Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Олефины реакции при крекинге

    Реакция крекинга, нри которой парафиновые углеводороды превращаются в парафин и олефин, причем сумма атомов С олефина и парафина-равна числу атомов углерода в исходном углеводороде [c.46]

    Кроме реакций крекинга, нормальные парафины с шестью и большим числом атомов углерода в цепи способны к циклизации и образованию ароматических углеводородов, что также препятствует получению высоких термодинамически возможных выходов олефинов. [c.192]


    Давно известно, что трехокись азота N303 и четырехокись азота 2 4 реагируют по олефииовым связям и дают производные, называемые нитрозитами и нитрозатамй. В результате этих реакций иногда получаются кристаллические производные из терпенов, что использовалось для идентификации этих углеводородов. Четырехокись азота можно использовать также для количественного определепия олефинов в крекинг-бензинах [15, 53]. Реакции, происходяш,ие при этом, очень сложны, а окислы азота, обычно получаемые действием азотной кислоты па окись мышьяка, различны по своему составу [41]. [c.85]

    Крекинг олефинов. При крекинге олефинов протекают реакции распада, полимеризации, конденсации и др. [c.429]

    Изомеризации олефинов посвящено огромное число работ, вероятно, большее, чем какой-либо другой реакции. Это объясняется тем, что изомеризация является эффективной модельной реакцией для изучения механизма теплового, фото- и радиационнохимического воздействия на вещество. Она активируется огромным числом гомогенных и гетерогенных катализаторов, поэтому на ее примере удобно изучать механизм катализа и кинетические закономерности химических процессов. Наконец, эта реакция оказывается целевой или сопутствующей во многих технических процессах изомеризации олефинов и парафинов, окислении олефинов, их полимеризации и др. В таких процессах, как сорбционное выделение олефинов, каталитический крекинг, гидроформилирование, алкилирование, сульфирование и др., она существенно влияет на выход и свойства продуктов, и возникает необходимость как ее подавления, так и активирования. [c.5]

    В табл. П-13 приведено расчетное равновесие между -бутаном, м-бутенами и 1,3-бутадиеном при различных температурах и 1,0 и 0,167 атмосферах давления. Из-за сопровождающих дегидрирование реакций крекинга образуется некоторое количество углерода, которое необходимо периодически удалять с катализатора. Это производится при помощи выжигания воздухом. Сообщают, что образование кокса увеличивается с молекулярным весом исходных олефинов, но данные табл. П-14 наводят на мысль, что и время контакта играет важную роль. Эти цифры были получены в опытах нри давлении 0,25 ати над катализатором, содержащим 4% хрома на алюминии. [c.101]

    Как видно из уравнений, П каждой из этих реакций в качестве первичных продуктов образуются алифатические олефины. Болео того, основная реакция крекинга алифатических олефинов может быть просто выражена следующим образом  [c.117]


    ЦСК интенсифицирует реакции перераспределения водорода, протекающие по схеме олефины + нафтены изо-парафины + ароматические углеводороды. Образующиеся при этом изо-парафиновые и ароматические углеводороды менее реакционноспособны по сравнению с олефиновыми и нафтеновыми углеводородами. Этим и объясняется уменьшение доли вторичных реакций крекинга бензина на цеолитах. Способность ЦСК ускорять реакцию Н-переноса обусловлена высоким адсорбционным потенциалом пор цеолита и большей концентрацией в нем кислотных центров по сравнению с АСК. Возможно также наличие в ЦСК специфических кислотных центров, интенсифицирующих реакции Н-переноса. [c.106]

    Результаты исследования [54] показывают, что алюмосиликатные катализаторы способны ускорять реакцию алкилирования ароматических углеводородов олефинами и парафинами в широком интервале темнератур и давлений, а также реакции крекинга боковых цепей алкилароматических углеводородов. [c.50]

    При реакциях крекинга такой эффект вряд ли можно заметить, так как при самом крекинге образуется большое количество олефинов, однако при многих реакциях парафинов, катализируемых кис-8  [c.127]

    Алюмосиликаты, содержащие. окислы других металлов (ZnO, MgO), менее селективны в изомеризации олефинов, так как катализируют другие реакции (крекинг, полимеризацию, перераспределение водорода). [c.163]

    Число С-атомов в продукте п и сырье П1 различно. Дополним рассмотренную выше схему стадией, которая приводит от углеводорода с числом С-атомов п к углеводороду с числом С-атомов, равным п. Формулирование стехиометрического уравнения этой стадии не вызывает затруднений, если известны продукты разложения, получающиеся в реальном процессе. Так, если в оксидате есть олефины (Ол), можно ввести в схему реакцию крекинга К1Н—нКН+Ол, теплота которой АНк. Заметим, что вводимая стадия может быть гипотетической, но в ней должны участвовать реально образующиеся продукты. [c.171]

    При крекинге высших олефиновых углеводородов преимущественно образуются парафиновые углеводороды и бутадиен. Константа скорости реакции крекинга олефинов уменьшается с увеличением их молекулярного веса [144]. [c.43]

    Непредельные углеводороды, образующиеся в результате реакций крекинга, расщепляются по углерод-углеродным связям, изо-меризуются, полимеризуются, а также подвергаются реакциям ароматизации. Важной реакцией является межмолекулярное перераспределение водорода, заключающееся в насыщении водородом олефинов за счет образования бедных водородом продуктов уплотнения. Указанные выше процессы обусловливают, с одной стороны, получение стабильных бензинов благодаря малому содержанию в них непредельных углеводородов, а с другой — образование на поверхности катализатора коксовых отложений. Нафтеновые углеводороды в присутствии алюмосиликатов подвергаются дегидрированию и расщеплению связей С—С как с раскрытием колец, так и с отрывом боковых цепей. В результате превращений нафтенов образуются ароматические углеводороды, повышающие октановые чивла бензипов и некоторые количества продуктов уплотнения, частично остающихся на поверхности катализатора. Парафиновые углеводороды крекируются с образованием насыщенных и ненасыщенных соединений. Последние далее подвергаются вторичным превращениям. [c.66]

    Для олефинов (рис. 6, кривая /) склонность к расщеплению проявляется при более высокой температуре, чем для парафинов. В системе обратимых реакций крекинга олефина и его димериза-щи (полимеризации) [c.36]

    Фрей и Гуппке показали в своей работе, что в соответствующих уело-ВИЯХ возможно избирательное дегидрирование, причем чрезмерное увеличение температуры и времени контакта способствует реакциям крекинга. Как правило, в результате "таких реакций образуется больше водорода, чем олефинов, хотя для изобутана наблюдается образование значительного количества метана, в связи с чем выход водорода снижается. Катализаторы из геля окиси хрома, примененные в ранних работах Фрея и Гуппке, оказались недолговечными. Этими те авторами [17] был запатентован более стойкий хромовый катализатор с добавкой в качестве стабилизатора окиси алюминия. После этого в литературе появились сообщения о многочисленных модификациях алюмохромовых катализаторов окиси хрома и алюминия до настоящего времени продолжают входить в состав лучших катализаторов, применяющихся для дегидрирования бутана в бутены и бутадиен. [c.195]

    Однако, например, при крекинге парафинов образующиеся олефины могут в определенных условиях вступать в реакции уплотнения, которые протекают по кинетическим законам реакций выше первого порядка. Итоговая константа скорости реакции ( кажущаяся ) определится относительной скоростью распада парафинов и уплотнения олефинов если для данных условий крекинга скорость разложения парафиновых углеводородов выше, чем скорость уплотнения олефинов, процесс кинетически будет протекать ближе к мономолекулярной реакции в условиях же, благоприятствующих полимеризации олефинов, скорость крекинга будет определяться некоторым уравнением для реакцип, протекающей по порядку между первым и вторым. [c.21]


    Для объяснения тормозящего и ускоряющего действия некоторых олефинов на крекинг алканов автором была развита единая количественная теория торможения и ускорения крекинга добавками веществ, которым присущи двойственные функции быть акцепторами и донорами радикалов. Теория основана на представлении об участии молекул алкена одновременно в реакциях замещения с активными радикалами и распада с выделением активных радикалов [74, 75]. [c.37]

    Ароматические углеводороды обычно получаются путем экстракции при помощи SO2 из керосиновых фракций. Эта операция необходима при получении некоптящего керосина и таким образом обеспечивает дешевое сырье. Олефины получаются крекингом парафина. Чтобы получить продукт желаемой вязкости, более низкокипящие ароматические углеводороды алкилируются более высококипящими олефинами и наоборот. Например, ароматическая фракция с температурой кипения 160— 210° алкилируется олефинами i4—Gis при весовом соотношении ароматический углеводород олефиновый углеводород = 2 1, а более высоко-кинящая фракция ароматических углеводородов 210—260° взаимодействует с олефинами Се—С13 в отношении 1 3. Полученный продукт реакции можно затем компаундировать, чтобы получить серию легких смазочных масел, а добавлением загустителя типа полиизобутилена можно улучшить вязкость. Есть указания, что при использовании их в двигателях они проявляют исключительно высокую чувствительность к ингибиторам окисления, заметно увеличивают моющие свойства и обладают хорошим показателем индекса вязкости и низкой температурой застывания. [c.511]

    Так как замедление крекинга продуктами распада не связано с приближением реагирующей системы к состоянию равновесия (это можно доказать термодинамическими расчетами) остается предположить, что замедление реакций крекинга алканов обусловлено кинетическими причинами. Поскольку замедление связано с действием продуктов — ингибиторов, естественнее всего допустить механизм торможения заключается в том, что продукты — олефины связывают такие активные передатчики цепи, как атомы Н или радикалы -СНз и другие, с образованием менее активных радикалов путем реакций замещения или присоединения. [c.217]

    Олефиновые углеводороды. Крекинг олефиновых углеводородов, образующихся в результате расщепления парафиновых, нафтеновых и ароматических углеводородов, а также самих олефинов, является вторичной реакцией. Инициирование реакции крекинга, как и других реакций, происходит в результате образования карбоний-иона. Если этот ион достаточно велик (Се и более), то он может расщепляться в р-положении с образованием олефина и меньщего (вторичного) карбоний-иона, а вновь образовавшийся ион, если это возможно, изомеризуется в третичный ион. Если же карбоний-ион невелик (Сз—С5), то он превращается либо в олефин (в результате передачи протона катализатору или нейтральной молекуле олефина), либо в парафин (в результате присоединения гидрид-иона от нейтральной молекулы) [29]. [c.50]

    Главным методом получения олефинов в промышленности являются процессы расщепления нефтяных фракций или углеводо-родиык газон. Эти процессы можно разделить па две группы тер-мичеоше (пиролиз и термический крекинг парафина) п каталитические (каталитический крекинг). Первые осуществляют для це-левогс получения олефинов, а вторые — для производства бензина, когда побочно образуются олефины. Кроме того, часть олефинов получают дегидрированием соответствующих парафинов, а некоторые олефины — реакциями их взаимного превращения (олигомеризация и диспропорционирование). [c.35]

    В противоположность парафиновым углеводородам первичные реакции крекинга олефинов характеризуются значительно большим разнообразием. В первую очередь следует отметить реакции полимеризации и разложения. Кроме того, весьма вероятны различные реакции циклизации. Поэтому химизм крекинга олефинов представляет значительно более сложную картину, чем химизм первичных реакций крекипга парафинов. [c.113]

    Гетеролитическнй, или так называемый ионный катализ, имеет место в каталитических реакциях крекинга, изомеризации, циклизации, алкилирования, деалкилирования, полимеризации углево — доро/,,ов, дегидратации спиртов, гидратации олефинов, гидролиза и мног IX других химических и нефтехимических процессах. [c.81]

    В соответствии со стехиометрическими уравнениями и механизмом реакции могут также иметь место реакции крекинга алкилнафтеновых углеводородов до циклоолефинов, алкилароматических углеводородов до алкенилароматических и олефинов до диолефинов (все реакции идут с одновременным образованием парафинов). Диолефины и алкениларо-матичсские углеводороды обладают необычайно большой реакционной способностью, что затрудняет их выделение присутствие этих соединений обычно сказывается в повышенном образовании кокса на катализаторах. [c.117]

    Энергия, необходимая для данной стадии крекинга, равна теплоте реакции соединения первичного тридецил-иона ( - igHa, ) с пропеном. Как показано в табл. 4, эта величина доходит до -f47 ккал моль (теплота реакции 3 с обратным знаком). Далее, первичный тридецил-ион быстро изомеризуется до вторичного, причем теплота изомеризации, по аналогии с указанной в табл. 3 реакцией Н-С5 —> втор-С , равна 25 ккал моль. Суммарная теплота, требуемая для этих двух стадий реакции крекинга, равна - -22 ккал моль. Дальнейший последовательный распад тридецил-иона ( igH2,+) определяет характер распределения продуктов крекинга нормальных олефинов. Эти реакции приводятся ниже при описании типичной реакции крекинга, общей для всех нормальных алифатических молекул. [c.122]

    Тот факт, что меркаптаны легко реагируют с олефинами, иногда нри комнатной температуре, в растворе ледяной уксусной кислоты в присутствии следов серной кислоты, или при нагревании до 100—200°, был отмечен впервые еще в 1905 г. [32]. Реакция сероводорода с олефинами в присутствии фуллеровой земли в качестве катализатора впервые была показана в 1930 г. [30] на примере олефинов из крекинг-бензина. С тех нор появилось большое число патентов, описывающих образование меркаптанов в результате присоединения сероводорода к олефинам при особых условиях. Пропилен дает хорошие выходы пропилмеркантарха нри 200° в присутствии НИКОЛЯ на кизельгуре или активированного угля, пропитанного фосфорной кислотой аналогичным образом этилен дает хорошие выходы этилмеркаптана при 250° [12]. При значительно более высоких температурах (650—725°) получившиеся сначала меркаптаны разлагаются с образованием тиофена и других продуктов [25]. Бутадиен и сероводород иад окисью алюминия при 600° дают от 56 до 63% тиофена [17]. [c.344]

    Впервые изомеризующая активность окиси алюминия бцла установлена В. И. Ипатьевым, обнаружившим, что в присутствии AI2O3 при 450 °С из 2-метилбутена-1 образуется небольшое количество 2-метилбутена-2. Окись алюминия является эффективным катализатором изомеризации, потому что она слабо катализирует другие реакции (крекинг, полимеризацию), возможные при повышенных температурах [11, 12]. Чистая окись алюминия при низких температурах в изомеризации скелета н-олефинов маЛо эффективна, но в случае разветвленных олефинов вызывает передвижение метильного радикала вдоль цепи. [c.145]

    Ранее описывался способ получения линейных а-олефинов термическим крекингом парафина (стр. 44). Другой, синтетический путь их производства состоит в олигомеризации этилена с помощью алюминийорганических соединений. В основе его лежат упомпнавшиеся выше реакции алюминийорганических соединеннй роста и вытеснения алкильных групп. Первая из них состоит во внедрении молекулы олефина по связи А1—С в алюминийтриал-килах через промежуточное образование донорно-акцепторного комплекса  [c.312]

    Кроме того, получаются соответствующие диены, но в небольшом количестве, так как условия реакции термодинамически неблагоприятны для их образования. Побочно, как и при дегидрировании олефинов, протекают крекинг, изомеризация и коксообразование. В отношении реакций расщепления парафины более реакционноспособны, чем олефины, поэтому низших углеводородов (СН4, С2Н4, СзНб и др.) образуется больше. Считается, что изомеризация в основном происходит с олефинами, причем изомерные олефины (изобутнлен или н-амилен) частично гидрируются. В продуктах реакции находятся поэтому и изомерные парафины (изобутаи и н-пентан). Как и в случае дегидрирования олефинов, образуется значительное количество кокса за счет реакций уплотне- [c.490]

    При депарафинизации на цеолитах керосино-газойлевых и дизельных фракций протекают в небольших масштабах реакции крекинга н-алканов с образованием олефинов и других углеводородов. Олефины подвергаются изомеризации, ароматизации и полимеризации [7]. Размер молекул образующихся соединений больше размера входных окон цеолита СаА, поэтому они могут быть десорбированы однсаременно с н-алканами и остаются в адсорбционных полостях цеолита, постепенно подвергаясь крекингу и дальнейшей полимеризации. В результате активность цеолитов постепенно снижается. Этому способствует также накопление в адсорбционных полостях находящихся в сырье сернистых и полярных соединений, содержащих гидроксильные, карбонильные, нитро- и аминогруппы. [c.180]

    Термодинамически полимеризация олефииов при атмосферном давлении возможна до 300—500°, Выше этих температур нроко-дпт обратная реакция—крекинг. С повышением давления вероятность полимерпзацпи возрастает. Таким образом, олефины в процессе термического крекинга могут превращаться по двум основным иаиоавленням  [c.122]

    При низких температурах (до 500° С) происходят почти исключительно реакцип полимеризации олефинов, имеющие 2-й кинетический порядок. При высоких же температурах (выше 600° С), когда происходят преимущественно реакции распада, наблюдается обычно 1-й кинетический порядок. Изменение кинетического порядка реакции крекинга олефинов особенно подробно изучил Миценгендлер (90) на примере крекинга пропена. Указанный автор нашел, что при температуре 480° С и давлении в пределах 3—28 ат кинетика крекинга пропена подчиняется в первом приближении уравнению бимолекулярных реакций. При 620° С наблюдалось уже отступление от бимолекулярного характера кинетики крекинга. Наконец, при 600° С кинетика крекинга пропепа приблизительно подчинялась уже уравнению мономолекулярных реакций. Работы ряда других авторов (см. ниже) также подтверждают сделанное заключение. Поэтому можно сделать следующий общий вывод предварительного характера о кинетическом порядке реакции крекинга олефинов. Прв температурах ниже 600° С, особенно при повышенных давлениях, реакция крекинга олефинов подчиняется 2-му кинетическому порядку. При температурах же 600° С и выше реакция крекинга олефинов подчиняется 1-му кинетическому порядку. В соответствии с этим мы будем раздельно рассматривать кинетику крекинга олефинов, с одной стороны, нри температурах ниже 500° С и, с другой, — при температурах 600° С и выше. [c.131]

    В работах М. Р. Мусаева и И. 3. Исамилова [92, с. 175] показана возможность получения сырья для производства изопрена изомеризацией н-пентанов в изоамилены над активной и фторированной окисью алюминия (0,35—0,38% масс.). Показано, что при одинаковой глубине превращения изомеризация н-пентанов над фторированной окисью алюминия протекает при температурах на 25—30 °С ниже, чем над активной окисью алюминия. При 250—300 °С содержащиеся в сырье олефины претерпевают изомеризацию только с миграцией двойной связи. Изомеризация с миграцией метильного радикала протекает при температурах выше 300 °С. Однако при температурах выше 350 °С на обоих катализаторах протекают побочные реакции — крекинг углеводородов и перераспределение водорода. [c.324]

    Найденная таким образом скорость является скоростью полностью заторможенной реакции. О степени развития цепей при какой-либо реакции судят по действию добавляемой окиси азота на скорость реакции чем сильнее тормозится реакция добавляемой окисью азота, тем сильнее считаются развитыми цепные реакции, и наоборот. Отношение скоростей незаторможенной и полностью заторможенной реакций Стевли и Гиншельвуд (135) называют средней длиной цепи. Среднюю длину фактически образующихся реакционных цепей авторы называют абсолютной длиной цепи. Для некоторых углеводородов, нанример некоторых нафтенов и цикло-олефинов, нримесь окиси азота не оказывает замедляющего действия на скорость реакции крекинга. Отсюда можно заключить, что реакция разложения указанных углеводородов не носит цепного характера. [c.16]

    Оптимальные условия промышленного получения олефинов (пропилена и этилена) путем крекинга пропана изучались Эглоффом и соавторами (46). Опыты проводились в трубе из хромоникелевой стали, вставленной в нагреваемый брусок из алюминиевой бронзы. За температуру крекинга принималась температура алюминиевой бронзы. Поэтому следует полагать, что фактическая средняя температура крекинга несколько ниже показанной у Эглоффа. Наибольший выход олефинов дал крекинг нропана в условиях 700° С, 9,7 сек. при атмосферном давлении. При этом образовалось 22,8% (вес.) этилена и 22,5% (вес.) пропилена. Суммарный выход олефинов равен 45,3% (вес.) от взятого в реакцию пропана. Крекинг пропана при той же температуре в течение 6,7 сек. дал 20,9% (вес.) этилена и 20,7% (вес.) пропилена или всего 41,6% (вес.) олефинов. Количество превращенного пропана в последнем опыте равно 70,4%, а состав продуктов крекинга, на основании данных фракционированной перегонки в приборе Под-бельпяка, оказался следующим  [c.50]

    В первых стадиях реакции продукты крекинга додекана состоя почти исключительно из парафинов и олефинов. Содержание олефинов в отдельных фракциях всегда заметно ниже 50%. Это следует объяснить, частичной полимеризацией олефинов, так как в условиях 425° С высокого давления большинство олефинов является менее устойчивыми в термическом отношении, чем парафиновые углеводороды (сщ гл. 5, стр. 137). Поэтому по мере продолжения крекинга вновь образовавшиеся олефины будут скорее подвергаться крекингу, чем соответствующие парафины. Так, фракция 50—80° С крекинга додекана (425° С, 58 мин., 33% превращения) содержала 33% непредельных. Та же фракция более глубокого крекинга додекана (425° С, 170 миа. 68% превращения) содержала всего 22%> непредельных. Аналогичны образом уменьшилось содержание непредельных углеводородов всех остальных фракциях. Опыт 3 крекинга додекана был проведец в условиях 450° С, 1 час, 79% превращения. Исходное количество, додекана составляло 120 г (вместо 250 г в остальных двух опытах). Повышение температуры крекинга и уменьшение в два раза концед трации олефинов повысило относительную термическую устойчивость, последних. Поэтому, несмотря на большую глубину крекинга, содержание олефинов снова повысилось и в большинстве фракций превы сило даже содержание олефинов в крекинг-фракциях опыта 1. Так крекинг-фракция 110—135° С первого опыта содержала 39% непредельных, в то время как аналогичная фракция опыта 3—40%. [c.73]


Смотреть страницы где упоминается термин Олефины реакции при крекинге: [c.30]    [c.310]    [c.31]    [c.332]    [c.159]    [c.179]    [c.294]    [c.443]    [c.482]    [c.144]    [c.63]    [c.52]    [c.216]   
Общая химическая технология топлива (1941) -- [ c.614 ]




ПОИСК





Смотрите так же термины и статьи:

Реакции крекинга



© 2025 chem21.info Реклама на сайте