Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анализ в производстве Органических веществ

    ПРИМЕНЕНИЕ ХИМИЧЕСКИХ МЕТОДОВ АНАЛИЗА В ПРОИЗВОДСТВЕ ОРГАНИЧЕСКИХ ВЕЩЕСТВ И НЕФТЕПРОДУКТОВ [c.342]

    Горючие сланцы по некоторым характеристикам представляют собой промежуточные продукты между нефтью и углем. От нефтеносных и битуминозных песков они отличаются тем, что органическое вещество весьма ограниченно растворимо в обычных растворителях — бензине и сероуглероде. От угля они отличаются обычно большим содержанием минеральной части (в одном из анализов было найдено, что сланцы содержат 30 % и больше золы) и более низким отношением содержания углерода к содержанию водорода. Это последнее является определенным преимуществом сланцев в качестве сырья для производства жидкого топлива. Масло, получаемое [c.60]


    Ультрафильтрация оказывается полезной при проведении анализов растворов на содержание бактерий из так называемых чистых трубопроводов заводов пищевых производств (мясомолочных, сыроваренных и др.). а также при проведении анализов растворов органических веществ, в которых могут развиваться микроорганизмы. Мембраны, используемые для проведения анализов, должны быть очень высокого качества. Перед употреблением их поверхность рекомендуется тщательно исследовать (например, под микроскопом). [c.288]

    Тенденции развития аналитического контроля в химической промышленности те же, что и в других сферах народного хозяйства. Это, конечно, инструментализация анализа, автоматизация экспресс-определений, что достигается использованием физических и физико-химических методов. Широко распространены химические методы, которые пока преобладают, например, в контроле производства минеральных удобрений. Так, в апатитовом концентрате, применяемом для производства фосфорных удобрений, химическими методами определяют основные компоненты — оксиды фосфора (V) и кальция, фтор, воду, сумму полуторных оксидов. В производствах органических веществ очень большое значение имеют методы газовой хроматографии для этой цели используют автоматизированные промышленные хроматографы. В гл. II были приведены данные об использовании этого метода в нефтехимии. [c.154]

    АНАЛИЗ В ПРОИЗВОДСТВЕ ОРГАНИЧЕСКИХ ВЕЩЕСТВ [c.204]

    Ионный обмен используют в кожевенной, гидролизной, фармацевтической промышленности для очистки растворов, а также для удаления солей из сахарных сиропов, молока, вин. С помощью ионитов улавливают ионы ценных элементов из природных растворов и отработанных вод различных производств. Промышленное производство многих продуктов жизнедеятельности микроорганизмов (антибиотиков, аминокислот) оказалось возможным или было значительно удешевлено благодаря использованию ионитов. Применение ионного обмена позволило усовершенствовать методы качественного и количественного анализа многих неорганических и органических веществ. [c.304]

    Масштабы промышленного производства органических материалов огромны, и они постоянно растут. Основные направления развития народного хозяйства СССР на 1976—1980 годы предусматривают рост выпуска синтетических смол и пластических масс в 1,9—2,1 раза, синтетического каучука в 1,4—1,6 раза, увеличение производства новых видов полимерных материалов. Намечено произвести в 1980 г. 1450—1500 тыс. т химических волокон и нитей. И во всех производствах органических веществ анализ необходим как эффективное средство оптимизации и контроля процессов. Возьмем, например, создание высококачественных полимерных материалов. Синтетические полимеры все больше используются в народном хозяйстве и в быту, и очень существенно, чтобы они были долговечными и нетоксичными. Долговечность и безвредность их в немалой степени зависят от наличия примесей как в исходных мономерах, так и в целевом продукте. Борьбу же с примесями нельзя вести вслепую надо знать, какие именно примеси присутствуют в веществе, сколько их, как их содержание меняется в зависимости от способов получения продукта и во времени. А это уже чисто аналитическая задача. [c.126]


    Источники воспламенения в условиях производства весьма разнообразны как по своему появлению, так и по параметрам. Наиболее вероятными являются открытый огонь и раскаленные продукты горения нагретые до высокой температуры поверхности технологического оборудования тепловое проявление механической и электрической энергии тепловое воздействие химических реакций. Источниками воспламенения могут быть разнообразные технологические нагревательные печи, реакторы огневого действия, регенераторы, в которых выжигают органические вещества из негорючих катализаторов, печи и установки для сжигания н утилизации отходов, факельные устройства для сжигания побочных и попутных газов и др. Основной мерой пожарной защиты от подобных источников воспламенения является исключение возможного контакта с ними горючих паров и газов, образовавшихся при авариях и повреждениях. Поэтому аппараты огневого действия располагают на безопасном от смежных аппаратов удалении или изолируют их, размещая в закрытых сооружениях и помещениях. В случае невозможности выполнения подобной рекомендации предусматривают автоматически действующие системы контроля аварийных ситуаций (газовый анализ среды) и установки блокирования открытых источников воспламенения. [c.83]

    ЭЛЕКТРОЛИЗ — химический процесс разложения электролита в растворе нли расплаве при прохождении через него постоянного электрического тока, связанный с потерей или присоединением электронов ионами или молекулами растворенных веществ. При этом на катоде в результате присоединения электронов к ионам или молекулам образуются продукты восстановления, а на аноде в результате потери электронов — продукты окисления. В химической иро-мышленности Э. применяется для получения металлов и их соединеиий, очистки металлов (электрорафинирование), производства щелочей, хлора, водорода, кислорода, хлоратов, перхлоратов, тяжелой воды, многих органических веществ и др. Э. является методом количественного анализа (электроанализа). Э. используется в гальванотехнике для нанесения различных металлических покрытий на металлические предметы и образование металлических копий из неметаллических предметов, для электроочистки воды, зарядки аккумуляторов и др. [c.289]

    Физико-химические методы, отличающиеся высокой чувствительностью и экспрессностью выполнения, дают возможность автоматизировать химико-аналитические определения и являются незаменимыми при анализе малых и ультрамалых количеств неорганических и органических веществ. Физико-химическим методам принадлежит ведущая роль в аналитическом контроле производства на больших предприятиях химической промышленности, и особенно в контроле производств, использующих в технологических процессах высокие температуры и давления, огнеопасные, ядовитые, взрывчатые и радиоактивные вещества. [c.18]

    Разработка методов анализа органических веществ является еще одной важной проблемой современной аналитической химии. В последние годы возникло много соверщенно новых производств, вырабатывающих пластмассы, полимеры, элементоорганические соединения, биологически активные и фармацевтические препараты, пестициды и др. Развилась промышленность тяжелого органического синтеза, переработки нефти, природного газа, угля. Для этих производств необходимы надежные методы анализа сырья, полуфабрикатов и готовой продукции. [c.17]

    Марганец — один из первых редких металлов, применяемых в промышленности, например, для производства стали. Поэтому интерес к аналитической химии марганца возник очень давно. Однако наибольшие успехи в разработке новых методов анализа для определения марганца в различных природных и промышленных материалах достигнуты за последние два десятилетия. В на-стояш,ее время марганец определяют при анализе сталей, сплавов, полупроводниковых материалов, особо чистых веществ, органических веществ, почв, биологических материалов, горных пород различного происхождения, минералов, руд и, наконец, космического вещества в виде метеоритов и лунных пород. [c.5]

    Введение. Инфракрасная область спектра была открыта около 1800 г. английским астрономом Уильямом Гершелем, который обнаружил, что термометр, помещенный за красным краем солнечного спектра, показывает заметное повышение температуры. Однако понадобилось свыше ста лет, прежде чем американский физик Кобленц опубликовал в 1905 г. обширный обзор инфракрасных спектров многих классов органических и неорганических соединений и рассмотрел соответствие между спектрами и структурой. Если бы эта превосходная работа была продолжена тогда же, то она, несомненно, изменила бы весь ход развития органической химии на деле широкое признание больших возможностей применения инфракрасной спектроскопии для решения структурных и аналитических задач в органической химии пришло только в начале 40-х годов. В это время впервые были созданы автоматические регистрирующие приборы их применили в работе над некоторыми важными проблемами военного времени, такими, как анализ авиационных топлив, синтетических резин и волокон, выяснение структуры пенициллина. Вскоре появились относительно недорогие, но достаточно хорошие коммерческие приборы, производство которых сильно выросло после 1950 г., и в настоящее время едва ли найдутся лаборатории, работающие с органическими веществами и не имеющие подобных приборов. Как и УФ- и ЯМР-методы, инфракрасная спектроскопия является неотъемлемой частью научной работы в органической химии, и можно сказать, что кювета для образца и спектрометр заменили пробирку и бунзеновскую горелку в руках химика. [c.116]


    Окисление бихроматом калия является более полным, окисляются даже некоторые неорганические вещества (N0 , 8 , 82 О3 , Ре " ", 80з ). Аммиак и ионы аммония, образующиеся при окислении органического азота, не окисляются. Некоторые азотсодержащие вещества, такие как триметиламин, обычно присутствующий в стоках рыбных производств, циклические соединения азота, такие как пиридин, также не окисляются при анализе ХПК. В общем анализ ХПК вполне позволяет оценить содержание органического вещества в городских стоках, возможно, в диапазоне 90-95% теоретического потребления кислорода, необходимого для полного окисления всех присутствующих органических веществ. [c.67]

    ГЖХ стала широко использоваться при анализе органических веществ, в том числе при исследовании эфирных масел, скипидаров и других смесей терпенов. Количество исследований в области ГЖХ очень велико, и они продолжаются в связи с ее непрерывным совершенствованием. Лишь по анализу терпенов методом ГЖХ за истекшие 20 лет опубликовано более 800 работ. Теоретические основы и практика ГЖХ изложены во многих специальных монографиях, например [94, 157], к которым мы отсылаем читателя, поскольку материал слишком велик, чтобы войти в настоящую книгу. Здесь уместно остановиться лишь на некоторых специальных вопросах применения ГЖХ при исследованиях, связанных с производством камфары. [c.164]

    В биологии и агропромышленной сфере хроматографическое разделение и концентрирование используют перед количественным определением микроэлементов, а также для обнаружения пестицидных соединений в окружающей среде. При технологическом контроле пищевых производств хроматография служит для очистки веществ, анализа смесей органических кислот, аминокислот и других продуктов. [c.417]

    Полярографический анализ пригоден для осуществления очень широкого круга определений как неорганических, так и органических веществ и находит применение для аналитического контроля все большего и большего числа производств, включая производство высокополимеров, искусственного волокна, полупроводников, редких элементов и их соединений. [c.242]

    В связи с бурным развитием промышленности органического синтеза (производство мономеров, полимеров, каучука, моюш,их средств, лекарственных веществ и т. д.) анализ органических веществ приобрел большое практическое значение. [c.192]

    Новые проблемы встали перед органическим анализом и в связи с возросшим вниманием к охране окружающей среды, особенно воды и воздуха. В природных пресных водах нужно определять множество органических веществ, включая нефтепродукты и сбросы ряда производств. Широкое применение пестицидов в сельском [c.126]

    В период с 1963 по 1977 г. появилось несколько обзорных работ по применению активационных методов анализа нефтей, нефтепродуктов, органических веществ и их использованию в нефтяной, химической промышленностях [324—331, 3, 14]. Например, в [325] сообщается о производстве относительно недорогих и компактных установок, включающих нейтронные источники, детекторы излучения, а также об изготовлении оборудования для автоматических операций при выполнении активационного анализа в промышленных условиях. [c.88]

    При синтезе большинства органических соединений почти всегда стремятся получить хотя бы технически чистые однородные индивидуальные веш,ества. Такие вещества обладают определенными физическими и химическими свойствами, которые могут быть определены путем замера или анализа. Обычно исходные вещества, промежуточные и готовые продукты, растворители и т. д. подвергают очистке. Особенно тонкую очистку применяют в производстве синтетических лекарственных и душистых веществ. [c.496]

    В производстве цемента. В таких породах сера, представляемая в результатах анализа в виде ЗОз, в действительности большей частью находится в виде пирита или в составе органических веществ. Из сказанного легко понять, что точное соотношение между карбонатами кальция и магния установить невозможно, разве только при отсутствии марганца и железа. В некоторых исключительных случаях это можно сделать, обрабатывая породу разбавленной соляной кислотой и анализируя отдельно полученный раствор и нерастворимый остаток. [c.1044]

    По мере стремительного накопления химических знаний наметилась четкая закономерная тенденция к дифференциации химии на многочисленные научные дисциплины (такие как общая химия, органическая, аналитическая, физическая и коллоидная химии, химия нефти, химия высокомолекулярных соединений, стереохимия, химическая технология по различным отраслям производства и т.д.). Ныне в мировой и российской литературе насчитывается огромное количество работ по истории химии, по различным аспектам теоретической и прикладной химии. Разумеется, чрезмерное обилие (избыток) информации гю любой проблеме химических наук обусловливает исключительную трудность для подробного литературного анализа. В этой связи в данной работе приводится лишь краткий литературный обзор по современному состоянию теории ФХС органических веществ. При этом не всегда даются ссылки на первоисточники, ограничиваясь преимущественно вторичными источниками в виде фундаментальных монографий, справочников, учебников и исторических трудов, в которых приводятся ссылки на первоисточники. [c.10]

    В опубликованных ранее работах [4, 5] описаны установка проточного типа и методики анализов, применяемые при выполнении настоящих опытов. Для изучения указанного выше процесса парофазного окисления органических веществ, загрязняющих сточные воды производства акрилатов, на никельхромовом катализаторе (ГОСТ № 124 10—66) в качестве модельного вещества был использован водный раствор уксусной кислоты, как наиболее трудно окисляемой [5]. Основные параметры окисления паров уксусной кислоты на никельхромовом катализаторе следующие концентрация водного раствора уксусной кислоты—10 г/л объем катализатора—10 см диаметр контактного аппарата—19 мм размер зерен катализатора—1 мм интервал температур — 300—400°. [c.102]

    По сравнению с первым изданием (1958 г.) книга значительно переработана и расширена. Наибольшее число дополнений внесено в раздел, посвящ,енный методам определения органических веществ в промышленных сточных водах (раздел увеличен примерно в три раза), но, конечно, и это далеко не может удовлетворить острой потребности в таких методах анализа. Определение малых количеств органических веществ, присутствующих в сложных комбинациях, в сложных по составу смесях, какими являются производственные сточные воды — задача, пока еще далеко не решенная, и для анализа сточных вод многих производств мы еще не располагаем надежными методами. [c.7]

    Вследствие большого многообразия органических соединений, сложности строения молекул, наличия нескольких разных функциональных групп не всегда возможно установить общие методы анализа, и часто вещества, содержащие одни и те же функциаональные группы, определяют разными методами. В последнее время в практику работы заводских лабораторий производств органических веществ широко внедряются передовые физико-химические методы анализа хроматография, полярография и др. [c.192]

    Современные методы спектрального анализа трудно применять к исследованию многокомпонентных систем, нефтей, нефтяных фракций, многокомпонентных полимеров. Исследования, проведенные в последние годы, позволяют выделить элекфонную феноменологическую спектроскопию (ЭФС) как перспективное направление в изучении совокупности свойств многокомпонентных органических веществ и оперативном контроле процессов химических и нефтехимических производств В отличие от обычного варианта электронной спектроскопии, в ЭФС вещество изучается как единое целое, без разделения его спектра на характеристические частоты или длины волн отдельных функциональных фупп или компонентов. ЭФС основана на установленны х нами закономерностях связи оптических характеристик поглощения (коэффициентов поглощения, коэффициентов отражения, цветовых характеристик и тд.) с физикохимическими свойствами системы. Разработанные на этих принципах исследовательские методы использованы в лабораторной и производственной практике. [c.224]

    Первым этапом материального и информационного потока в анализе является подготовка, отбор и дозирование пробы анализируемого вещества [А. 1.6]. В лабораторных условиях проводить отбор и дозирование пробы в общем несложно, но при отборе пробы непосредственно в процессе производства возникает ряд трудностей. Как указывалось, состав отбираемой для анализа пробы должен соответствовать истинному составу анализируемого вещества на данном этапе производственного процесса (разд. 8.2). При отборе пробы в процессе производства это требование не всегда выполняется. В процессе подготовки пробы к анализу, дозирования или в ходе самого анализа в составе и свойствах анализируемой пробы могут происходить неизбежные и не поддающиеся контролю изменения. Подобные изменения могут происходить, например, в процессе образования новой фазы при работе с жидкостями, насыщенными газами, или сжиженными газами вследствие процессов окисления или полимеризации (для олефинов) в результате адсорбционных явлений, происходящих на внутренних стенках труб при взаимодействии нестабильных органических веществ с кислородом или смазочными веществами или в результате диффузии газов в шлангах, трубах или местах соединения труб. Анализируемое вещество может изменять свои свойства и в процессе анализа. При использовании результатов анализа для корректировки технологического процесса отбор, подготовку, дози-)ование и анализ вещества необходимо проводить с минимальными затратами времени. 1ри этом особое внимание следует уделить выбору места отбора пробы. В случае процессов, протекающих с большой скоростью, или при работе с негомогенными продуктами довольно сложно осуществить эти требования. Способ подготовки и дозирования пробы зависит 0Т конкретной аналитической задачи. При выборе способа следует также учесть соответствующие затраты технических средств. Средняя квадратичная ошибка дозирования пробы для проведения технического или ориентировочного анализа составляет 5— 0%, для анализов контроля или управления производством 0,2—2%. [c.431]

    Среди методов, основанных на предположении о линейном характере поглощения примеси, методы ТАДВ и ТРДВ обеспечивают оптимальное сочетание воспроизводимости и трудоемкости [148]. Метод ТРДВ широко используют в клиническом анализе, контроле производства антибиотиков, витаминов и других фармацевтических препаратов, при контроле содержания органических веществ в воздухе, а также во многих других производственных анализах [150]. [c.102]

    Так же как и все другие методы, основанные на кислотных свойствах карбоксила, определение основности карбоновых кислот по анализу их металлических солей не является вполне надежным, так как не содержащие карбоксил органические вещества с ясно выраженным кислотным характером, например некоторые фенолы (см. А, II, 1), в такой же степени способны давать металлические соли, как и карбоновые кислоты. Kp ML того металлические соли дают и некоторые вещества, почти не обладающие кислотными свойствами. Возможность образования кислых и основных солей, в которых процентное содержание металла не отвечает числу активных атомов водорода, также увеличивает возможность ошибок и неверных заключений. Затем многие соли кристаллизуются с водой, что усложняет производство определения. Для некоторых кислот не удается получить нейтральные соли в чистом состоянии. [c.355]

    Физико-химический анализ имеет большое знйчениё при изучении природы его данные объясняют образование горных порид, соляных отложений и т. д. Не менее важен он для технологии, особенно для металлургии и технологии металлов, производства солей, силикатов и некоторых органических веществ. Однако сведения о физико-химическом анализе, сообщаемые в курсах общей и физической химии, слишком незначительны, чтобы понять его значение. [c.4]

    С помощью газо-жидкостной хроматографии возможен быстрый контроль производства органического сырья, полупродуктов и готовой продукции в промышленности органического синтеза, анилокрасочной, химико-фармацевтической и фотокинопромышленности. Этот метод применяется как для анализа летучих веществ и их смесей, так и нелетучих веществ после их термического разложения. Состав продуктов разложения характерен для данного нелетучего вещества или их смеси. Открываются также новые пути для выполнения элементного анализа, определения строения, положения двойных связей в соединении, разветвления цепи, идентификации углеродного скелета. [c.11]

    Определение БПК до сих пор производится весьма несовершенным методом разбавления [31]. Анализ этот трудоемок, а главное, длителен данные о полной БПК можно получить только через 25 суток. Пятисуточная БПК (БПКб) далеко не всегда объективно характеризует ход дальнейшего окислительного процесса. При необходимости проследить кинетику БПК делают анализы через 2,5 10 15 20 и 25 суток. В процессе анализа содержание кислорода определяется методом Винклера. Это означает, что при сильно цветных сточных водах (стоки целлюлозно-бумажного производства и т. п.) метод теряет необходимую точность. Многие исследователи пытались усовершенствовать метод разбавления или заменить его другим. Наибольшие успехи достигнуты при использовании объемно-манометрического метода газового анализа с целью определения скорости потребления кислорода и оценки органических веществ по органическому углероду. [c.120]

    Сточные воды — стоки бытовые, производственные и атмосфер ные, содержащие обычно множество неорганических и органиче ских компонентов, причем точный состав их, даже в качественной отношении, не всегда можно заранее предвидеть. Последнее осо бенно справедливо в отношении сточных вод, прошедших через химическую или биохимическую очистку. Даже при простом сме < шении стоков от разных цехов предприятия происходят химические реакции между компонентами этих стоков, приводящие к образованию новых веществ. При хлорировании стоков появляются продукты окисления неорганических и органических веществ и их хлоропроизводные. Биохимической очистке подвергают промышленные сточные воды, смешанные с хозяйственно-бытовыми водами, и тогда в очищенных водах можно нередко обнаружить самые неожиданные органические соединения. Поэтому при появлении нового вида сточных вод, возникающих не только при соз Дании новых производств, но и при внедрении нового технологи ческого процесса и даже при любом существенном изменении в технологическом процессе, требуется предварительное исследова ние. В ход определения того или иного компонента, казалось бы, хорошо разработанный и постоянно применяющийся, приходится вносить изменения, а иногда и совершенно менять метод химического анализа. , [c.13]

    Хроматографические методы анализа настоятельно необходимы для решения зар.ач определения примесей в продуктах и сырье криогенной промышленности по следующим причинам. Прежде всего в ряде случаев необходима раздельная характеристика всех примесей в отдельности. Так, например, в воздухоразделительной технике из условий взрыво-безонаспости производства следует ограничивать содержание не всех примесей органических веществ, а лишь некоторых из них. При этом требования к п]зедельно допустимым содержаниям каждой примеси определяются ее вз1)ывоонасностью, а также растворимостью в жидком кислороде. Аналогичные требования предъявляются к чистоте гелия, используемого в криогенных системах, так как предельно допустимые концентрации примесей в этом случае ограничены их температурами конденсации и плавления. Дру] им преимуществом хроматографических методов анализа примесей является возможность определения весьма низких концентраций, обусловленная как наличием высокочувствительных детекторов, так и сочетанием хроматографического анализа с концентрированием. [c.262]

    До сих пор единственное наиболее точное определение органического вещества сланцевой золы и кокса заключалось в определении углерода в отмытой от минеральной углекхгслоты навеске в печи для элементарного анализа. Недостатком этого метода является его продолжительность, равная 12 часам. Поэтому был разработан мокрый метод сожжения, который позволяет проводить определение углерода в коксозольных остатках сланцевого производства в течение 1,5 часов. [c.167]

    Результаты хроматографическо о анализа показали, что в сточных водах производства акрилатов содержатся следующие органические вещества акриловая, метакриловая и уксусная кислоты, метиловые эфиры акриловой и метакриловой кислот, этиловый и бутиловый спирты, уксусный альдегид, атилацетат и ацетон [2]. [c.35]

    Книга предназначена в качестве учебного пособия по техническому анализу для учащихся химических техни1 умов. Излагаемый материал составлен в соответствии с учебной программой. Книга может быть полезна также для учащихся нехимических техникумов, в учебный план которых включен курс технического анализа. В книге изложены методы анализа воды, топлива, смазочных материалов, газов, металлов, некоторых неорганических и органических веществ, приведены также сведения о контроле важнейших химических производств. [c.2]

    Однако задачи такой предварительной обработки органических веществ в общем виде впервые были сформулированы Шеврелем, который применил в своих исследованиях жиров почти всю совокупность методов, перечисленных Бутлеровым. Ему принадлежит, в частности, введение в практику химиков-органиков фракционной перегонки. 1У[энсфилд в 40-х годах XIX в. применил этот способ для получения значительных количеств бензола и толуола. Не замедлили появиться И технические усовершенствования в методах, которые в свою очередь благотворно сказались на развитии этой части органического анализа, а следовательно, и всей органической химии. Достаточно хорошо известен тип холодильника Либиха . Правда, стоит отметить, что этот холодильник сконструирован, вопреки общепринятому мнению, Вейгелем (1771), а не Либихом [9, с. 301]. Позднее, в 50-х годах, Вюрц ввел в практику дефлегматор, который явился предтечей современных многоэтажных разгоночных колонок. Шеврель также дал принцип использования в аналитической практике фракционированного растворения. Во второй половине XIX в. вошла в практику перегонка под пониженным давлением, создаваемым водоструйным насосом, а затем и перегонка в вакууме, а в сахарном производстве вакуум-аппарат был введен еще в 1812 г. (Хауард). Бертло и Юнгфлейш разработали метод экстракции жидкости жидкостью, введя понятие о коэффициенте распределения растворенного вещества между двумя несмешивающимися жидкостями. [c.286]

    В. В. Подлеснюк, Т. М. Левченко (Институт коллоидной химии и химии воды им. А. В. Думанского АН УССР, Киев). В результате предпринятого нами исследования пористой структуры и адсорбционных свойств пористых полимерных материалов отечественного производства (сополимеров стирола и дивинилбензола) установлено, что структура полимерного адсорбента бидисперсна. Полимерный сорбент состоит из локализованных микропористых участков, где адсорбируется основное количество адсорбатов (первичная пористая структура) и промежутков между ними, образующих транспортную (вторичную) пористую структуру. Таким образом, эти адсорбенты можно рассматривать как классическую модель адсорбента с бидисперсной структурой. Средний размер микропористых участков данного адсорбента составляет 70 нм. Следует отметить хорошее согласие значений среднего размера пор полисорба 40/100, оцененных по адсорбции из водных растворов (1,41 нм) и по данным рентгенографического анализа (1,50 нм). Величины предельной адсорбции органических веществ разных классов на полисорбе 40/100 заключены в широких пределах от 0,16 (атразин) до 1,90 моль/кг (бензол). Причем для не слишком крупных молекул предельная величина адсорбции составляет 1—2 моль/кг. Полимерные сорбенты полностью восстанавливают свою емкость при использовании в качестве регенерирующих растворов низкомолекулярных органических растворителей, смешивающихся с водой. Рассмотренные свойства полисорбов позволяют создавать на их базе безотходные технологические процессы очистки сточных вод с утилизацией поглощенных веществ. [c.256]


Смотреть страницы где упоминается термин Анализ в производстве Органических веществ: [c.593]    [c.126]   
Смотреть главы в:

Справочное руководство по химии -> Анализ в производстве Органических веществ

Справочник молодого лаборанта-химика -> Анализ в производстве Органических веществ




ПОИСК





Смотрите так же термины и статьи:

Анализ вещества

Органические вещества анализ



© 2025 chem21.info Реклама на сайте