Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Газы-носители в газо-адсорбционной хроматографии

    Разделение компонентов можно осуществлять в колоннах на-садочного типа (колоночная хроматография), капиллярах, заполненных неподвижной жидкой фазой (капиллярная хроматография), на фильтровальной бумаге (бумажная хроматография), на тонком слое сорбента, нанесенном на стеклянную пластинку (тонкослойная хроматография). Разделять смеси можно при постоянной температуре и давлении или с программированием, т. е. с постепенным повышением по заданной программе температуры или давления газа-носителя. Все варианты хроматографии являются молекулярными, а жидкостно-адсорбционная хроматография может быть и ионообменной, осуществляемой при обмене ионов разделяемых компонентов с поверхностными ионами ионообменного адсорбента. [c.118]


    Природа газа-носителя. В газовой хроматографии при небольших давлениях инертные газы-носители практически не адсорбируются, особенно в газо-жидкостной хроматографии. Поэтому природа газа-носителя практически не влияет на селективность разделения, за исключением некоторых случаев в газо-адсорбционной хроматографии при разделении газов на активных тонкопористых адсорбентах. [c.258]

    Ход определения состоит в следующем. Навеску, содержащую около 3-5 мг кислорода, подвергают пиролизу в вакууме вместе с углём при температуре 1150°С время пиролиза 5 мин. Вместо угля можно использовать сажу или графит, опудренный сажей (4 1). В результате весь кислород навески переходит в СО. Продукты пиролиза, представленные смесью газов N2, СО, Н2, СН4 и др. выдувают током гелия (газ-носитель) на колонку хроматографа, работающего в таком режиме, чтобы получить полное разделение компонентов по времени выхода из колонки. Это особенно важно для компонентов, выходящих перед окисью углерода и после неё. Когда компонент, предшествующий СО, полностью выйдет из хроматографической колонки, специальным распределительным устройством направляют ток газа-носителя через адсорбционную колонку, поставленную на выходе прибора. Эта колонка представлена и-образной трубкой из стекла или нержавеющей стали с внутренним диаметром 5 мм и общей длиной 42 см, наполненной активированным углём (пригоден уголь марок АГ-3 и БАУ). В период прохождения газа через колонку она охлаждается до —78 °С. Кроме активированного угля пригодны и другие адсорбенты, например, цеолит типа СаА при О °С. [c.553]

    Различают две принципиальные разновидности газовой хроматографии в системе газ — твердое вещество (адсорбционная хроматография) и в системе газ — жидкость (газо-жидкостная хроматография). В первом случае разделение происходит за счет адсорбции веществ на поверхности твердого адсорбента, которым наполнена хроматографическая колонка. Во втором случае анализируемая газовая смесь проходит через колонку, наполненную твердым носителем (определенной степени зернения), на поверхность которого нанесен тонкий слой нелетучей жидкости. Эффективность разделения в газо-жидкостной хроматографии определяется не процессами сорбции — десорбции газа, а степенью растворения газообразных компонентов анализируемого вещества в жидкой нелетучей пленке. В качестве жидкой фазы в газо-жидкостной хроматографии используют вазелиновое масло, силиконовое масло, эфиры фталевой кислоты, трикрезилфосфат и др. В качестве твердых носителей применяют инертные вещества с развитой поверхностью, но малой микропористостью, чтобы исключить адсорбцию газа на поверхности. Наибольшее распространение получили каолин, диатомиты, тефлон и др. [c.309]


    Связь 1/д или с константой Генри и с теплотой адсорбции или растворения позволяет сделать целесообразный выбор неподвижной фазы для газо-хроматографического разделения различных по свойствам веществ. Для разделения легких газов, очевидно, надо резко увеличить значение величины К, а следовательно, и Q. Этого нельзя добиться при газо-жидкостной хроматографии, потому что теплоты растворения газов малы. Поэтому для разделения легких газов и паров низкокипящих жидкостей применяют газо-адсорбционную хроматографию, используя молекулярные сита (цеолиты), пористые стекла, силикагели, алюмогели, неполярные активные угли (в зависимости от природы раз деляемых газов и паров). Для разделения паров жидкостей, кипящих при температурах от комнатной до 200 °С, хорошие результаты дает газо-жидкостная хроматография, причем неподвижная жидкость выбирается в соответствии с природой разделяемых компонентов для разделения неполярных веществ применяют неполярные жидкости (различные парафиновые и силиконовые масла) для разделения полярных веществ применяют полярные жидкости, такие, как полиэтиленгликоль, различные сложные эфиры и т. п. Часто применяют последовательно включенные колонки с разными по природе неподвижными фазами, меняют также направление потока газа-носителя после выхода части компонентов. Увеличивая однородность поверхности путем укрупнения пор и регулируя адсорбционные свойства соответствующим химическим модифицированием поверхности твердых тел, удается применить для разделения среднекипящих и высококипящих компонентов газо-адсорбционную хроматографию, обладающую тем преимуществом, что неподвижная фаза нелетуча при высоких температурах. [c.568]

    Основные варианты этого метода моншо разделить на две группы адсорбционную хроматографию, если разделительные колонки наполнены лишь твердым адсорбентом, и распределительную, или газо-жидкостную хроматографию, если твердый адсорбент служит тол],ко в качестве носителя, который прочно удерживает нанесенный на него жидкий растворитель. [c.839]

    Метод газо-адсорбционной хроматографии (ГАХ) основан на различной адсорбируемости веществ на поверхности твердых неподвижных фаз. В газо-жидкостной хроматографии (ГЖХ) разделение основано на различной растворимости анализируемых веществ в жидкой стационарной фазе, нанесенной на твердый пористый носителЕ). Возможна также комбинация подвижная жидкая фаза — твердый сорбент — жидкостная адсорбционная хроматография (ЖАХ). Вариантами ЖАХ являются тонкослойная и бумажная хроматография. Прн использовании в качестве подвижной и неподвижной фазы жидкости реализуются различные варианты жидкостной хроматографии. [c.289]

    Многие исследователи считают, что разделительные процессы на пористых полимерах отличаются от процессов газо-жидкостной и газо-адсорбционной хроматографии, что здесь одновременно протекают процессы адсорбции и абсорбции. Следует отметить, что пористые полимеры применяются как высокоселективные адсорбенты в газо-адсорбционной и жидкостно-адсорбционной хроматографии для разделения многокомпонентных смесей, а также и в качестве носителей в газо-жидкостной хроматографии. По-видимому, этим сорбентам принадлежит большое будуш,ее. [c.58]

    Следует отметить, что при обычных давлениях влияние природы газа-носителя на коэффициент селективности Кс в газо-жидкостной хроматографии практически отсутствует, так как коэффициент Генри зависит не от природы газа, а только от свойства жидкости. В случае газо-адсорбционной хроматографии природа газа-носителя может оказать влияние на селективность адсорбента, если газ-носитель обладает определенным адсорбционным сродством к выбранному адсорбенту. [c.53]

    Разновидность хроматографии, в которой процесс протекает при сверхкритических условиях, вследствие чего газ-носитель ведет себя подобно жидкости, получила название флюидной хроматографии. По сравнению с газовой хроматографией низкого давления коэффициент распределения в этом случае определяется двумя факторами. Во-первых, как и в случае жидкостно-адсорбционной хроматографии, компоненты разделяемой смеси стремятся проходить в плотную фазу из-за сильного молекулярного взаимодействия в этой. фазе. Во-вторых, адсорбция веществ уменьшается по мере того, как подвижная фаза адсорбируется и конкурирует с молекулами анализируемого компонента за место на поверхности. Очевидно также, что на величину адсорбции оказывает влияние полярность критической фазы. [c.58]


    Для разделения смесей низкокипящих углеводородов методом газо-адсорбционной хроматографии рекомендуются силикагели марок Сз и С4. Силикагель марки МС-Н рекомендуется в качестве твердого носителя в газо-жидкостной хроматографии. [c.77]

    Пористые стекла (40] представляют собой боросиликатные стекла с жесткой пространственной сетью соединяющихся пор. Они применяются как в качестве инертных твердых носителей в газожидкостной хроматографии, так и в качестве адсорбентов в газо-адсорбционной хроматографии. Адсорбционные свойства пористых стекол обусловлены наличием силанольных групп, способных к образованию водородных связей с веществами, содержащими электронодонорные функциональные группы. [c.78]

    В газовой хроматографии подвижной фазой является газ. Неподвижной фазой может быть твердый адсорбент — газо-адсорбционная хроматография (ГАХ) или жидкость, нанесенная на поверхность твердого носителя — газожидкостная хроматография (ГЖХ). Компоненты смеси при разделении должны находиться в парообразном или газообразном состоянии. Методом газовой хроматографии можно разделять вещества с температурой кипения от —200 до 400 °С. [c.353]

    Неподвижная фаза может быть 1) твердым телом, обладающим адсорбционными свойствами (в этом случае мы имеем дело с адсорбционной хроматографией) 2) жидкостью, нанесенной для создания большей поверхности обмена на границе раздела фаз на гранулированный инертный материал — носитель. Подвижная фаза может быть 1) жидкостью 2) газом или паром. [c.14]

    Хроматографическая колонка является сердцем хроматографа. Она состоит обычно из металлической или стеклянной трубки, наполненной гранулированным адсорбентом в случае газо-адсорбционной хроматографии или инертным носителем, поверхность которого покрыта тонким слоем высококипящей органической жидкости в случае газо-жидкостной хроматографии. [c.24]

    В основе газо-жидкостной распределительной хроматографии (ГЖХ) лежит различие растворимости разделяемых веществ на выбранном неподвижном растворителе в хроматографической колонке, или более точно — различие коэффициентов их распределения между неподвижной жидкой фазой (НЖФ), служащей растворителем, и подвижной газовой фазой (ПГФ), служащей газом-носителем. Чем больше коэффициент распределения вещества в газо-жидкостной колонке, тем больше объем удерживания и тем дольше вещество задерживается в колонке. Коэффициент распределения К равен частному от деления концентрации компонента в НЖФ на концентрацию компонента в ПГФ. Величина К является термодинамической константой равновесия в процессе распределения растворяющегося вещества между НЖФ и ПГФ, подобно тому как коэффициент адсорбции Г в адсорбционной хроматографии является термодинамической константой в процессе распределения адсорбирующегося вещества между твердой неподвижной фазой-адсорбентом и ПГФ — газом-носителем. [c.105]

    Анализируемую газовую смесь пропускают через колонку с адсорбентом или носителем неподвижной жидкости в непрерывном потоке воздуха при одновременном нагреве хроматографической колонки. Нагрев колонки дает возможность полнее и быстрее разделять компоненты вследствие изменения их адсорбционной способности. В зависимости от состава смеси для хроматографической колонки применяют различные адсорбенты или носители с различными неподвижными жидкими фазами. Так, для разделения смеси предельных углеводородов используют газо-адсорбционную хроматографию в качестве адсорбента применяют, например, крупнопористый силикагель МСК или КСК, а для разделения смесей, содержащих также и непредельные углеводороды, — окись алюминия. Однако на указанных адсорбентах не удается выделить некоторые изомерные компоненты. В этом случае применяют комбинацию газо-адсорбционной и газожидкостной хроматографии, а именно разделительную колонку наполняют адсорбентом, смоченным небольшим количеством малолетучей жидкости. Такие адсорбенты называются модифицированными. Сочетание газо-адсорбционной и газо-жидкостной хроматографии позволяет полнее разделить сложную смесь, состоящую из большого Числа разных по своей природе компонентов. [c.144]

    Термический фактор — один из наиболее действенных в хроматографии. Он позволяет менять адсорбционные свойства по любому закону во времени и по длине колонки и, следовательно, получать ряд специфических эффектов. Повышение температуры во время проявления вызывает десорбцию, повышает выходную концентрацию и, следовательно, увеличивает чувствительность анализа. Это дает возможность обнаруживать примеси очень малых концентраций. Под хроматермографией понимают метод разделения, предложенный в 1951 г. Жуховицким и Туркельтаубом. Он основан на одновременном воздействии на разделяемую смесь потока газа-носителя и движущегося во времени и пространстве температурного поля. [c.151]

    Неподвижная фаза может быть твердым телом, обладающим адсорбционными свойствами (адсорбционная хроматография), или жидкостью, нанесенной для создания большей поверхности обмена на границе раздела фаз на гранулированный инертный материал — носитель (распределительная хроматография). Подвижная фаза может быть жидкостью, газом или паром. Соответственно, можно выделить четыре основных вида хроматографии жидкостно-адсорбционная, газо-адсорбционная, жидкостно-жидкостная и газожидкостная. Эта классификация была рекомендована и получила одобрение на Первом международном симпозиуме по газовой хроматографии, состоявшемся в 1956 г. в Лондоне. [c.13]

    Вытеснительный способ отличается от фронтального и элюентного тем, что после введения пробы исследуемой смеси колонку промывают растворителем или газом-носителем, к которым добавлено растворимое вещество (в жидкофазной хроматографии) или вещество в газообразном (парообразном) состоянии (в газовой хроматографии). Это вещество должно адсорбироваться сильнее любого из компонентов разделяемой смеси и называется вытеснителем, так как оно, обладая наибольшей адсорбируемостью, вытесняет более слабо адсорбирующиеся компоненты. Благодаря эффекту адсорбционного вытеснения, открытому М. С. Цветом, происходит вытеснение компонентов из адсорбента в последовательности, соответствующей их адсорбируемости, и компоненты разделяются при этом зоны компонентов движутся по слою адсорбента с одинаковой скоростью, соприкасаясь между собой, по направлению к выходу из колонки. [c.16]

    Влияние природы сорбента. Термин сорбент (или насадка ) является общим названием материала, заполняющего хроматографическую колонку. Это может быть неподвижная жидкая фаза (НЖФ) и твердый носитель в газо-жидкостной и активный адсорбент в газо-адсорбционной хроматографии. Химическая природа этих материалов обусловливает селективность хроматографической колонки (шгь Кс) и сравнительно мало влияет на ее эффективность (Я, N). Это означает, что при оптимизации прочих параметров в данной задаче разделения природа сорбента остается неизменным параметром. [c.129]

    Поток газа-носителя с низкой концентрацией адсорбата пропускают через колонну с адсорбентом, помещенную в термостат при температуре измерения изотермы адсорбции, как при фронтальной хроматографии. После установления адсорбционного равновесия находящийся на выходе из колонны дифференциальный детектор регистрирует равенство концентрации адсорбата в газе-носителе на входе в колонну с адсорбентом и на выходе из нее. Это равенство концентраций сохраняется в течение длительного времени. После этого определяют количество адсорбированного в колонне вещества методом тепловой десорбции, т. е. десорбируя при нагревании колонны все адсорбированное вещество и измеряя его количество с помощью калиброванного детектора и интегратора. Затем опыт повторяют при другой концентрации адсорбата в газе-носителе (при другой температуре его насыщения паром адсорбата в криостате) и таким образом получают изотерму адсорбции в области низких заполнений поверхности. [c.157]

    Принцип метода. Приведенные в предыдущем разделе основные закономерности газовой адсорбционной хроматографии справедливы и для газожидкостной хроматографии, с той лишь разницей, что в последнем случае нужно рассматривать не процесс адсорбции и десорбции газа или пара на поверхности твердого вещества-адсорбента, а процесс растворения и выделения газа или пара в жидкой пленке, удерживаемой твердым инертным носителем. [c.101]

    Газо-адсорбционная хроматография. Газовой смесью, состоящей из нескольких компонентов, насыщают верхний слой адсорбента, помещенного в колонку. Затем через колонку пропускают инертный газ-носитель. Вследствие повторения актов адсорбции — десорбции происходит полное разделение смеси на составные компоненты. [c.37]

    Одним из преимуществ газо-жидкостной хроматографии является то, что коэффициент Генри значительно больше изменяется при переходе от одного вещества к другому, чем в газо-адсорбционной, что обеспечивает лучшее разделение сложных смесей. Это обусловлено тем, что газ-носитель не растворяется в неподвижной фазе и не адсорбируется носителем. Коэффициент Генри для газа-носителя равняется нулю, поэтому, исходя из основного уравнения теории равновесной газовой хроматографии (см. стр. 45), линейная скорость перемещения газа-носителя (ио) будет равна  [c.49]

    В 1964 г. эти же авторы разработали оригинальные методы определения микропримесей, основанные на сорбционком концентрировании (хроматография без газа-носителя, метод адсорбционного замещения). [c.8]

    Применение водяного пара в качестве десорбента общеизвестно, однако в хроматографии он был использован впервые Хессе с сотр. И, 2] в качестве составной части смешанного газа-носителя при адсорбционном разделении циклогексана и бензола. [c.76]

    Динамический метод заключается в пропускании через слой адсорбента тока газа и в фиксировании появления газа (пара) за слоем адсорбента, так называемого проскока , а в более точных работах—в измерении нараст 1ния концентрации газа за слоем адсорбента после проскока. Динамический метод широко применяется при адсорбции сильно адсорбирующегося компонента из смеси с слабо адсорбирующимся газом— носителем и вообще при адсорбционном анализе смесей. Некоторые варианты этого метода будут рассмотрены ниже в связи с газовой хроматографией (см. Дополнение). [c.458]

    Неподвижная фаза при хроматографии может быть твердой и жидкой. В соответствии с этим газовую хроматографию делят на газо-адсорбционную (неподвижная фаза — твердый адсорбент) и газо-жидкостную (распределительную) хроматографию, когда поры твердого инертного носителя заполняют жидкостью (в процессе хроматографии происходит абсорбция газа жидкостью). Аналогично жидкостную хроматографию делят на жидкостно-адсорбционную (неподвижная фаза — твердый адсорбент) и жидкостножидкостную, (обе фазы — жидкие), [c.176]

    Таким образом, выход выделяемого препаративной хроматографией продукта, кроме факторов, связанных с самим процессом хроматографирования, определяется и факторами, действующими в процессе улавливания параметрами приемника-ловушки, его геометрией и поверхностью контакта скоростью газа-носителя адсорбционной активностью наполнителя кратностью циркуляции газа в ловушках степенью разбавления газом-носителем температурой термостатирования ловушек и природой, главным образом летучестью улавливаемого вещества. [c.207]

    Выполнение работы. Адсорбционную колонку хроматографа заполняют взвешенным, оличеством силикагеля. Продувают хроматограф потоком водорода и выводят прибор на режим. Скорость газа-носителя устанавливают 45—50 см 1мин. Колонку термостатируют при 40° С. Когда установится постоянная нулевая линия, в колонку, не прерывая потока газа-носителя, вводят шприцем 10 мл 1%-ной (по объему) смеси пропана с воздухом и получают проявительную хроматограмму на ленте самописца. Смесь составляют весьма тщательно, так как для дальнейшего расчета необходимо точно знать количество введенного пропана. [c.134]

    Вытеснительный способ отличается от фронтального и элюентного, тем, что после введения пробы исследуемой смеси колонку промывают растворителем или газом-носителем, к которым добавлены растворимое вещество или вещество в газообразном (парообразном) состоянии (соответственно в жидкофазной и в газовой хроматографии). Это вещество должно адсорбироваться сильнее любого из компонентов разделяемой смеси и называется вытеснителем, так как оно, обладая наибольшей адсорбируемостью, вытесняет более слабо адсорбиругощиеся компоненты. Благодаря эффекту адсорбционного вытеснения, открытому Цветом, происходит вытеснение компонентов из адсорбента в последовательности, соответствующей их адсорбируемости, и компоненты полностью разделяются при этом зоны компонентов движутся по слою адсорбента с одинаковой скоростью, соприкасаясь между собой, по направлению к выходу из колонки. К моменту полного насыщения адсорбента вытеснителем детектор запишет ступенчатую выходную кривую, отличающуюся от фронтальной кривой тем, что каждая ступень соответствует чистому компоненту. Высота ступени характеризует данный компонент с качественной стороны, а длина ступени пропорциональна количественному содержанию данного компонента в исследуемой смеси. Обязательным условием для хорошего разделения в противоположность элюентному способу является резко выраженная выпуклая форма изотерм адсорбции разделяемых компонентов и вытеснителя. А это условие выполнимо лишь в случае применения высокоактивных адсорбентов активированных углей березового ВАУ, каменноугольного антрацита АГ-2, норита и др. [c.17]

    Газо-адсорбционная хроматография начала развиваться значительно ранее газо-жидкостной. Так, некоторые вопросы по динамике сорбции в противогазах, опубликованные в 1929 г. Н. А. Шиловым и его сотрудниками, близки к фронтальной газо-адсорбционной хроматографии. В 1931 г. Шуфтан применил газо-адсорбционный проявительный метод для разделения газообразных углеводородов, используя в качестве сорбента силикагель, а в качестве аза-носителя — двуокись углерода. В качестве детектора применялся газовый интерферометр. Разделяемые компоненты собирались в отдельные сборники и анализировались обычными классическими методами газового анализа. Позднее этот метод разделения углеводородов был усовершенствован в ЧССР Янаком и в СССР Д. А. Вяхиревым (независимо друг от друга). Метод был назван объемнохроматографическим. Он нашел применение в анализе смесей углеводородных газов. [c.83]

    Если неподвижная фаза — жидкость, нанесенная на поверхность инертного носителя, то говорят о распределительной хроматографии. Хроматография в газовой фазе, особенно вариант газо-жидкостной распределительной хроматографии, благодаря своей эффективности получила широкое применение в анализе сложных смесей газов и паров. Газо-жидкостная распределительная хроматография обладает рядом преимуществ перед газо-адсорбционной хроматографией. В случае газо-жидкостной хроматографии получают узкие, почти симметричные прояйительные полосы (пики), что способствует лучшему разделению компонентов и сокращению времени анализа. Это можно наблюдать на примере разделения углеводородов. Если методом адсорбционной хроматографии разделяют главным образом низкокипящие газообразные соединения, то с помощью газовой распределительной хроматографии можно анализировать почти все вещества, обладающие хотя бы незначительной летучестью, подобрав соответствующую неподвижную жидкую фазу и условия разделения. [c.98]

    В процессе хроматографирования в ГАХ анализируемое вещество распределяется между подвижной газообразной фазой (газ-носитель) и неподвижной твердой фазой (адсорбентом). Между количествами анализируемого вещества, находящимися в газе-иоси-теле и адсорбенте, устанавливается равновесие. Значение этого равновесия определяется изотермой адсорбции. Изотерма адсорбции часто бывает нелинейна, что приводит к асимметричному размыванию зоны компонента на адсорбенте и образованию несимметричных пиков на хроматограмме. Размывание хроматографических полос в газо-адсорбционной хроматографии происходит также и за счет замедленной внешнедиффузионной массопередачи. [c.163]

    Распределительная хроматография основана на различной растворимости разделяемых веществ в заданном растворителе. Природа сил межмолекулярно-го взаимодействия та же, что и в адсорбционной хроматографии, но в первую очередь обусловлена ван-дер-ваальсовыми силами. Поскольку разделение протекает на границе двух несмещивающихся между собой фаз — неподвижной (жидкости) и подвижной (жидкости или газа), процесс разделения веществ определяется различием их коэффициентов распределения между обеими фазами. Одна из фаз, используемых в распределительной хроматографии, богаче ор-га [ическим растворителем, другая — водой. Водная фаза обычно закрепляется на твердых гидрофильных носителях, например силикагеле, диатомовой земле, крахмале, гидрофильных гелях, измельченной в порошок целлюлозе, фильтровальной бумаге. Органическая фаза обычно выполняет роль подвижной фазы. [c.221]

    Таким образом, в условиях равновесной хроматографии и при практически не адсорбирующемся И не сильно сжатом газе-носителе удерживаемый объем малой (нулевой) дозы адсорбата представляет собой константу Генри адсорбционного равновесия. Так как современные детекторы (пламенно-ионизационный, электроноза-хватный, масс-спектрометриче ский) обладают весьма высокой чувствитель-ностью (на уровне пикограммов), метод газовой хроматографии позволяет непосредственно измерить константу Генри. На рис. 7.3 показано, что время удерживания малых доз прак- -- [c.137]

    Пробу воздуха пропускают через молекулярное сито типа 5А, обладающее различным адсорбционным сродством к компонентам воздуха. Разделение воздуха на азот и кислород производят в хроматографе типа УХ-1 или ГСТЛ-3, используя в качестве газа-носителя гелий. Результаты анализа фиксируют детектором и записывают на самописце. [c.69]


Смотреть страницы где упоминается термин Газы-носители в газо-адсорбционной хроматографии: [c.82]    [c.270]    [c.26]    [c.589]    [c.47]    [c.14]    [c.146]   
Смотреть главы в:

Газо-жидкостная хроматография -> Газы-носители в газо-адсорбционной хроматографии

Газо-жидкостная хроматография -> Газы-носители в газо-адсорбционной хроматографии




ПОИСК





Смотрите так же термины и статьи:

Адсорбционная хроматографи

Фронтально-адсорбционный и фронтально-десорбционный варианты хроматографии без газа-носителя

Хроматография адсорбционная

Хроматография газо-адсорбционная

Хроматография газовая адсорбционная с реальным газом-носителем

Хроматография на носителях



© 2024 chem21.info Реклама на сайте