Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Строение органических веществ и методы его установления

    С органическими соединениями, молекулы которых отличались внушительными размерами, дело обстояло сложнее. Используя методы начала XIX в., было очень тяжело, вероятно и невозможно, установить точную эмпирическую формулу даже такого довольно простого по сравнению, например, с белками органического соединения, как морфин. В настоящее время известно, что в молекуле морфина содержатся 17 атомов углерода, 19 атомов водорода, 3 атома кислорода и 1 атом азота ( ijHisNOa). Эмпирическая формула уксусной кислоты (С2Н4О2) намного проще, чем формула морфина, но и относительно этой формулы в первой половине XIX в. не было единога мнения. Однако, поскольку химики собирались изучать строение молекул органических веществ, начинать им необходимо было с установления эмпирических формул. [c.74]


    Поскольку физико-химическая природа вещества определяется его структурой, в химии исключительно важную роль играют методы установления химического и кристаллохимического строения. До создания современных физических методов исследования химического и кристаллохимического строения вещества для получения информации о структуре соединений пользовались методом химических реакций (механизм и скорость реакций). На этом пути были сделаны определенные успехи. Достаточно напомнить классические исследования по геометрической и оптической изомерии неорганических и органических соединений. Однако, основываясь на химических методах, в принципе нельзя получить количественные данные по длинам химических связей, а также углов между ними. Между тем количественные характеристики по длинам химических связей и пространственной их направленности являются походными данными для определения химического и кристаллохимического строения веществ. [c.173]

    Применение метода молекулярных орбиталей в органической химии создало новый подход в исследовании химического строения органических соединений. Сопоставление расчетных результатов с данными химического и физико-химического эксперимента позволяет судить об истинном строении органических веществ. Результаты расчетов сводятся к следующему для каждой связи рассматриваемой молекулы вычисляется порядок связи — степень отклонения данной связи от ординарной. Порядок углерод-углеродных связей принимается в этане равным 1, этилене — 2, ацетилене—3. Эти величины прямо пропорциональны значениям электронной плотности посередине расстояния между атомами. Порядок связей изменяется соответственно изменению величины межъядерного расстояния. На основании представления о порядке связи выводится понятие степень связанности атома . Из этой величины находится относительная ненасыщенность атома углерода, или индекс свободной валентности, играющий важную роль при установлении харак- [c.89]

    Вся органическая химия посвящена установлению строения органических соединений и синтезу их на основании знания-строения и типичных реакций образования различных связей. Мы познакомились уже с идеей установления строения соединений химическими методами, которые и сейчас являются основными, но все больше дополняются физическими методами. Пытаясь сформулировать сущность химических методов установления строения в одной фразе, можно сказать, что они состоят в констатации родственных связей серии веществ (веществ с родственной структурой) и в выяснении строения одного или нескольких узловых веществ этой серии путем их постепенной деструкции (или, как ее иногда называют, деградации). Такой химический путь позволяет установить строение любого сколь угодно сложного вещества, однако ценой большого труда. И этот большой труд все более облегчается благодаря новым физическим методам разделения и идентификации продуктов деградации, особенно благодаря различным видам хроматографии (стр. 38). Одновременно и методом деградации и методом идентификации осколков молекулы (по их молекулярному весу) служит масс-спектрометрия (стр. 589). Разнообразные, все более развивающиеся физические методы в состоянии сильно облегчить задачу химика. Некоторые из этих методов дают возможность установить такие важные детали структуры, как характер связи, межатомные расстояния и углы, наличие или отсутствие того или иного рода взаимодействия электронных орбиталей, подобного сопряжению, наличие [c.341]


    Масс-спектрометрия является инструментальным методом изучения органических соединений. С помощью этого метода устанавливают молекулярную массу органического вещества и строение его молекул, определяют его элементный состав. Как аналитический метод масс-спектрометрия обладает исключительно высокой чувствительностью и позволяет обнаруживать следовые количества органического вещества в больших объемах газов и жидкостей, а также в биологических системах. С помощью масс-спектрометрии можно изучать превращения вещества в процессе химической реакции, что существенно для установления механизмов реакций. Этот метод может использоваться и для изучения микроструктуры макромолекул, определения состава и структуры поверхностей полимерных материалов. В настоящее время масс-спектрометрия эффективно применяется в различных областях науки и техники, например в органической и элементоорганической химии, химии природных соединений, аналитической и физической химии, нефтехимии, биохимии, фармакологии, экологии. [c.3]

    Пути распада молекулярного иона и последующие распады осколочных ионов определяются уже строением самой молекулы органического вещества, т. е. набором и последовательностью в нем атомов, групп и связей. Характер масс-спектра достаточно точно отражает строение молекулы и может служить для определения ее структуры. Распад (так называемая фрагментация) включает в себя как гомолитические, так и гетеро-литические разрывы связей, хотя чаще наблюдаются первые. Таким образом, в отличие от других физико-химических методов исследования органических веществ, масс-спектрометрический метод основан на деструкции молекулы, точнее, возбужденного положительного иона, возникающего из молекулы органического вещества под действием удара электрона. Этим самым масс-спектрометрический метод близок к классическим методам установления строения органических веществ путем деструкции молекулы, но в данном случае весь ход деструкции регистрируется сразу и для всего сложного распада нужно менее одного миллиграмма вещества. [c.589]

    Распространенность в природе некоторых органических соединений, методы их получения, состав, строение, свойства и применение такого рода соединений (углеводородов, их хлорпроизводных, спиртов, органических кислот) были уже рассмотрены в гл. 7 и 8. Обсуждение этих вопросов будет продолжено в последующих разделах, причем особое внимание будет обращено на природные соединения, в частности на ценные вещества, получаемые из растений, а также на синтетические вещества, используемые человеком. Ряд важных разделов органической химии не будет затронут совсем сюда относятся методы выделения и очистки природных соединений, методы анализа и установления строения соединений, методы синтеза, применяемые в органической химии (в большем объеме, чем они были изложены в гл. 7 и 8). [c.355]

    А. Н. и Н. А. Несмеяновы , кратко формулируя сущность химических методов установления строения органических веществ, определяют их как методы, состоящие в констатации родственных связей серии веществ (веществ с родственной структурой) и в выяснении строения одного или нескольких узловых веществ этой серии путем их постепенной деструкции (процесса разрушения молекулы органического вещества). Такая деструкция может происходить с изменением структуры органической молекулы, молекулярного веса, физико-химических, механических и других свойств вещества. Разделить, изучить и идентифицировать все продукты деструкции органического вещества практически возможно для любого соединения, но это дело чрезвычайно трудоемкое, как мы убедились даже на таком простом соединении, как этиловый спирт. Поэтому в настоящее время для установления строения органических веществ все большее значение приобретают физические методы исследования. [c.17]

    Пособие посвящено применению одного из важнейших современных физико-химических методов—масс-спектрометрии для установления строения органических веществ. Автор кратко излагает основные принципы работы масс-спектрометра и образования масс-спектра, приводит характеристики типов образующихся ионов. Большой раздел посвящен рассмотрению закономерностей распада при элект- ройном ударе органических соединений всех основных классов. [c.2]

    Кроме ряда научных данных, используемых в теории строения вещества, рентгеноструктурный анализ органических кристаллов оказывает помощь органической химии при установлении строения отдельных соединений. Так, например, по данным, полученным этим методом, из нескольких возможных химических формул пенициллина была выбрана одна. Рентгеновский анализ был применен для исследования строения многих десятков стероидов при этом выяснилось, что некоторым стероидам приписывались неправильные пространственные конфигурации. При помощи этого метода была полностью расшифрована структура такого сложного вещества, как фталоцианин. Рентгеновский метод позволяет надежно определять молекулярные веса белков для этого необходимы хорошо образованные кристаллы белков, дающие возможность получать хорошие снимки. [c.742]


    Ультрафиолетовая спектроскопия (УФ-спектроскопия). Метод УФ-спектроскопии используется для получения спектров поглощения изучаемых органических веществ в коротковолновой части спектра (200—400 нм). В УФ-области могут быть исследованы не только спектры поглощения твердых и жидких веществ, но и спектры испускания для газообразных веществ. Изучение интенсивных полос поглощения молекул органических веществ методом УФ-спектроскопии представляет большой интерес для установления природы химической связи в молекулах и их строения. УФ-Спектры получают также с помощью спектрофотометров, но отличающихся от ИК-спектрофотометров источником излучения и оптическими системами, пропускающими УФ-лучи. [c.18]

    Особенно высокое место среди новых способов установления состава и строения органических соединений завоевала масс-спектрометрия. Самым эффективным средством структурного анализа индивидуальных соединений, содержащихся в различных природных смесях органических веществ, в том числе и в нефти, стала хромато-масс-спектрометрия, сочетающая большую разделяющую способность хроматографических методов и идентификационную мощь масс-спектрометрии. [c.4]

    Читая работы классиков органической химии, невольно обращаешь внимание на то, с какой тщательностью и любовью описывают они полученные органические вещества, сколько внимания уделяют в этих описаниях очистке и характеристике веществ. В современных работах эта часть выглядит суше и лаконичнее для каждого вновь полученного вещества принято приводить данные его элементного анализа, брутто-формулу приводят также точки плавления и кипения, для жидкостей — показатель преломления. На основании данных, получаемых с помощью современных физико-химических методов исследования (оптических спектров, ядерного магнитного резонанса, масс-спектрометрии и др.), обычно удается составить представление о структуре вещества, не прибегая к классическим химическим методам установления строения, т. е. к постепенной деградации сложного вещества и исследованию получающихся при этом осколков. Такое описание создает зачастую у начинающего химика ложное представление, что современные методы исследования избавляют его от необходимости тщательной химической работы (прежде всего имеется в виду чистота препарата), чго эти новые методы якобы сами по себе способны дать правильный ответ. Изучающему химию важно внушить с самого начала, что современные методы исследования не исключили тщательности в его работе, а, наоборот, подняли требования к чистоте, индивидуальности органического вещества. Многие препараты, полученные по старым методикам и в свое время описанные как индивидуальные — при исследовании, например, методами хроматографии,— оказываются смесями. Между тем правильный анализ, точная температура плавления, правильная спектральная характеристика — все это может быть получено только при работе с хими- [c.354]

    А. Н. и Н. А. Несмеяновы , кратко формулируя сущность химических методов установления строения органических веществ, определяют их как методы, состоящие в констатации, родственных связей серии веществ (веществ с родственной структурой) и в выяснении строения одного или нескольких узловых веществ этой серии путем их постепенной деструкции (процесса разрушения молекулы органического вещества). Такая деструкция может происходить с изменением структуры [c.17]

    Масс-спектрометрический метод уже сейчас очень широко применяется для установления строения органических соединений. Он быстро развивается, охватывая почти все классы органических веществ. Особенно велико его значение при установлении строения сложных природных веществ здесь он дает возможность решать сложные задачи с использованием очень малого количества вещества (долей миллиграмма). Метод находит также применение для количественного анализа смесей (особенно углеводородных). [c.591]

    Основным методом установления пространственной конфигурации молекул является исследование химических свойств ве-щества. Учение о пространственной и других видах изомерии расширяет и обогащает теорию химического строения органических веществ по которой определяется порядок связи атомов. [c.245]

    Издание содержит систематически подобранные задачи по использованию методов УФ-, ИК-, КР-, ПМР-спектроскопии и масс-спектрометрии для установления строения органических веществ и их количественного анализа. Большое внимание уделено задачам (более 200) на совместное применение названных методов. Для типовых задач дается развернутое решение, для остальных — ответы. [c.591]

    Первые схемы органического синтеза были не очень сложны. Однако чтобы проводить и сравнительно простые синтезы, химики должны были научиться анализировать органические вещества. Основоположником анализа органических веществ явился Ю. Либих. Предложенные им методы элементного анализа (1831-1833 гг.) в различных вариантах применяют и в настоящее время. Все они основаны на сожжении навески вещества (порядка нескольких миллиграмм) и измерении количеств образовавшихся продуктов (СО2, Н2О, N2). В последующем для установления строения органических соединений стали широко привлекать и спектральные методы. [c.30]

    Созданная в 1861 г. теория строения служила и служит стержней развития органической химии и в настоящее время. В помощь чисто химическим методам установления структуры органических веществ были разработаны многочисленные физические методы, о которых речь будет идти далее. Однако и сейчас главными остаются значительно усовершенствованные химические методы. [c.20]

    После изучения начальных глав, когда студент уже познакомится со значительным числом органических реакций, в главе 12 вводится понятие об органическом синтезе как о методе, позволяющем оптимальным образом получать органические вещества с заданными строением и свойствами. Успешный современный органический синтез, насчитывающий десятки стадий, вряд ли возможен без овладения экспресс-методами установления строения многочисленных промежуточных соединений. Поэтому в главе 12 рассматриваются спектральные методы идентификации органических соединений. [c.7]

    ИК-спектроскопия является самым популярным спектральным методом в органической химии, а ИК-спектрометр в качестве газохроматографического детектора может быть использован для идентификации функциональных групп и установления строения молекул веществ, выходящих из колонки. Недостатком традиционных ИК-спектрометров долгое время являлась их низкая чувствительность, не позволяющая использовать их в паре с капиллярной колонкой. [c.442]

    Анализ органических соединений преследует цель установления строения вещества. Ввиду огромного числа разнообразных органических соединений нельзя выработать единую схему анализа, как часто делается в неорганическом качественном анализе. И все же систематическое исследование позволяет достаточно надежно и быстро идентифицировать органическое вещество Схема анализа в органической химии включает предварительные пробы, химические и спектральные методы установления строения. [c.480]

    Открытие металлоорганических соединений Франкландом (1849) сыграло очень большую роль в установлении закона валентности (см. стр. 57) благодаря летучести металлоорганических соединений оказалось возможным определить по плотности пара их молекулярные веса, а по ним — и атомные веса различных металлов (например, алюминия). Позднее металлоорганические соединения приобрели весьма важное значение благодаря необычайной реакционной способности многих из них. После успешных работ А. М. Бутлерова по применению цинкорганических соединений для получения третичных спиртов из хлорангидридов кислот (см. стр. 200) синтезы с помощью цинкорганических соединений и отчасти натрийорганических соединений сыграли огромную роль в проверке выводов теории строения этим методом было получено огромное число соединений, принадлежащих ко многим классам органических веществ. [c.346]

    К основным физическим методам установления строения молекулы органического вещества, с которыми более подробно читатель может ознакомиться в соответствующих руководствах, относятся следующие. [c.18]

    В 1920 г. физик Астон ввел новый метод исследования — масс-спектрометри-чеекий, пря помощи которого были открыты изотопы стабильных элементов. С начала второй половины текущего столетия масс-спектрометрия используется в органической химии как мощный метод деградации я установления строения органических веществ (см. стр. 589 сл.). [c.20]

    Следующий этап работы исследователя с органическим соединением заключается в определении его физико-химических констант и элементного состава и в установлении химического строения. Элементный состав, найденный методами элементного микроанализа (иногда полностью автоматизированного), дает брутто-формулу исследуемого органического соединения, но не позволяет сделать окончательного вывода о его строении. Физико-химические константы (температуры плавления и кипения, плотность, показатель преломления, молекулярная рефракция, константы ионизации, окислительновосстановительные потенциалы, диэлектрические и магнитные константы) дают возможность установить чистоту вещества и создать представление о его строении. Наиболее сложная и ответственная задача — установление химического строения органических соединений 1) взаимного расположения атомов и пространственного строения молекул 2) характера и порядка расположения связей  [c.7]

    В гл. 1 (1, разд. 1-6,В) была приведена общая схема установления строения органических соединений, и в частности веществ природного происхождения. Теперь покажем более подробно, каким образом эти методы были применены при установлении строения важного душистого вещества цибетона. Установление структуры этого соединения, осуществленное Ружичкой в 1926 г., служит хорошим примером классического способа исследования строения. [c.531]

    Эти методы основаны на изучении дифракционной картины, которую получают в результате рассеивания исследуемым веществом рентгеновских лучей, электронов или нейтронов. Рентгеновские лучи рассеиваются на электронах, потоки электронов (электронные лучи) на электронах и ядрах атомов, а потоки нейтронов — на ядрах. При рассеивании на электронах определяемый электронный центр атома, как правило, практически совпадает с местоположением ядра. Таким образом, дифракционные методы — рентгенография (называемая также рентгеноструктурным анализом), электронография и нейтронография являются незаменимым средством для определения геометрии органических соединений относительного расположения атомов в пространстве и геометрических параметров (межатомных расстояний и валентных углов). Впрочем, эти методы дают и другие представляющие интерес данные например, рентгенография распределение электронной плотности, характер упаковки молекул в кристаллах и даже молекулярные веса. Названные методы взаимно дополняют друг друга. Рентгенография применима в первую очередь для структурного анализа соединений, получаемых в кристаллическом состоянии, т. е. применима к определению соединений сложного строения. Электронография служит для структурного анализа органических веществ в газообразном состоянии, т. е. соединений относительно малого молекулярного веса и простого строения. Оба эти метода не дают удовлетворительных результатов при установлении координат атомов водорода, но для этой цели может с успехом служить нейтронография. [c.245]

    Как было показано выше, полная проводимость ячейки зависит от ее сопротивления и емкости, т е. от диэлектрической проницаемости раствора. Именно на измерении последней и основан метод диэлкометрии. Первоначально он применялся для установления строения органических молекул, так как между величиной диэлектрической проницаемости и природой диэлектрика существует взаимосвязь. В аналитической химии диэлкометрия применяется сравнительно недавно, когда появились достаточно простые и удобные приборы для измерения диэлектрической проницаемости. Измеряя емкость ячейки, можно определить природу вещества, а в случае смеси веществ сделать вывод об их количественном соотношении. [c.168]

    Мы привели пока лишь один простейший пример химиче- ского метода установления строения молекулы органического вещества. Описанию этих методов для самых разнообразных органических соединений посвящена большая часть настоящего курса. [c.17]

    Полное установление строения с помощью какого-либо одного физического метода без привлечения дополнительной информации возможно лишь для простейших молекул. Исследование органических веществ, как правило, требует сочетания нескольких методов, выбираемых с таким расчетом, чтобы их возможности дополняли друг друга и особенности структуры, плохо выявляемые одним из методов, могли быть четко определены другим методом. [c.6]

    Следует отметить, что для установления строения вновь синтезированных органических веществ или для изучения вещества неизвестного строения наряду с химическими методами анализа ши-. роко применяют физико-химические методы, прежде всего оптиче- ские методы исследования — методы инфракрасной спектроскопии, рефрактометрии и некоторые другие, а для установления индивидуальности вещества — методы хроматографии. [c.299]

    Большое влияние на формирование представлений о связи строения и запаха органических соединений оказало появление новых физических методов исследования (техники измерения дипольных моментов и спектроскопии). Поэтому мы ограничимся в этой главе рассмотрением исследований, проведенных с целью установления корреляции между запахом, величинами дипольных моментов и спектральными характеристиками органических веществ, [c.164]

    Терпенами называют углеводороды состава СюН , встречающиеся в природе, особенно в смоле хвойных растений и во многих эфирных маслах. В тех же природнк1х образованиях содержатся и многие кислородсодержа-щие вещества, по строению близкие терпенам. Много внимания терпенам уделено отечественными учеными Ф. М. Флавицким, Е. Е. Вагнером, А. С. Гннзбергом, С. С. Наметкиным, В. Е. Тищенко и др., которые изучили их состав и разработали методы установления ггх строения. По рациональной систематике органических веществ терпены принадлежат к различным классам. Так, среди терпенов встречаются а) ненасыщенные соединения с тремя двойными связями (алифатические терпены), б) циклические соединения с двумя двойными связями, преимущественно производные циклогексана (моноциклические терпены), в) соединения с двумя конденсированными неароматическимн циклами и одной двойной связью (бициклические терпены), г) соединения с тремя конденсированными циклами без двойных связен (трициклические терпены). [c.122]

    Книга представляет собой учебно-методическое пособие по масс-спектрометрии, наиболее бурно развивающемуся методу установления строения и определения органических соединений. В ней рассматриваются все существующие на сегодняшний день инструментальные, теоретические и методологические принщ<пы метода. Описаны методы ионизации и образования ионов, типы ионов, способы их разделения и анализа, способы введения вещества в масс-спектрометр и различные виды хромато-масс-спектро-метрии. Изложены масс-спектральные теории, правила и типы фрагментации органических соединений их применение продемонстрировано на примере органических молекул различных классов. Отдельно рассмотрены специальные методы масс-спектрометрии (активация столкновением, масс-фрагментография, химические методы), способствующие более уверенному установлению строения веществ или повышающие чувствительность их определения. [c.2]

    Определение строения. Рассмотренное в предыдущем параграфе определение суммарной (эмпирической) формулы органического вещества составляет лишь начало его исследования. Следующий этап заключается в установлении структурной формулы. Большую помощь в этом оказывают современному исследователю различные физико-химические методы (см. ниже). Однако в принципе задачу установления строения можно решить и чисто химическим путем. Покажем это на конкретном примере вещества, для которого в предыдущем параграфе была установлена эмпирическая формула С4Н6О2. [c.474]

    Обычно для установления строения органических соединений совершенно необходимо применение ИК- или ЯЛ1Р-спектроскопии. Анализ ИК-спектров (разд. 5.2) является превосходным методом определения функциональных групп. Его можно применять параллельно с проведением химических реакций на те или иные функциональные группы. Такое совместное применение ИК-спектро-метрии и химических реакций в ряде случаев действительно может привести к установлению строения изучаемого вещества. Часто при выяснении структуры веществ большую помощь оказывает метод ядерного магнитного резонанса. По существу, ЯМР-спектроскопия представляет собой метод определения относительного расположения и числа спин-активных ядер (например, протонов). [c.33]

    Глубокие различия, существующие в физических свойствах различных органических соединений, долгое время служили лишь основой для разделения, характеристики и идентификации веществ. Позднее установление многосторонних отношений между физическими свойствами соединений и их структурой революционизировало методы определения строения органических молекул. В этой главе рассматриваются такие физические свойства, как температуры фазовых превращений (температуры плавления и кипения), ]шстворимость, адсорбция, а также дипольные моменты и явления поляризации, под углом зрения соотношения между этими свойствами и структурой данных веществ. Спектральные особенности органических соединений изложены в гл. 28. Такие свойства, как твердость, упругость, вязкость, электропроводность и прочность на разрыв, которые часто ответственны за полезные качества тех или иных органических материалов, являются не столь существенными и рассматриваться здесь не будут. [c.152]

    Ознакомление с основными принципами изучения состава и строения органических соединений, осуществленное нами на примере глюкозы, показывает. что изучение всякого нового органического вещества с целью установления его структуры является задачей сложной, требующей затраты большого количества времени. Даже для краткого рассмотрения истории изучения строения глюкозы пришлось затратить большое количество времени Но история эта поучительна во многих отношениях. Она показывает, во-первых, что для успешного решения задачи надо в совершенстве владеть многочисленными методами исследования, с тем чтобы обеспечить точность эксперимента. Она показывает, во-вторых, что в успешном решении задачи важную роль играет тщательно продуманная рабочая гипотеза, осве-шаюшая путь исследования. Она показывает, наконец, что наметить сразу же правильный путь исследования удается не всегда. Приведенный выше пример свидетельствует о том что зачастую случаются и неудачи Поэтому, приступая к работе, исследователь не может и не должен рассчитывать на легкий успех, а должен быть готов к упорному и настойчивому преодолению трудностей, которые могут встретиться по ходу работы. [c.190]


Смотреть страницы где упоминается термин Строение органических веществ и методы его установления: [c.3]    [c.18]    [c.6]    [c.10]    [c.276]   
Смотреть главы в:

Курс органической химии -> Строение органических веществ и методы его установления




ПОИСК





Смотрите так же термины и статьи:

Вещества строение

Метод веществам

Методы установления строения

Органические строения



© 2025 chem21.info Реклама на сайте