Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение элементов водорода и азота

    Определение кислорода можно осуществить либо путем гидрирования до воды, либо путем взаимодействия с углем с получением окиси или двуокиси углерода (последней — после дополнительного окисления) [74]. В литературе [74] дан детальный обзор опубликованных методик элементного хроматографического анализа, причем наряду с методами определения указанных выше элементов рассматриваются возможности определения галогенов (окисление образца с получением свободных галогенов восстановление до НС1, HBr, HI), мышьяка и фосфора (восстановление до арсина и фосфина). В качестве подходящего адсорбента рекомендуются порапаки Р и Q, которые пригодны для разделения воды, двуокиси серы, метана и др. Даны также сравнительные характеристики восьми стандартных хроматографических анализаторов элементного состава, которые используют, как правило, для определения углерода, водорода и азота. Объем пробы составляет 0,2—3 мл, продолжительность анализа от 8 до 20 мин, погрешность определения (стандартное отклонение) составляет соответственно для углерода 0,18—0,30 абс. %, для водорода 0,08—0,20%, для азота 0,13—0,40%. Детекторами во всех случаях служат катарометры. [c.202]


    В литературе тенденцию к автоматизации иллюстрируют обычно примерами спектрометрических приборов с непосредственной выдачей результатов и автоматических анализаторов. Однако не менее полезные устройства используются в более ограниченных типах анализов. Например, предложено несколько различных устройств для одновременного определения углерода, водорода и азота в органических соединениях. В одном из таких приборов образец сжигают в кислороде и продукты сгорания вводят в газовый хроматограф. Разделенные компоненты последовательно регистрируют катарометром содержание элементов определяют из отношения площадей пиков, зарегистрированных самописцем. [c.544]

    Как прямая кулонометрия, так и кулонометрическое титрование находят широкое применение в аналитической практике определения неорганических веществ. Подробная сводка возможных объектов анализа приведена в руководстве Агасяна и Николаева. Возможно определение элементов всех групп периодической системы Менделеева. Кулонометрическое титрование используют при анализе органических соединений. Для анализа газов также служит кулонометрия и на ее основе разработаны многочисленные автоматические газоанализаторы па водород, кислород, воду, оксиды углерода, азота и серы, галогены и их производные. [c.252]

    Менее определенным является понятие атомных радиусов для неметаллов. Обычно за них принимают ковалентные радиусы, полученные из межатомных расстояний в двухатомных газообразных молекулах (водород, азот, кислород, хлор) или кристаллах (бор, углерод, кремний, фосфор и т. д.) соответствующих простых веществ (табл. 6). Тенденции изменения ковалентных радиусов совпадают с тенденциями изменения металлических радиусов s- и р-элементов неравномерное уменьшение при движении по периоду слева направо и увеличение при движении по группе сверху вниз. [c.120]

    Элементный анализ. Разработаны многочисленные варианты хроматографического метода определения углерода, водорода, азота, кислорода, серы, галогенов и некоторых других элементов. По точности эти методы приближаются к классическим, но значительно менее трудоемки и превосходят их по экспрессности. Представленные в таблице варианты определения углерода и водорода иллюстрируют гибкость метода реакционной газовой хроматографии. [c.6]

    В последние годы интенсивное развитие элементоорганической химии вызвало необходимость определять углерод и водород в присутствии таких элементов, как бор, фтор, кремний, мышьяк, фосфор и многие металлы, а также определять и сами гетероэлементы в органической молекуле. В руководствах по элементному анализу наряду с методами определения углерода, водорода, азота и кислорода обычно описывают способы определения галогенов, серы и других неметаллов, а также металлов. Все эти методы, как правило, основаны на предварительном разложении образца и определении соответствующего элемента уже в продуктах минерализации. [c.56]


    Прибор не может заменить хорошо оборудованную микроаналитическую лабораторию, поскольку наряду с серийными определениями углерода, водорода, азота и кислорода время от времени появляется необходимость в определении других элементов (например, галогенов, серы) и функциональных групп. [c.543]

    В зависимости от поставленной задачи, свойств анализируемого вещества и других условий состав веществ выражается по-разному. Химический состав вещества может быть охарактеризован массовой долей элементов или их оксидов или других соединений, а также содержанием реально присутствующих в пробе индивидуальных химических соедииений или фаз, содержанием изотопов и т. д. Состав сплавов обычно выражают массовой долей (%) составляющих элементов состав горных пород, руд, минералов и т. д. — содержанием элементов в пересчете на какие-либо их соединения, чаще всего оксиды. Наиболее сложен так называемый фазовый или вещественный анализ, целью которого является определение содержания в пробе индивидуальных химических соединений, форм, в виде которых присутствует тот или иной элемент в анализируемом образце. При анализе органических соединений наряду с определением отдельных элементов (углерода, водорода, азота и т. д.) нередко выполняется молекулярный и функциональный анализ (устанавливаются индивидуальные химические соединения, функциональные группировки и т. д.). [c.5]

    Определение количественного содержания отдельных элементов в органических веществах принято называть элементным анализом. Последний может проводиться макро-, полумикро- и микрометодом в зависимости от количества анализируемой навески. В настоящее время наиболее широко пользуются полумикрометодом, который позволяет работать с малым количеством вещества (20—30 мг) и проводить анализ в сжатые сроки. При этом содержание углерода, водорода, азота и кислорода чаще всего определяют, сжигая навеску исследуемого вещества в трубке из тугоплавкого стекла или кварца в токе воздуха или кислорода. [c.42]

    Атомы углерода, входящие в вещество угля или других видов топлива, соединяясь между собой, образуют как бы скелет молекул органических соединений, часто имеющих весьма сложное строение. К этому скелету присоединены в определенных пропорциях и определенном порядке водород и другие элементы, входящие в состав топлива (кислород, сера, азот). [c.15]

    Для того чтобы установить молекулярную формулу, прежде всего необходимо знать, какие элементы входят в состав соединения. В разд. 2.27 были рассмотрены методы определения углерода, водорода и галогена в органических соединениях. Что можно сказать об определении азота и серы  [c.325]

    Определение количественного содержания элементов (углерод, водород, азот, галогены, фосфор, кремний, сера и др.)  [c.33]

    К легким газам в хроматографии относят водород, азот, кислород, элементы нулевой группы периодической таблицы, а также метан, окись и двуокись углерода. Определение состава смесей, включающих эти газы, необходимо при анализе воздуха нефтяных, болотных и рудничных газов продуктов радиоактивного распада, производства редких газов и продуктов электролиза газов, растворенных в металлах, в крови газов, выдыхаемых человеком, и многих других смесей. Для хроматографического разделения таких смесей необходимы сильные адсорбенты типа активированных углей, силикагелей, алюмогелей и молекулярных сит. Однако вследствие очень высокого давления пара и примерно одинаковых размеров молекул разделить некоторые пары веществ даже на колонке с молекулярным ситом удается лишь при весьма низких температурах. [c.257]

    Определение количественного содержания отдельных элементов в органических веществах называется элементным анализом, который может проводиться макро-, полумикро- и микрометодами. При макроанализе берут для сжигания навеску в 0,15—2 г, при полумикроанализе —в 20—30 мг, а при микроанализе —в 2—5 мг. В настоящее время широко распространен полумикрометод, который позволяет работать с малыми количествами вещества и проводить довольно быстро анализ. Определение основных элементов — углерода, водорода, азота, кислорода — чаще всего производят сжиганием навески вещества в трубке из тугоплавкого стекла или кварца, причем определение углерода и водорода производят одновременно. [c.96]

    Время одного определения в нашем случае составляет 2—3 мин., а для классического метода — 25—30 мин. Преимуш еством метода является также то, что производится непосредственное определение числа атомов азота (углерода или водорода), а не процентного содержания этих элементов в соединении, так как во многих случаях ошибка в определении числа атомов может быть исключена полностью. Это справедливо полностью для большинства газообразных и жидких азотсодержащих соединений. Проба, необходимая для анализа, составляет десятые доли миллиграмма. [c.50]


    При элементном анализе нефтей и битумоидов обычно определяют содержание углерода, водорода, азота и серы. Количество кислорода вычисляют по разности, поэтому эта величина включает в себя погрешности определения всех остальных элементов. Однако в некоторых случаях решение геохимических задач требует знания точных данных по содержанию всех гетероэлементов, что возможно только при прямом определении их. [c.69]

    Основные научные работы посвящены разработке микроанализа органических веществ, создателем которого он является. Поставил перед собой задачу приспособить классические методы элементного органического анализа, разработанные Ю. Либихом и Ж. Б. Д. Дюма, для исследования очень малых количеств веществ. Разработал (1911) методы микроанализа органических веществ, обеспечивающие точность определения углерода, азота, серы и галогенов в навеске вещества до 7—10 мг. Затем (1913) ему удалось уменьшить количество анализируемого вещества до 1—3 мг. Сконструировал и изготовил всю необходимую для этих методов аппаратуру. Создал первую модель микрохимических весов с чувствительностью до миллионных долей грамма. Предложил оригинальные композиции аналитических реагентов, ввел принципиально новые способы разложения органических веществ при элементном анализе. Его методы включали определение элементов, наиболее часто встречающихся в органических веществах (углерода, водорода, азота, галогенов, серы, фосфора и др.), многих функциональных групп, молекулярной массы веществ. [c.406]

    Процесс превращения анализируемого вещества в простые, элементарные продукты можно проводить как в стационарных условиях, так и в проточном реакторе. Следует указать также на возможность реализации метода, в котором проведение химических превращений и газохроматографический анализ образующихся продуктов были бы разделены и проводились бы независимо. Этот метод был применен для определения углерода и водорода в органических соединениях, хотя принципиально он может быть применен и для определения других элементов (серы, азота). Окисление проводили в запаянной стеклянной ампуле при 650—700 °С в присутствии оксида меди (окислитель и катализатор) [9]. При таком способе образуется простая смесь газов и исключается образование оксидов азота, так как восстановленная медь сразу же их разрушает. Разрыв ампу- [c.189]

    В настоящее время коммерческие анализаторы выпускают для определения трех (углерод, водород, азот) и более элементов. Эти анализаторы, естественно, используют и для определения углерода и водорода, в частности для раздельного определения органического и неорганического углерода в почве и горных породах. При анализе битуминозных сланцев представляет интерес определение содержания органического и общего [c.192]

    Источники пламени. Применяют пламя, для получения которого в качестве горючего используют ацетилен, пропан или водород, а в качестве окислителя — воздух, кислород или оксид азота (I), Выбранная газовая смесь определяет температуру пламени. ВоЗ душно-ацетиленовое пламя и воздушно-пропановое имеют низкую температуру (2200—2400 °С). Такое пламя используют для определения элементов, соединения которых легко разлагаются при этих температурах. Таких элементов большинство, и потому в дальней шем тексте, если нет специальных указаний, предполагается использование воздушно-ацетиленового пламени. Воздушно-пропановое пламя используют тогда, когда имеются затруднения в получе НИИ ацетилена такая замена осложняет работу, поскольку в техническом пропане имеются примеси, загрязняющие пламя. Прй определении элементов, образующих трудно диссоциирующие соа- [c.20]

    К легким газам в хроматографии обычно относят водород, азот, кислород, элементы нулевой группы периодической таблицы, а также метан, оксид и диоксид углерода. Определение состава смесей, включающих эти газы, необходимо при анализе атмосферы нефтяных, болотных и рудничных газов продуктов радиоактивного распада, производства редких газов и продуктов электролиза газов, растворенных в металлах, в крови газов, выдыхаемых человеком многих смесей. Для хроматографического разделения таких смесей необходимы сильные сорбенты типа активных углей, силикагелей, алюмогелей и молекулярных сит. Однако вследствие очень высокого давления пара и примерно одинаковых размеров молекул разделить некоторые пары веществ даже на колонке с молекулярным ситом удается лишь при весьма низких температурах. Кроме того, вследствие сорбции газа-носителя может происходить изменение свойств адсорбента по отношению к разделяемым веществам, и, таким образом, природа подвижной фазы оказывает влияние на селективность колонки и форму регистрируемых пиков [231]. [c.221]

    Перейдем к технике, известной под названием элементарного анализа и заключающейся в выделении и определении элементов, составляющих уголь. Преобладающими элементами в данном случае являются углерод (около 80%), водород (около 5%), кислород (около 4—15%) имеются также небольшие количества азота (1,5%), серы (0,5—1,0%), ионов металлов, кварца, следов фосфора и других веществ. [c.59]

    Источники излучения, применяемые при анализе газов, классифицируют в зависимости от способа подготовки проб (разд. 2.5.1). Помимо определения неметаллических компонентов в газовых смесях важной и посильной для эмиссионного спектрального анализа задачей является определение содержания металлов в газах и, в частности, металлов, присутствующих в виде газообразных соединений или взвешенных твердых частиц. В рамках этой же классификации некоторые трудности возникают при определении содержания газов в металлических пробах. С одной стороны, неметаллические элементы, присутствующие в металлах, часто можно определять в разрядах высокой энергии вместе с металлическими составляющими (разд. 3.2.6), а с другой — не всегда известно, находятся ли в анализируемой пробе неметаллические элементы (кислород, азот, водород) в виде адсорбированного газа или в виде химических соединений. Таким образом, в этой области, так же как и при определении металлов в газах, анализ газов и металлов (иногда диэлектрических материалов) может проводиться по одним и тем же методам. [c.176]

    Уже к началу XIX в. накопилось много данных о составе отдельных веществ и их изменениях. Были хорошо известны и описаны 32 элемента, в том числе такие важнейшие, как кислород, водород, азот, хлор и др. открыт закон сохранения веса вещества (массы) прн химических реакциях определен состав воздуха и воды. Химия явно перерастала рамки чисто эмпирической науки. Вставала неотложная задача подведения единой теоретической базы под весь опытный материал, вскрытия внутреннего смысла открытых законов. Это можно было сделать, [c.51]

    При действии 0,25 г исследуемого двухвалентного металла на воду получено 162,8 мл водорода, измеренного при 25°С и давлении 713,2 мм рт. ст. Известно, что этот металл растворяется в жидком аммиаке, при определенных условиях соединяется с кислородом, водородом, азотом и другими элементами. [c.90]

    Вечержа [6, 7] предложил метод автоматического определения углерода, водорода, азота, в котором хроматографическая колонка заменена химическими поглотителями. В качестве окислителя использована закись-окись кобальта при температуре 600—700° С. Для определения каждого элемента применялся соответствующий газ-носитель. При определении углерода сожжение проводят в токе кислорода. Образующуюся воду и окислы азота поглощают ангидроном и двуокисью марганца, а двуокись углерода определяют по теплопроводности. При определении водорода вещество сжигают в токе азота воду восстанавливают железными стружками до водорода после поглощения двуокиси углерода водород фиксируют катарометром. При определении азота вещество сжигают в токе СОг, элементарный азот определяют также по теплопроводности. Точность определения углерода 0,46%, водорода 0,16%, азота 0,27%. [c.116]

    Разложение в токе влажного кислорода в платиновой трубке, в трубке с платиновой набивкой при 900—1250° С [5] или в трубке с кварцевым наполнителем [6—8] (методика № 4). Газообразные и летучие жидкие фторуглероды разлагают, пропуская их с азотом или воздухом в смеси с кислородом [6]. При сожжении серусодержащих соединений образуется сульфат, который может быть определен в виде Ва804. С целью восстановления оксифторида кремния и удаления абсорбированного фторида кремния трубку после сожжения рекомендуют продувать последовательно кислородом, азотом, водородом и снова азотом [7]. Практически фторорганические соединения сжигают в кварцевой аппаратуре с применением обычного элементарного анализа, т. е. с одновременным определением углерода, водорода, азота, хлора и фтора. Это возможно вследствие того, что 51р4 проходит через СиО без изменения, в то время как все остальные элементы окисляются [3]. См. также методы пиролиза. [c.21]

    Определение чувствительности, и точности аналитических весов производят так же, как описано для микровесов. Чувствительность и воспроизводимость взвешивания аналитических весов могут колебаться в довольно широком интервале. Приведенные ниже примеры иллюстрируют работу апериодических весов типа 2 (техновес). пользуясь которыми было проведено много микроаналитических определений углерода, водорода, азота, галоидов и других элементов. [c.21]

    В 1923 г. Д. Бреистед и Т. Лоури, независимо друг от друга, предложили так называемую протолитичсскую теорию кислот и оснований, получившую в настоящее время наибольшее распространение. Согласно этой теории кислоты — это соединения, молекулы которых в определенных условиях способны быть донорами протонов основания — это соединения, способные присоединять протоны, т. е. быть пх акцепторами. Очевидно, что молекулы, способные отщеплять протоны, должны иметь в своем составе атомы водорода, поляризованные положительно. Следовательно, кислоты в соответствии с протолитической теорией представляют собой водородсодержащие соединения. Такое заключение находится в соответствии с общепринятым практическим представлением о составе кислот. Что касается оснований, то ими могут быть соединения разнообразного состава, так как для того, чтобы присоединять протоны, соединению совсем не обязательно иметь в своем составе какие-то определенные элементы. Основания встречаются среди соединений различных классов гидроксиды, амиды и ими-ды активных металлов, водородные соединения азота, оргаьн1чес-кие амины, азотистые гетероциклические и другие соединения. [c.181]

    Для превращения растворов анализируемых веществ в атомный пар чаще всего применяют щелевые горелки длиной 5-10 см. Они дово п.но однотипны по конструкции и легко заменяются Большинство приборов рассчитаны на использование в качестве окислителей воздуха, кислорода и закиси азота, а в качестве топлива - гфопана, ацетилена и водорода Наибольшее распространение получило воздушно-ацетиленовое пламя (2200-2400 °С), которое позволяет определять многие высокотоксичные металлы (РЬ, Сс1, Zn, Си, Сг и др.). Для определения элементов с более высокой температурой парообразования (А1, Ве, Мо и др.) широкое признание получила смесь закись азота-ацетилен (3100-3200 С), поскольку она более безопасна в работе, чем смеси с кислородом. Для обнаружения мышьяка и селена в виде гидридов требуется восстановительное гшамя, образующееся при сжигании водорода в смеси аргон-воздух. [c.247]

    Г. Лендель, Д. Гофман, Г. Брайт. Анализ черных металлов, Госхимтехнздат, 1934, (612 стр,). Авторы описывают арбитражные и экспрессные методы определения элементов, входящих в состав чугунов и сталей, методы определения кислорода, водорода и азота и включений окислов, методы анализа ферросплавов, а также руд, известгяков, шлаков, угля и других материалов, мета, 1лургнческого производства. [c.491]

    Предметом органического элементного анализа [62, 63] является качественное и количественное определение элементов, входящих в состав органических соединений без учета их расположения в структуре. В узком смысле под этим понимают определение углерода, водорода и азота. Вещество испаряют и сжигают в токе кислорода, часто наряду с этим можно применять. СиО или другое вещество, содержащее кислород. Катализаторами горения служат С03О4 или платина. Продуктами реакции являются СО2, HjO и N3  [c.383]

    Предложена программа расчета ЖРД с газообразными продуктами сгорания для установившегося режима работы и обычного сверхзвукового сопла [134]. В табл. 16 указаны учитываемые программой процессы и диапазоны свойственных им потерь. Расчеты базируются на двух подпрограммах — анализе двумерного течения в сопле с учетом кинетики химических реакций (TDK) и анализе турбулентного пограничного слоя (TBL). По первой рассчитывается удельный импульс для невязкого газа с конечными скоростями химических реакций. Подпрограмма позволяет учитывать две зоны с разным соотношением компонентов, а также неполное выделение энергии. Во второй рассчитывается влияние вязкости и теплопередачи в стенку камеры. Расчет носит итерационный характер в последовательности TDK- TBL- TDK и завершается определением удельного импульса (рис. 90). На рис. 91 графически представлены учитываемые виды потерь (интересно сравнить этот метод с аналогичной процедурой расчета удельного импульса РДТТ, которую иллюстрирует рис. 57). Эта программа пригодна для топлив, состоящих из следующих химических элементов углерод, водород, азот, кислород, фтор и хлор. Разработан метод расчета взаимосвязи полноты сгорания в камере с потерями в сопле. [c.170]

    В настоящее время прогресс элементного анализа лежит в области его автоматизации, перехода к использованию очень ма-Л1ЛХ навесок, расширения числа определяемых элемеитов, совер-шенсгвовапия способов предварительного разложения вегцеств, перевода к неразрушающему анализу. Во многих странах автоматы для одновременного определения углерода, водорода и азота, а также и других элементов стали доступными приборами. Такие автоматические анализаторы позволяют использовать очень [c.127]

    Измерение абсолютных значений изотопных отношений было осуществлено Ниром 11506] для аргона. Метод Нира применим к любому элементу, изотопы которого могут быть легко отделены один от другого и получены в чистом виде. Для получения отношения истинной распространенности к измеренной в своем масс-спектрометре Нир использовал образец, приготовленный из чистых Аг и Аг. Применяя электростатическую развертку спектра, он нашел, что дискриминации приводят к завышению истинного значения Аг/ Аг на0,63%. Нир использовал этот поправочный коэффициент, вызванный дискриминацией по массам, в своем приборе для получения величин относительной распространенности изотопов углерода, азота, кислорода и калия. Далее измерения были распространены на неон, криптон, рубидий, ксенон и ртуть [1507]. Лишь в случае аргона, когда проводилось прямое сравнение с эталоном, можно было с уверенностью исключить систематическую ошибку. Однако и для других исследуемых образцов принято, что систематические ошибки меньше ошибок, полученных ранее, и что величины распространенностей изотопов, определенные для этих образцов, позволят использовать их как вторичные эталоны. Интересно отметить, что для некоторых элементов, таких, как серебро, хлор и бром, которые состоят из двух изотопов со сравнимой распространенностью, абсолютные значения изотопных отношений точнее вычисляются на основании химических атомных весов и физически определенных масс изотопов, чем прямым измерением на масс-спектрометре. Для таких элементов химический атомный вес и атомный вес изотопа используются для проверки абсолютной точности измерений распространенности. Самый легкий элемент — водород — может быть использован для изучения дискриминации по массам благодаря большой величине отношения масс На и HD. Водород и дейтерий легко доступны задача получения истинных отношений H2/HD решается при анализе искусственных смесей известного состава и сравнением результатов измерения подобных образцов с измерениями смесей неизвестного состава. Это было сделано для образцов, содержащих 0,003—0,830 мол.% дейтерия [808], при использовании ионных источников без вспомогательного магнита. Результаты анализа определенного образца могут колебаться до 3% при изменении условий работы источника при наличии магнита источника изменение изотопных отношений достигало 25%. При использовании магнита источника значение отношения HD/Hg было всегда завышенным наблюдалась тенденция к еще большему увеличению этого отношения с увеличением количества анализируемого образца. Подобные эффекты не отмечались в отсутствие поля магнита источника. В этих условиях для смесей, содержащих около 0,1% дейтерия, была установлена абсолютная точность измерения 3%. [c.78]

    Интенсивности. тиний азота сравнивались с интенсивностями линий железа, так как железо содержалось в электродах в виде примеси. Однако такое сравнение Вряд ли целесообразно истому, что интенсивность ли-ний материала электродов непостоянна. Как видно из таблицы, наименьшая чувствительность достигнута при определении примесей в азоте. Чтобы увеличить чувствительность определения водорода в азоте, к азоту добавляется гелий. При этом интенсивность линий На резко возрастает интенсивность линии На в отсутствии гелия при 10% водорода в смеси равна интенсивности линии На в присутствии гелия при 1,75% водорода в смеси. Метод, использованный Хейесом, часто применяется в спектральном анализе газовых смесей. Прибавление в больших количествах элемента с высоким потенциалом возбуждения повышает электронную температуру разряда, а значит, и чувствительность определения трудновозбудимого компонента ). [c.177]

    Можно вычислить процентное содержание углерода и водорода в неизвестном соединении, используя стехиометрические законы общей химии. Если содержание этих веществ в сумме равно прлблизительно 100%, значит < в данной молекуле никаких других элементов нет. Если эта сумма меньше 100%, и качественный анализ показывает отсутствие таких элементов, как азот, сора и галогены, значит в соединении, вероятно, присутствует кислород. В этом случае часто принимают процентное содержание кислорода за разность между 100% и суммой процентного содержания углерода и водорода. Более совернгенный способ состоит в непосредственном определении содержания кислорода путем разложения веществ в атмосфере азота, не содержащего кислорода. Вещество пропускают через углерод при 1120°, п кислород количественно превращается в окись углерода. Этот газ пропускают через пятиокнсь иода и освобождающийся иод титруют тиосульфатом. [c.18]

    К легким газам в хроматографии относят водород, азот, кислород, элементы нулевой группы периодической таблицы, а также метан, окись и двуокись углерода. Определение состава смесей, включа-эющих эти газы, необходимо при анализе воздуха нефтяных, болотных и рудничных газов продуктов радиоактивного распада, производства редких газов и продуктов электролиза газов, растворенных т металлах, в крови газов, выдыхаемых человеком, и многих других смесей. Для хроматографического разделения таких смесей необходимы сильные адсорбенты типа активированных углей, сили-жагелей, алюмогелей и молекулярных сит. Однако вследствие очень [c.228]

    Элементный анализ, например, элементный анализ органических соединений — метод определения отдельных элементов, входящих в состав органических соединений. Чаще всего определяют содержание углерода, водорода, азота, кислорода [7—9]. Анализ состоит из двух стадий 1) разложение вещества с образованием неорганических соединений данного элемента (СОг, НгО, N113 и т.п.) 2) количественное определение соединений. [c.6]


Смотреть страницы где упоминается термин Определение элементов водорода и азота: [c.204]    [c.129]    [c.169]    [c.219]    [c.930]    [c.72]    [c.208]    [c.386]    [c.460]   
Методы органического анализа (1986) -- [ c.315 , c.343 , c.346 , c.529 ]




ПОИСК





Смотрите так же термины и статьи:

Азот водород

Азот, определение

Азот, определение азота

Азот-элемент

Водород определение

Водород определение в азоте

Элемент, определение



© 2025 chem21.info Реклама на сайте