среды может в большей или меньшей степени обогащаться более стойким компонентом сплава, с образованием одной или нескольких коррозионных структур, что приводит к смещению границы химической стойкости сплавов. Это предположение подтвердилось при исследовании зависимости работы выхода электрона от состава сплавов до и после воздействия на них коррозионных сред (например, растворов аммиака различной концентрации). [c.114]


Смотреть страницы где упоминается термин Фазовые состояния поверхностных слое: [c.162]    [c.236]    [c.48]    [c.326]    [c.99]    [c.154]    [c.732]    [c.52]    [c.32]   
Эмульсии, их теория и технические применения (1950) -- [ c.120 ]




ПОИСК





Смотрите так же термины и статьи:

Поверхностные состояния

Поверхностный слой

Фазовые состояния



© 2025 chem21.info Реклама на сайте