Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Применение АВМ в химической кинетике

    Необычайное расширение областей применения химической кинетики в сильнейшей степени стимулировало прогресс в созда- [c.6]

    Между индикаторными реакциями, применяемыми для анализа и изучения равновесий реакций комплексообразования, существует известное сходство. Подавляющее больщинство реакций, описанных в гл. IV, может быть применено для изучения комплексообразования. Недостаточное число индикаторных реакций, уже использованных для-исследования комплексообразования, объясняется отсутствием надлежащей связи между двумя близкими направлениями применения химической кинетики в анализе и в исследовании комплексообразования. [c.94]


    Одной из важнейших областей применения химической кинетики является изучение кинетических закономерностей образования и разрушения полимеров. Это связано в первую очередь с тем исключительным значением, которое приобретают полимеры в практической жизни. Кроме того, в связи с проникновением физической химии в биологию становится весьма важным изучение кинетики процессов образования и разрушения биологических полимеров — белков, нуклеиновых кислот, полисахаридов, поскольку эти процессы являются одними из основных химических превращений в клетках. [c.339]

    Можно ожидать, что объединение кинетического исследования с расчетом реакторов значительно расширит возможности последовательного применения химической кинетики для выбора наилучших способов осуществления каталитических процессов. [c.167]

    Столь большой диапазон применений кинетических методов привел к тому, что интерес к химической кинетике проявляют в настоящее время не только химики, но и ученые и инженеры, работающие в других областях науки и техники, а также биохимики и биологи. [c.5]

    Основой для оценки технологической концепции процесса, его проведения и контроля служат материальный и энергетический балансы. При составлении баланса учитываются отдельные балансы его единичных элементов. Правильное составление баланса часто требует применения термодинамики, термохимии, химической кинетики, инженерной химии и технической физики. [c.427]

    Значительные усилия были приложены, чтобы изложить материал в возможно доступной форме и в объеме, достаточном для перехода студента или инженера-химика к изучению оригинальной литературы и правильной интерпретации ими экспериментальных данных по химической кинетике, а также для применения своих знаний в проектировании химических реакторов. Числовые примеры и задачи, включенные в текст, должны облегчить достижение указанной цели. [c.10]

    В университете штата Канзас (где преподает автор—доп. ред.) в начале семестра одна неделя отводится ознакомлению студентов с математическими методами, примерно в объеме, соответствующем объему главы XII этой книги. Сюда относится знакомство с типами дифференциальных уравнений, часто встречающимися в учении о химической кинетике, и методами численного интегрирования. Приближенные методы расчета находят широкое применение, так как экономят время и труд, а точность получаемых решений обычно вполне соответствует точности исходных экспериментальных данных. Применение указанных методов в тексте сохраняет элементарный характер изложения, принятый нами для настоящей книги. Точные решения, как правило, настолько сложны, что их использование могло бы оттолкнуть начинающего и затруднило бы понимание основных идей. [c.10]


    На рис. П1-1 показана составленная группой системотехникой блок-схема для расчета схемы 1 на аналоговой машине. Коротко рассмотрим переход от заданных уравнений реакции к схеме аналоговой машины (более подробно о применении аналоговых методов в химической кинетике см. в литературе ). [c.39]

    Здесь выясняется обстоятельство, ни в коем случае не компрометирующее схему Линдемана, но требующее весьма существенного уточнения в молекулярно-кинетической теории бимолекулярных реакций. Формула (IV, 4), применение которой к сравнительно несложным молекулам, претерпевающим бимолекулярный распад, было оправданным, оказывается неприменимой к бимолекулярному распаду сложных молекул. Дело в том, что эта формула выведена в предположении, что вся энергия сталкивающихся молекул является кинетической энергией нх поступательного движения другими словами, вывод сделан при учете двух степеней свободы, т. е. без учета внутренних степеней свободы. Поскольку все атомы в многоатомной молекуле находятся в состоянии колебательного движения, в химической кинетике оказалась весьма полезной модель молекулы как совокупность некоторого числа независимых осцилляторов . Если энергия может распределяться между 5 осцилляторами многоатомной молекулы, то число молекул, обладающих [c.168]

    Этот метод должен быть эффективным, однако автору неизвестно работ, в которых проводилось бы достаточно надежное сравнение случайного поиска с градиентными методами. В целом методы прямого поиска в задачах химической кинетики не нашли столь широкого применения как градиентные методы. [c.222]

    Приведенные выше способы нахождения скоростей проточных реакций могут быть использованы для определения порядка реакции методами классической химической кинетики, например методом Вант-Гоффа. Однако для этого не обязательно предварительно рассчитывать скорость реакции. Ниже рассмотрим методы прямого определения порядка проточной реакции. Независимое применение методов обеспечивает большую надежность получаемой величины. [c.167]

    Помимо простоты математической обработки результатов опыта, такие реакторы обладают тем существенным преимуществом, что вследствие больших скоростей циркулирующего потока или применения специальных турбулизаторов можно устранить внешнедиффузионное торможение. Конструкция аппаратов позволяет применять мелкодисперсный катализатор, тем самым ликвидируя и внутри-диффузионные помехи. Поэтому аппараты такого типа нашли широкое применение для детального изучения химической кинетики гетерогенно-каталитических процессов. [c.403]

    Перенапряжение перехода возникает тогда, когда наиболее медленной стадией электродного процесса является собственно электрохимическая реакция (разряд, ионизация). Основы теории перенапряжения перехода в 1930—1940 гг. были предложены М. Фольмером, Т. Эрдей-Грузом, А. Н. Фрумкиным и другими в применении к процессу выделения водорода в более поздних работах была дана общая теория этого вида перенапряжения. Теория Фольмера и Эрдей-Гру-за разработана для концентрированных растворов электролитов при отсутствии специфической адсорбции поверхностно-активных веществ на электродах. Она основана на общих положениях химической кинетики, устанавливающих зависимость между скоростью реакции и энергией активации. Однако для электрохимических процессов следует учитывать зависимость энергии активации от потенциала электрода. Рассмотрим теорию перенапряжения перехода в применении к катодной реакции Ох + ге" Red. Скорость этой реакции равна разности скоростей прямой реакции восстановления и обратной — окисления. Скорость каждой из них описывает уравнение [c.505]

    Лебедев В. Ф., Применение уравнений химической кинетики для мате- [c.561]

    Применение вычислительных методов в химической кинетике можно смело уподобить двуликому Янусу. Успешность и эвристическая ценность применения этих методов могут быть достигнуты только при внутреннем и непреклонном единстве на каждом этапе исследования физико-хими-ческого подхода и моделирования, и детальной/максимально возможно строгой разработки алгоритмов и программ. Эта достаточно общеизвестная и ставшая тривиальной мысль, к глубокому сожалению, часто забывается. Перефразируя известное изречение, можно сказать, что очень хорошими вычислительными методами рассчитываются плохо поставленные задачи и недостаточно разработанные модели и наоборот. И в том и в другом случае результат один — пустая затрата времени. Поэтому в предлагаемой вниманию читателя книге была сделана попытка при рассмотрении каждого затронутого в ней вопроса сочетать физико-химический и вычислительный (в узком смысле слова) подходы. [c.3]


    Проблемы, с которыми сталкивается применение вычислительных методов в химической кинетике, и уравнения, на которых оно основано, встречаются весьма часто и при анализе широкого круга задач эволюции физических, химических, биологических систем, экологических сообществ, популяций и т. п. Это позволяет надеяться, что книга будет представлять интерес не только для специалистов в области вычислительных методов в химической кинетике. [c.3]

    Пятнадцать лет тому назад вышла в свет книга "Применение вычислительной математики в химической и физической кинетике" [158], в авторский коллектив которой входил и один из авторов настоящей книги. В книге [158] впервые в советской научной литературе и одной из первых в мировой литературе были рассмотрены в весьма широком плане основные проблемы применения вычислительной математики в химической и физической кинетике. Были проанализированы методы решения прямой кинетической задачи, иллюстрированные решением многочисленных кинетических задач, приводящих к "жестким" нелинейным обыкновенным дифференциальным уравнениям, рассмотрены некоторые эффективные методы решения обратной задачи, поставлена (и намечены пути ее решения) так называемая проблема чувствительности. Был разработан и доведен до уровня стройной логической схемы оригинальный метод нахождения наиболее вероятного механизма химических реакций, проведен основной анализ и на ряде принципиальных физико-химических примеров показана эвристическая ценность метода Монте-Карло в химической и физической кинетике, а также был решен и ряд других проблем применения вычислительной математики в химической кинетике. [c.5]

    Рассмотрим теперь вопросы применения метода Монте-Карло к задачам химической кинетики. Система разбивается на "среду" и ансамбль "пробных частиц", причем среда описывается феноменологически через такие параметры, как концентрации отдельных компонент, температура и др. Учитывается только взаимодействие пробных частиц со средой. Если обратиться к задачам кинетики, то можно сделать вывод, что с помощью такого метода можно изучать системы, состоящие из небольшой примеси молекул интересующего нас газа к молекулам основного газа, являющегося "термостатом". Соотношение концентраций примеси и термостата должно быть таково, чтобы можно было учитывать только столкновения молекул примеси и частиц термостата. Естественно, что в ряде случаев на такие упрощения можно и нужно согласиться. Принципиальным является вопрос о построении нелинеаризованной модели. Такая возможность в принципе имеется и состоит в использовании идеи "периодических граничных условий". [c.201]

    Здесь будут изложены только два иэ возможных применений преобразования Лапласа в химической кинетике. [c.214]

    На основе метода переходного состояния автором был разработан и применен приближенный метод расчета стерических факторов радикальных реакций. Это перспективный метод, имеющий значение для химической кинетики вообще. [c.8]

    При низких давлениях проверка развитой выше теории радикально-цепного крекинга алканов, начинающегося на стенках и замедленного влиянием продуктов крекинга в объеме, была проведена расчетным путем для газообразных алканов в кандидатской диссертации И. Ф. Бахаревой [203). Для решения нелинейных дифференциальных уравнений (83), (92) и др. был впервые применен метод С. А. Чаплыгина [209], что позволило в отличие от других методов численного интегрирования получать решения в аналитической форме и оценивать погрешность расчета, а также оценить точность метода квазистационарных концентраций [210], широко применявшегося выше и вообще при исследовании разнообразных задач химической кинетики. [c.149]

    Таким образом, введенные ранее структурные индексы являются индексами реакционной способности. Расчеты этих величин для однотипных реакций позволяют получать корреляции с опытными кинетическими данными. Пример корреляционной зависимости между относительными константами скорости радикальных реакций присоединения и индексом свободной валентности приведен на рис. 4.2. В результате по вычисленным свойствам поляризованного состояния можно предсказывать скорости еще не изученных реакций данной реакционной серии. В этом суть применения ПИМ в химической кинетике. [c.60]

    В последние годы в связи с созданием записывающих приборов особенно расширилось применение спектрофотометрии для количественного анализа и в химической кинетике. Исследование кинетики химических реакций основано на том, что исходные вещества и продукты реакции имеют разное поглощение. Это позволяет следить за изменением их концентраций во времени. Разработан ряд специальных приемов для изучения кинетики быстрых реакций. Созданы спектрофотометры, скомбинированные с установкой остановленной струи и позволяющие изучать кинетику реакций с периодом полураспада от 1 до 10 с. [c.5]

    Применение метода ЭПР в химической кинетике [c.247]

    Вопрос о том, каки1м путем протекает химическая реакция, или, как теперь принято говорить, каков механизм реакции, — не нов, он был поставлен 80 лет назад в работах Вант-Гоффа и Аррениуса [216, 217]. Универсальный характер этой проблемы, ее необычайная теоретическая и практическая важность привели тому, что раздел физической химии, в котором изучаются законы химического превращения, выделился в самостоятельную науку, называемую химической кинетикой. При разрешении тех или иных задач в применении химической кинетики нуждаются теперь неорганическая, органическая, аналитическая и другие области химии. При помощи химической кинетики, соединенной с разнообразными физико-химическими методами исследований, удалось установить, что большинство химических рейк-ций протекает сложно — через ряд стадий, во время которых образуются промежуточные, неустойчивые химические формы, и число их часто бывает велико (цепные реакции, каталитические реакции и вообще циклические химические процессы).  [c.160]

    Одной нз важных областей применения химической кинетики является изучение кинетических закономерностей образования и деструкции иолимеров. Изделия из полимеров нашли широкое практическое нримененне, поэтому производство полимеров является одной из основных отраслей химической промышленности. Изучение кинетики и механизма синтеза полимеров и.меет большое значение для оптимизации соответствующих технологических пронессов. Деструкция полимеров является одним из основных факторов, ограничивающих диапазон условий, в которых могут эксплуатироваться изготовленные из полимерных материалов детали машин и меха-низ.мов. Кинетические исследования процессов деструкщш полимеров являются важным звеном в решении проблемы стабилизации полимерных материалов. Для понимания молекулярных основ жизнедеятельности важное значение имеет изучение кинетики и механизма образования и разрушения биологических полимеров — белков, нуклеиновых кислот, полисахаридов. [c.413]

    В последние годы произощло значительное расширение сферы интересов в области применения химической кинетики. Особенно сильно это расширение связано с развитием химии процессов, протекающих при экстремальных параметрах. Сюда относятся процессы при очень высоких и очень низких температурах, при очень высоких и очень низких давлениях, процессы в полях различных излучений большой мощности и т. д. [c.7]

    Книга Основы кинетики и механизмы химических реакций будет полезна всем, кто сталкивается в своих исследованиях или преподавательской деятельности с применением химической кинетики. В качестве учебного пособия она может быть рекомендована студентам и аспирантам всех химических специальностей, не получившим систематической подготовки по химической кинетике. Книга Г. Эвери поможет и исследователям смежных областей, желающим познакомиться с основами химической кинетики. [c.6]

    Вестбрук Ч., Уртьев П. Применение химической кинетики для определения критических параметров газовой детонации // Физика горения и взрыва. 1983. Т. 19. № 6. С. 65-76. [c.289]

    Подробное рассмотрение данного вопроса — это скорее дань истории развития химической кинетики, нежели настоятельная потребность кинетики сегодняшнего дня. Рассматривая сложные газофазные реакции, Бенсон под- черкивает, что суждение о механизме реакций с участием свободных радикалов и атомов приходится иметь большей частью на основе косвенных данных. В настоящее время положение все больше и больше меняется — особенно в связи с успехами применения методов ЭПР, хемилюминесценции, ингибиторов и др. [c.6]

    Установление типов бифуркаций динамических систем и условий, при которых они происходят, составляет предмет теории бифуркаций. Теория бифуркаций играет очень большую роль при исследовании конкретных динамических систем. Примеры ее применения для исследования динамики химических реакторов будут приведены ниже. Заметим, что уже в работебыло указано на связь между теорией бифуркаций и интерпретацией критических условий химической кинетики. [c.137]

    Основной теоретической задачей в химической кинетике является создание такой системы взглядов и уравнений, которая позволила бы, исходя из молекулярных параметров реагирующих компонентов и внешних условий протекания процесса, вычислить его скорость. К молекулярным параметрам относятся масса реагирующих молекул, их форма и размеры, порядок связи отдельных атомов и атомных групп в молекуле, энергетическая характеристика отдельных связей, совокупность возможных энергетических состояний молекулы. Под внешними условиями понимается давление (или концентрации), температура, условия, в которых осуществляется процесс (например, проведение реакции в статических условиях или в потоке). В решении этой задачи важным этапом является применение молекулярно-кинетической теории к интерпретации кинетических закономерностей при химических превращениях, поэтому настоящая глава и посвящается тем основам молекулярно-кине-тической теории, которые будут использованы далее при решении поставленной задачи. [c.89]

    До сих пор рассматривались принципиальные основы статистических методов оценки параметров. Первоначально эти методы возникли в основном не как методы оценки параметров, а как методы получения эмпирических зависимостей, описывающих экспериментальные данные. Впоследствии об этой основной — содержательной — стороне этих методов было забыто. Но именно с этой позиции мы и б удем теперь рассматривать применение данных методов к задачам химической кинетики. [c.203]

    В различных областях науки и техники для описания поведения физических и инженерных систем находят широкое применение прикладные методы комбинаторной топологии и теории структурных графов. Сюда относятся анализ и синтез ХТС, развиваемые на основе общей теории графов [1, 2], решение задач линейного программирования [3], графические методы синтеза логических автоматов [4], построение коммуникационных сетей [5], диаграммные методы в квантовой теории поля [6], метод графов в химической кинетике [7], диакоптика [8], метод конечных элементов [9, 10], математические методы исследования сложных физических систем [11] и т. п. [c.18]

    Широкое применение в химической кинетике пашел метод изучения лабильных промея уточных веществ, заключающийся во введении в зону реакции различных добавок (метод акцепторов). Этот метод был применен М. Полани с сотр. [329] в реакциях атомов натрия с алкилгалогепидами RX (X = С1, Вг). Добавляя пары иода к реагирующей смеси, в которой по реакции Na + НХ == NaX + R образуются радикалы R, по образованию иодалкила в результате реакции R4-J2 = R,I + J можно установить наличие радикалов R в системе (см. также [193]). [c.27]

    Очевидно, что многие из методов решения кинетических задач, разработанных в классической химической кинетике (в частности, метод квазистационарных концентраций), найдут широкое применение в обобщенной неравновесной химической кйнетике. Надо иметь в виду, что на определенных конечных интервалах изменения температуры (энергии), концентрации реагентов и продуктов реакции можно будет (с учетом точности экспериментальных данных) рассматривать скорости химических реакций с классической точки зрения. [c.40]

    Интегрирование системы обыкновенных дифференциальных уравнений химической кинетики проводилось методом Рунге-Кутта с автоматическим выбором шага с относительной погрешностью 10 —10 , однако в соответствии с предложенным в [22, 23] алгоритмом интегрирования систем жестких дифференциальных уравнений (см. раздел 2) полная система обыкновенных дифференциальных уравнений заменялась укороченной, совместно с которой решалась система алгебраических уравнений для концентраций "быстрых" компонент СН3ОО, ОН, НСО. В данном случае расчеты упрощались тем, что алгебраические уравнения оказались независимыми. За счет применения принципа квазистационарно- [c.148]

    Очевидно, что метод ускорения, примененный для анализа вопроса о кинетических закономерностях крекинга алканов в присутствии добавок с двойными функцияим, может найти более широкое применение в химической кинетике как общий прием решения задач о скорости сложных химических превращений. Разобранные на примере крекинга алканов кинетические закономерности модшо распространить на любые [c.39]

    За последние несколько лет из лаборатории крекинга Института нефтехимического синтеза Академии наук вышел ряд работ (К. П. Лавровский, А. М. Бродский, Р. Д. Калиненко и др.), посвященных исследованию крекинга алканов при высо-з(их температурах (700—1000° )i[110—122], называемого в технической литературе пиролизом. Эти исследования являются непосредственным и логическим развитием выпаеописанных работ по теории крекинга алканов. С переходом к более высоким температурам возможны изменения механизма распада и отклонения от кинетических зависимостей. Выяснение причин этих отклонений имеет большое значение для представлений о крекинг-процессе и практического применения его. С точки зрения химической кинетики, эти исследования представляют значительный интерес, так как позволяют выяснить пределы экстраполяции общих кинетических [c.58]

    В настоящее время метод остановленной струи широко приме-ляется для решения многих задач химической кинетики установление механизмов химической реакции, определение стадий, лимитирующих протекание реакции обнаружение промежуточных комплексов, определение кинетики ферментативных реакций, установление числа и концентрации активных центров фермента, изучение быстрых конформационны5( переходов в белках и нуклеиновых кислотах. Метод требует быстрой регистрации это единственное существенное ограничение его применимости. Особое внимание при применении метода остановленной струи необходимо уделять тер-мостатированию, так как разница в температурах в кювете наблюдения и растворе смеси реагентов может привести к большим оптическим ошибкам, затрудняющим установление механизма наблюдаемой реакции. Точность определения констант скоростей данным методом примерно такая, как и при обычных спектрофотометрических измерениях кинетики химических реакций. [c.28]


Библиография для Применение АВМ в химической кинетике: [c.270]    [c.272]    [c.113]   
Смотреть страницы где упоминается термин Применение АВМ в химической кинетике: [c.129]    [c.248]    [c.214]    [c.3]    [c.3]   
Смотреть главы в:

Экспериментальные методы химической кинетики -> Применение АВМ в химической кинетике

Экспериментальные методы химической кинетики -> Применение АВМ в химической кинетике




ПОИСК





Смотрите так же термины и статьи:

Кинетика химическая



© 2024 chem21.info Реклама на сайте