Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы определения нептуния

    Методом начальных скоростей и методом времен полупревращения был определен порядок реакции по разным реагентам [58]. Оба метода дают близкие результаты. Было найдено, что реакция имеет первый порядок по урану(IV), нулевой порядок по нептунию (V), первый порядок по нептунию (IV), отрицательный второй порядок по иону водорода и первый порядок [c.310]


    Известны методы определения нептуния в различных валентных состояниях [203—205]. Кр окисляется на платиновом электроде очень медленно, особенно в сернокислых средах. При анализе смесей Кр , Кр и Кр сначала восстанавливают Кр до Кр (находят количество затрачиваемого при этом электричества 1), затем проводят окисление Кр до Кр (на этой стадии находят и по разности определяют содержание Кр - [c.25]

    Методы определения нептуния [c.291]

    Разработан мембранный метод выделения и определения нептуния в природных объектах [112[. Концентрирование нептуния проводят с помощью тефлоновой мембраны (с1 ор = 0,05 мкм), импрегнированной три-226 [c.226]

    F С хлорфосфоназо III разработаны методы определения урана [97], скандия [98], плутония [99], нептуния [100], протактиния [101] и других элементов [98]. [c.129]

    Определение нептуния-237 в моче методом распределительной хроматографии с обращенными фазами. [c.560]

    Определение нептуния. Нептуний определяют радиометрическим методом. От большинства мешающих радиоактивных элементов нептуний предварительно отделяют посредством осаждений фторидов [22] или ацетатов [23]. Отделение от урана производится путем соосаждения нептуния в трех- или четырехвалентном состоянии с фторидом лантана отделение от редкоземельных элементов — осаждением триацетата шестивалентного нептуния. Отделение нептуния от плутония возможно за счет большей легкости окисления нептуния до шестивалентного состояния, например бихроматом калия на холоду. В этих условиях четырехвалентный плутоний соосаждается с фторидом лантана, а шестивалентный нептуний остается в растворе. [c.526]

    Первые из них являются наиболее чувствительными. Радиометрические методы применяются для определения продуктов деления в плутониевом горючем, а также нептуния и америция в чистом плутонии. В каждом случае требуется высокая степень очистки от плутония, которая достигается химическими приемами. [c.379]

    Для количественного определения плутония в окружающей среде и организме человека используют следующие методы кулонометрический (чувствительность 5 10 г/мл), люминесцентный (5 10 г/мл), радиометрический с адсорбцией на сцинтилляторе или после предварительного концентрирования " Ри (1,9 Бк/ л), спектрометрический с арсеназо (2 10 г/мл), а также колориметрический, титрометрический и др. [9, 72, 83, 84]. Метод кулонометрии является абсолютным методом анализа, обладает высокой точностью и правильностью определения малых количеств вещества. Он широко используется при определении содержания в пробах урана, нептуния, плутония и других элементов [72]. [c.294]


    Самой крупной лабораторией института является лаборатория радиохимии, которую возглавляет Б. Ф. Мясоедов. Главные направления ее научной деятельности — изучение химии трансплутониевых элементов, разработка методов их выделения и определения. Особое внимание уделяется способам получения и использования необычных состояний окисления трансплутониевых элементов, например америция (И) и (IV). В качестве методов разделения особенно широко используют экстракцию и сорбционные приемы, лаборатория имеет немалые достижения в этой области. Кроме того, проведен больщой цикл исследований по аналитической химии протактиния, разработаны многочисленные методы его концентрирования, выделения и определения. Ведутся исследования также по химии нептуния, актиния и урана. [c.201]

    Метод распределительной хроматографии с обращенными фазами для выделения нептуния-239, используемого при определении вероятности избежания [c.566]

    Выделение нептуния-239 из продуктов деления и активации методом экстракционной хроматографии при определении микрограммовых и субмикрограммовых количеств урана. [c.568]

    При анализе трансурановых элементов возникает проблема определения их выхода при химических операциях. Подобрать специфический носитель невозможно из-за особенностей химии этих элементов. Выход был найден в применении трассеров — радионуклидов тех же элементов, но отсутствующих в определяемой смеси. Например, при определении содержания радионуклидов плутония в объектах окружающей среды необходимо учитывать радионуклиды с массовыми числами 239, 240, 241 и 242, образующиеся в ядерном реакторе при последовательном захвате ядром урана-238 нескольких нейтронов и бета-превращениях (цепочка обрывается на короткоживу-щем изотопе плутония-243, превращающемся в америций-243 с Tw2 = 5 ч), и плутоний-238, образующийся при захвате нейтрона нептунием-237 и последующем бета-распаде. В качестве трассеров используют изотопы плутония с массовыми числами 236 и 244, отсутствующие в определяемой смеси и получаемые другими (не в реакторах на тепловых нейтронах) методами. Энергии альфа-частиц плутония-244 — 4,59 и 4,55 МэВ, а плутония-236 — 5,79 и 5,72 МэВ, что вне пределов энергий альфа-частиц реакторных изотопов плутония от примерно 4,9 до 5,5 МэВ, поэтому альфа-спектры легко разделяются. Требования к чистоте трассеров — содержание примесей плутония-242 в первом изотопе и содержание плутония-238 во втором изотопе менее 0,1 % от активности основного изотопа. [c.116]

    Для определения содержания нептуния в рабочих растворах могут быть использованы, в частности, фотометрический или радиометрический методы анализа. Фотометрический метод часто требует применения органических реагентов. При этом концентрация Np в анализируемом растворе, как правило, должна быть не меньше 0,1 г/л. [c.409]

    Методом ионного обмена наиболее полно изучена химия комплексных соединений нептуния в самом устойчивом — пятивалентном состоянии. Для определения состава и констант устойчивости находят величины коэффициентов распределения Мр между катионитом и растворами комплексообразователя в выбранных условиях опыта. [c.441]

    Сведения о процессах комплексообразования нептуния в водных растворах могут быть получены также методом электрофореза. В процессе электромиграции на хроматографической бумаге происходит перемещение ионной и комплексной форм металла к аноду или катоду в зависимости от их заряда, что дает возможность сделать вполне определенные выводы о характере процессов комплексообразования. [c.443]

    Электрохимическое поведение ионов нептуния на платиновом электроде в водных средах хорошо изучено. Показано, что сочетанием различных способов восстановления и окисления можно установить содержание ионов нептуния, присутствующих в растворе в нескольких степенях окисления. Метод ППК использован для определения миллиграммовых количеств Np  [c.66]

    Интересно отметить, что присутствие нептуния и плутония не мешает определению урана данным методом [7]. [c.179]

    Метод позволяет определять до 10 °/о нептуния в плутонии. Выход нептуния составляет 90%. А. С. Храмцова и В. А. Михайлов (1962 г.) разработали фотометрический метод определения нептуния в плутонии при содержании >0,003%. [c.396]

    Разработан метод определения нептуния в растворах продуктов переработки ядерного горючего 1[10]. Использована колонка с набивкой ТЛА—HNO3 гранулированный кель-F разделение проводилось при пропускании 0,1 М раствора железа(П) в 2 М HNO3, который содержал до 100 г/л урана. После промывки колонки азотнокислым раствором сульфамата железа (II) нептуний элюировали ом-есью серной и азотной кислот. Метод высокоизбирателен по отношению к нептунию (IV) и позволяет эффективно отделять продукты деления, плутоний и уран. Он был использо- [c.340]

    Известны методы определения нептуния в различных валентных состояниях [261—263]. Нр(1У) окисляется на платиновом электроде очень медленно, особенно в сернокислых средах. При анализе смесей Ыр(1У), Мр(У) и Ыр(У1) сначала восстанавливают Кр(У1) до Нр(У) (находят количество затрачиваемого при этом электричества Q ), затем проводят окисление Нр(У) до Нр(У1) (на этой стадии находят Рг) и по разности Q2 — Ql определяют содержание Мр(У). Затем в анализируемый раствор вводят избыток Се (IV) для окисления Ыр(1У) до Ыр(У1), полученный Ыр(У1) и остаток Се(1У) электролитически восстанавливают до Кр(У) и Се(1П) и снова окисляют Нр(У) до Нр(У1) (находят <Эз)- Разность Qг — Q2 отвечает содержанию Г р(1У). В присутствии мешающих компонентов можно ввести соответствующие поправки или использовать подходящие маскирующие агенты. Причиной неточных результатов этого метода может служить диспропор-циоиирование Мр(У) и присутствие неустойчивого Ыр(1П). При общем содержании 0,2—1,5 мг Мр абсолютная ошибка определения каждого из указанных выше ионов не превышает 0,7%, [c.28]


    Нитрат трилауриламина (ТЛА-НЫОз) в колонке с кель-Р использован [73] для выделения и определения нептуния (1У) в концентрированных растворах (облученного) урана. Актиноиды (ТЬ, Ра, Ыр и Ри) сорбируются в присутствии избытка урана из раствора состава 2 М НЫОз+ 0,1 М Ре304 в этом растворе плутоний восстанавливается до трехвалентного состояния. Колонку промывают 1 М раствором НЫОз, содержащим железо(II), а затем элюируют нептуний (1У) смесью серной и азотной кислот. Метод позволяет селективно отделять нептуний(1У) и приводит к хорошим результатам при анализе растворов, содержащих уран и нептуний в отношении >10 °, и при получении радиохимически чистого изотопа нептуния-239. [c.275]

    В 1972 г. был разработан новый метод определения Ыр [ 26], основанный на извлечении Мр(1У) из мочи с помощью-ТОФО, нанесенного на микротен, нз 6 М растворов НЫОз, Для элюирования нептуний окисляют хлором при 70 °С до пятивалентного состояния. Поскольку америций, кюрий и плутоний(П1) не извлекаются в этих условиях, факторы очистки от этих трансурановых элементов высоки. [c.377]

    ВОДИЛИ с помощью 0,5 М раствора НТТА в ксилоле, нанесенного на силанизированный стеклянный порошок. Нептуний(IV) избирательно извлекали из 0,5— 1 М НС1, содержащей хлорид гидроксиламина. Уран(VI) и продукты деления (кроме циркония) вымывали раствором, имеющим состав 0,1 М ННгОН-НС -]-+0,5 М НС1 затем 6 iM H I или этанолом элюировали Np. Радиохимическому определению нептуния, отделенного от облученного обогащенного урана, мешало присутствие других изотопов циркония поэтому методику необходимо было усовершенствовать. Было предложено отделять цирконий на той же самой колонке перед восстановлением нептуния(VI) до нептуния(IV) [31]. Описанный метод избирательного отделения Np применен также при определении субмикрограммовых количеств урана методом нейтронно-активационного анализа [32, 33]. [c.401]

    Радиохимические методы разделения нептуния-239 и молибдена-99, используемые при определении параметров микроскопической решетки реактора. KR-83, 1964, 34 р. (N0RA-I6). [c.556]

    Количество радиоактивного элемента в экстракте можно в ряде случаев определять -опектрометричеоким методом. По площади ооответствующего фотопика в уонектре рассчитывают одержание радиоизотопа. Разработан, например, метод определения Аш в смеси актинидов и продуктов деления, основанный на выделении дочернего Кр и измерении его у-активности. Нептуний экстрагируют бензольным раствором теноилтрифторацетона, при этом вместе с ним извлекаются лишь цирконий и ниобий. [c.216]

    В некоторых случаях дифракция рентгеновских лучей может быть использована для определения абсолютной конфигурации оптически активных веществ. В 1951 г. Бижро, Пирдеман и ван Боммель изучили натриеворубидиевую соль (+)-винной кислоты с помощью дифракции рентгеновских лучей и нашли, что ее абсолютная конфигурация соответствует той, которая была произвольно выбрана Фишером из двух возможных энантиоморфных структур 100 лет назад. Дифракция рентгеновских лучей находит также широкое применение в неорганической химии при определении как структур, так и правильных формул многих гидридов бора и карбонильных комплексов металлов, которым ранее были приписаны ошибочные формулы. Во многих случаях дифракция является единственным практическим методом установления правильного состава соединений. При изучении искусственно полученных элементов— нептуния, плутония, кюрия и америция — стало возможным быстро устанавливать их чистоту и химический состав, используя чрезвычайно малые количества вещества и не разрушая образцы. [c.583]

    Изготовление слоев оксидов редкоземельных элементов, тория, урана, протактиния, нептуния и транснептуниевых элементов электроосаждением из неводных сред имеет неоспоримые преимуш,ест-ва по сравнению с водными растворами. Образуюш,иеся на катоде при электролизе в водной среде гидроксиды лантаноидов и актиноидов аморфны. При дальнейшей термической обработке они образуют оксидные слои с большим количеством структурных дефектов. При электролизе из органических растворов на катоде образуются кристаллические структуры, которые при прокаливании легко переходят, теряя органическую составляюш,ую, в кристаллические структуры оксидов РЗЭ и актиноидов. Кроме того, метод электроосаждення из неводных растворов характеризует большая скорость проведения процесса, полнота выделения металла, прочность сцепления о подложкой слоев толщиной 1—5 мг/см , равномерность распределения покрытия на больших площадях. Наилуч-шие результаты получены из спиртовых растворов нитратов и ацетатов РЗЭ и актиноидов. Растворимость солей данных металлов в органических растворителях низка, поэтому в основном применяют насыщенные растворы. Из-за низкой проводимости растворов и окисной пленки на электроде используются высокие напряжения (порядка сотен вольт), плотности тока низкие. Большое значение при подборе оптимальных условий осаждения имеют площадь электродов, расстояние между ними, объем электролита, предварительная обработка электродов. Катодный процесс сопровождается газовыделением, вызывающим образование неравномерной пленки. Для уменьшения газовыделения добавляют специальные добавки, в частности этиловый спирт [221]. Катодный продукт наряду с металлом и кислородом содержит обычно азот, водород и углерод. Результаты количественного анализа показывают загрязнение катодного осадка растворителем или продуктами его разложения, но не образование соединений определенной стехиометрии [1077]. При термической обработке катодного осадка происходит уменьшение объема и перестройка кристаллической решетки, в результате чего слои растрескиваются и осыпаются, и лишь в случае тонких слоев оказывается достаточно поверхностных молекулярных сил сцепления для сохранения прочной связи с подложкой. Для получения покрытий толщиной порядка 1—5 мг/см необходимо многослойное нанесение продукта [1060]. [c.156]

    Как и другие радиохимики, Макмиллан и Эйбельсон применяли в своих исследованиях метод изотопных носителей. С его помощью они разработали окислительно-восстановительный лантанофторидный цикл, служивший долгое время для очистки нептуния. Однако химикам этого было мало. Они стремились изучить новый элемент в растворах обычной концентрации, когда носители уже не нужны. Метод изотопных носителей — единственный, когда приходится работать с микрограммами вещества. Вместе с тем к полученным данным следует относиться с осторожностью, и во многих случаях нельзя сделать вполне определенных выводов . Это мнение Гленна Сиборга, крупнейшего специалиста в области трансуранов. Но как получить раствор высокой концентрации, если в распоряжении экспериментатора считанные микрограммы нептуния  [c.383]

    Определение содержания " Кр в различных объектах проводят как по а-активности [9, 83], так и другими методами. Метод кулонометрии с разверткой потенциала позволяет определять 5-10 % нептуния в солях и оксидах урана без предварительного выделения [81]. В [82] предложен более чувствительный метод потен-циостатической вольтамперометрии, позволяющей относительным методом определять в присутствии урана 0,05-0,1 мкг нептуния при объеме раствора в ячейке 10-12 мл. Метод, основанный на люминесценции кристаллофосфора Сар2 Мр, позволяет определять 10 -10 г " Нр в пробах. Абсолютный предел обнаружения этим методом составляет 5 10г. Метод состоит в том, что измеряемое количество " Кр в виде азотнокислого раствора смещивается с порошком Са 2. Порошок высушивают и прокаливают при температуре ниже температуры плавления. Для возбуждения люминесценции Кр в Сар2 Np в данной работе использова- [c.291]

    Для уменьшения влияния урана на определение содержания " Np в пробах в качестве основы фосфора используют РЬМо04, а не Са 2. Это позволяет определять нептуний в присутствии 10 -кратных количеств урана при содержании " Np в пробах в пределах 0,5 (lO lO ) г [72]. Определение содержания " Np до 110 г осуществляют также спектрофотометрическим методом с арсеназо III. [c.291]

    Фотометрические методы достаточно широко применяются только для определения тория и урана. Для определения других актинидных элементов, в частности для плутония, нептуния и протактиния, они не приобрели существенного значения, так как в данном случае радиометрические методы оказались намного более чувствительными и избирательными. Однако в последнее время были созданы новые реагенты, являющиеся бисазопро-изводными хромотроповой кислоты, дающие высокочувствительные цветные реакции со многими актинидными элементами, в том числе с Th, Ра, [c.144]

    Подобный метод использован при определении микрограммовых и субмикрограммовых количеств урана, для отделения нептуния от продуктов деления и активации [26]. Для того, чтобы изменить окисл ительное состояние нептуния, в раствор добавляли железо (II) и хлорид гидроксиламина. Колонку промывали 1 М H I, а затем вымывали нептуний 10 М HNO3. [c.290]

    Дениг (И сотр. [14, 17] разработали схему последовательного выделения нептуния, урана и продуктов деления, В этой схеме на первой экстракционно-хроматографической колонке с ТБФ происходит. извлечение циркония, урана и нептуния из раствора НаСЮз в 8 М НМОз. На второй колонке с Д23ГФ(К из раствора МаСЮз в 9 М НС1 извлекаются ниобий, сурьма и иод. На третьей колонке, также заполненной Д2ЭГФК, из 0,1 М раствора НСГ извлекаются редкозем ельные элементы я молибден. Далее в каждой колонке производят разделение на отдельные компоненты с помощью избирательного элюирования. Полный процесс разделения, проводимый при повышенной температуре, требует менее 12 ч (включая радиохимическое определение) [14]. Некоторые из наиболее важных продуктов деления определялись рентгенофлуоресцентным методом [17]. [c.341]

    Содержание нептуния в растворе определяют радиометрическим или спектрофотометрическим методами. Для стабилизации нептуния в пятивалентном состоянии к исходному раствору добавляют NaN02 ( 0,1 М). В процессе спектрофотометрического титрования на фоне 1 М КС1 к раствору, содержащему Np , при контролируемом pH— 5,5 добавляют определенными порциями раствор комплексона П1 так, чтобы соотношение [комплексон Hl]/[Np ] в растворе изменялось примерно от 0,5 до 2,5. После добавления каждой порции комплексона III выжидают некоторое время для установления равновесия в растворе и затем измеряют оптическую плотность при Я,=988 ммк. Постоянство значения pH— 5,5 обеспечивают добавлением 0,1 п. раствора NaOH к раствору в процессе титрования и контролируют спектрофотометрически по сохранению постоянства поглощения в области 400—420 и 520— 530 ммк (поглощение обусловлено предварительно добавленным к раствору метиловым красным). Отсутствие Np " в растворе может быть проверено по измерению спектра в области 700—740 ммк. [c.437]

    Для изучения р-аспада изотопов сурьмы их можно выделить из смеси продуктов деления в достаточно чистом виде за 1,5 ми . С этой целью из p a TBOpia облученного обр азца предварительно удал яют мещающий выделению сурьмы иод, окисляют сурьму хлоратом и сорбируют из 9 М раствора НС1 на колоике с диизобу-тилкарбинолом,. после чего 6 М р аствором НС1 удаляют из колонки нептуний сурьму элюируют водой [48]. Этот же метод применен для выделения сурьмы из облученного нейтронами теллура. Метод может быть модифицирован и иопользован в элютивяом (варианте в этом -случ ае элюируемые 9 М раствором НС1 изотопы теллура дают информацию о материнских изотопах сурьмы, удерживаемых на колонке [48, 49]. Таким образом был изучен распад изотопов сурьмы с. массой от 126 до 133 определен период полураспада aisb (23 мин) [48], обнаружены 47-линии и определен период полураспада (3,1—3,7 мин), относящийся или к или [c.356]

    Методика основана на соосаждении америция с фосфатом висмута из азотнокислого раствора карбамидных солей при pH = 1,7. Фосфат висмута растворяется в б М соляной кислоте, затем америций осаждается с фторидом лантана. Осадок переносится на мишень из нержавеющей стали и анализируется на пропорциональном а-счетчике с малым фоном. Присутствие тория, плутония, кюрия, актиния и нептуния оказывает влияние на точность определения америция. Этим методом можно обнаружить количества америция порядка 0,5 распад1мин. [c.80]

    Скорость окисления Мр ( У) определяли по изменению во времени коэффициента распределения нептуния между 30%-ным раствором трибутилфосфата и водным раствором НМОз. После встряхивания в течение определенного времени фазы разделялись и анализировались на нептуний радиометрическим методом. Азотную кислоту определяли титрованием щелочью, азотистую — колориметрическим методом Грисса—-Илосвая. [c.243]

    По концентрации нептуния в растворе до и после осаждения КзЬа(804)3, определенной радиометрическим методом, вычисляют [c.417]

    Таким образом, при выделении нептуния необходимо отделять его от продуктов деления, а также от урана или плутония или от того и другого вместе. Для этих целей широко используется многообразие степеней окисления, проявляемых ураном, нептунием и плутонием. В зависимости от валентного состояния эти элементы ведут себя по-разному при соосаждении, комплексообразовании, экстракции растворителями, катионном и анионном обмене. Следовательно, при выделении любого из этих элементов возможно широкое применение разнообразных химических способов. При выделении какого-либо из этих элементов из смеси продуктов используется его способность проявлять различные свойства в зависимости от степени окисления, которую молено изменять на протяжении всего цикла очистки. Смысл большинства из этих процедур состоит в том, что примеси, сопроволедаюшие уран, нептуний или плутоний в одном из их состояний окисления, ведут себя совершенно иначе, когда эти элементы переводят в другое состояние окисления. Таким образом, окислительно-восстановительные циклы являются основой для очистки урана, нептуния и плутония от продуктов деления. Вместе с тем суш ествуют большие различия в том, как получить эти элементы в определенной степени окисления. Благодаря тому что одни и те же валентные состояния этих трех элементов обладают относительно разной стабильностью, удается получать растворы, содержащие все три элемента в различных состояниях окисления. На этом основаны методы разделения этих трех элементов. [c.317]

    Теноилтрифторацетон пригоден для разделения урана и плутония и очистки их от осколочных радиоактивных элементов. В этом случае из сильно кислых растворов сначала экстрагируются четырехвалентный плутоний и цирконий, а затем ничтожные количества других веществ вымываются из органического слоя азотной кислотой. Плутоний (Рп ) отделяется от циркония восстановлением до Рп и реэкстракцией из органического слоя водным раствором азотной кислоты. Уран после удаления плутония экстрагируется раствором теноилтрифторацв тона в гексане. Недавно описан быстрый количественный метод выделения плутония из смесей с другими элементами, также основанный на экстракции плутония раствором теноилтрифторацетона в ксилоле. Метод может быть контрольным при определении полноты отделения плутония. Этот же экстракционный раствор используется для выделения из кислых растворов нептуния-237 и микроколичеств нептуния-239. Все эти примеры свидетельствуют о важном значении фторированных р-дикетонов в современной радиохимии и атомной промышленности. [c.92]

    При экстракционных методах разделения и выделения актиноидных элементов и продуктов деления из азотнокислых сред для количественного описания процесса необходимо знание коэффициентов активности ни/ратов нептунила, плутонила, четырехвалентных нептуния, плутония и др., обычно находящихся в водной фазе в микроколичествах. Определение Y+ в таких системах, как правило, производится методом распределения [5, 141], поскольку применение электрохимических и других методов к подобным системам связано с большими трудностями. [c.93]


Смотреть страницы где упоминается термин Методы определения нептуния: [c.294]    [c.129]    [c.27]    [c.126]    [c.246]    [c.276]    [c.418]    [c.76]   
Смотреть главы в:

Новый справочник химика и технолога Радиоактивные вещества -> Методы определения нептуния




ПОИСК





Смотрите так же термины и статьи:

Нептун

Нептуний



© 2025 chem21.info Реклама на сайте