Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Качественный анализ с использованием масс-спектрометра

    В книге сохранено описание большинства процедур предварительной характеристики вещества, опубликованных в предыдущих изданиях (определение температур плавления и кипения, выяснение характера растворимости и т. п.). Однако при обсуждении этих операций описаны также соответствующие наиболее современные приемы (например, проверка чистоты веществ с помощью тонкослойной хроматографии и др.). Раздел о качественном элементном анализе (путем сплавления с натрием) дополнен описанием использования масс-спектрометрии и других новейших методов одновременно для качественного и количественного анализа. Мы рекомендуем определять молекулярную массу веществ с помощью описанных в настоящей книге методов масс-спектрометрии или осмометрии в паровой фазе вместо приведенного в предыдущих изданиях метода Раста, основанного на измерении понижения температуры замерзания. Этот метод слишком часто приводит к неудачным результатам. В соответствии с многочисленными пожеланиями читателей в настоящем издании группы растворимости вновь обозначены буквами латинского алфавита (5], Зг, А1 ит.д.), как и в четвертом издании. Кроме того, характеристики растворимости дополнены указаниями об отношении к органическим растворителям. Это приводит к результатам, полезным для спектрального анализа, хроматографического анализа и для перекристаллизации. [c.10]


    Качественный анализ с использованием масс-спектрометра [c.297]

    Так, с целью использования масс-спектрометра для быстрого качественного анализа были изучены масс-спектры 350 представителей углеводородов и кислородсодержащих соединений. Установленные характеристические пики позволяют быстро идентифицировать соединение и определить степень его загрязнения [63]. [c.282]

    Эмпирические закономерности, связывающие определенные молекулярные структуры с масс-спектрами, служат основой для расшифровки строения молекул, идентификации органических веществ, качественного и количественного анализа их смесей. При использовании масс-спектрометров с большой разрешающей способностью (10 000—20 000) анализ смесей углеводородов облегчается, так как имеет место разрешение дублетов (например СО и N2) точные значения масс для расчета дублетов даны на стр. 522—525. [c.521]

    Надежная качественная расшифровка хроматограмм была выполнена при помощи добавки эталонных углеводородов и хромато-масс-спектрометрии. При воспроизведении этих работ можно воспользоваться индексами удерживания разветвленных алканов, приведенных в конце этой главы в табл. 20. Использование значений индексов удерживания для анализа алканов нефтей всегда удобно, так как нормальные алканы обычно имеются в большинстве нефтей и доступны как эталоны. Опыт работы показал, что значения индексов удерживания разветвленных алканов достаточно хорошо воспроизводимы и мало зависят от условий хроматографирования, чего, к сожалению, нельзя сказать об индексах удерживания цикланов и ароматических углеводородов. [c.37]

    Прибор — это общее название широкого класса устройств, предназначенных для измерений, производственного контроля, управления машинами и установками, регулирования технологических процессов, вычислений, учета, счета. Аналитики располагают набором различных приборов, позволяющих проводить качественный и количественный анализы веществ, находящихся в различных агрегатных состояниях. Приборы эти различаются по сложности, надежности, универсальности и стоимости — ЭТО и такие простые устройства, как пипетки, бюретки, секундомеры и т. п. [1], и такие сложные системы как ИК-спектрометр [2], газовый хроматограф [3], масс-спектрометр [4] и компьютер. Практическому применению приборов для химического анализа посвящено много хороших учебников [5— 9], в каждом из которых, кроме того, проводится систематизация существующих методов анализа. Химик-аналитик использует приборы не только для идентификации того или иного соединения и установления его количественного содержания, но и для проведения многих вспомогательных операций, например, таких, как отбор и предварительная обработка проб. К этому классу приборов относятся весы, пипетки (автоматические) для дозировки и разбавления проб, шприцы и клапаны для впрыскивания жидких или газообразных веществ, автоматические средства для сортировки и разделения, например центрифуги и противоточные аппараты. Приборов подобного типа очень много, однако мы ограничимся рассмотрением лишь тех из них, которые 1) могут работать в автоматическом режиме под управлением компьютера 2) требуют использования компьютера из-за сложности аналитического оборудования  [c.89]


    Все большее значение приобретает также масс-спектрометрия, хотя это не столь массовый метод, как газовая хроматография. Относительно важную роль играет он в нефтехимии в качестве способа группового анализа углеводородов. Прогресс в органической масс-спектрометрии зависит от выпуска приборов высокого разрешения, использования вычислительной техники, наличия хороших стандартных образцов. Метод имеет немалые достижения. Многое сделано в этом отношении по-современному оснащенной лабораторией Института биоорганической химии им. М. М. Шемякина АН СССР, где успехи в значительной мере были достигнуты благодаря использованию именно масс-спектрометрии. В Институте химической физики АН СССР под руководством В. Л. Тальрозе успешно развивается автоматизированный качественный масс-спектральный анализ, основанный на распознавании образов с помощью ЭВМ. Этой же группой разработана комбинация газовой хроматографии с масс-спектрометрией—хромато-масс-спектро-метрия. [c.131]

    В специальных случаях масс-спектрометр может быть использован для выполнения всех операций разделения. Например, при анализе смеси парафиновых и олефиновых углеводородов используется пониженное значение ионизирующего напряжения устанавливается напряжение, при котором ионизуются только олефины и которое несколько ниже потенциала ионизации парафинов таким приемом достигают эффективного разделения двух классов соединений. В этом методе получаемый масс-спектр значительно упрощается. Если можно установить ионизирующее напряжение таким образом, чтобы оно было несколько выше потенциала ионизации отдельной молекулы, поменьше, чем самый низкий потенциал осколочного иоца, то весь масс-спектр превращается в один пик. На основании такого спектра нельзя получить никаких сведений о неизвестном соединении, кроме его молекулярной формулы. Этот метод, однако, имеет большое значение при анализе сложных смесей и дает качественную информацию о числе присутствующих в смеси компонентов. Он широко используется в нефтяной промышленности для количественного определения типов углеводородов в сложных смесях. [c.326]

    На примере исследования концентрата меркаптанов необходимо подчеркнуть, что ни один из существующих способов структурного анализа не может считаться универсальным и достаточным для полного установления строения молекул веществ природного происхождения. Использования даже таких эффективных методов, как масс-спектрометрия и ЯМР-спектро-скопия, недостаточно, необходимо привлекать дополнительно методы исследования структуры с целью получения подтверждающей информации о качественном и количественном составах веществ и некоторых деталях их структур. [c.14]

    Наиболее надежные результаты качественного анализа получаются при одновременном использовании хроматографа и масс-спектрометра [46]. Один из способов заключается в непрерывной съемке масс-спектра в широком диапазоне массовых чисел за время, малое по сравнению со временем появления одного хроматографического пика, путем использования динамических масс-спектрометров [707]. [c.292]

    Выше были кратко описаны некоторые методы качественного анализа, основанные на использовании таких ядерных параметров, как масса (атома или иона, т. е. собственно ядра) или магнитный момент. Эти методы — масс-спектрометрия и ядерный магнитный резонанс — имеют огромное значение в современном качественном анализе, поскольку он в настоящее время является не только элементным, но и молекулярным, и структурным. [c.205]

    Эффективным оказалось применение независимой аналитической идентификации продуктов хроматографического разделения и сочетание газовой хроматографии с другими методами исследования ИК-спектроскопией и масс-спектрометрией, а также использование селективных и последовательно работающих детекторов. Методом масс-спектрометрии можно проводить непрерывный качественный анализ компонентов смеси и для анализа бывает достаточно самых небольших количеств вещества. Такой комбинированный метод получил название х р о м а т о -масс-спектрометрии. Возможно использование также методов ядерного магнитного резонанса, пламенной фотометрии, абсорбционной спектроскопии и других, включая химические методы. [c.333]

    Вторая глава посвящена применению ЭВМ для идентификации и качественного анализа определение структуры неизвестного соединения с использованием больших каталогов масс-спектров методами распознавания образов и эвристического программирования. Рассмотрены алгоритмы построения структур возможных изомеров по заданной брутто-формуле, применяющиеся в эвристическом программировании. Машинные методы качественного анализа сочетаются с различными приемами масс-спектрометрии высокого разрешения и активирующих столкновений. Возможности структурной идентификации ароматических углеводородов и некоторых типов гетероатомных соединений существенно расширились благодаря работам в области масс-спектрометрии отрицательных ионов. Описание этих методов еще не вошедших в повседневную аналитическую практику,, также дано во второй главе. [c.6]


    Привлечение масс-спектрометрии высокого разрешения значительно расширило перечень объектов для качественного анализа. Так, сочетание обучающейся машины и метода библиотечного поиска позволило составить программу для определения класса соединения и его структуры путем анализа путей его распада при электронном ударе невозможность использования ионов с малыми массами, образующихся на самых глубоких стадиях, существенно ограничивает эффективность метода, а привлечение теории масс-спектров потребовало большой затраты машинного времени и оказалось пригодным лишь для сравнительно простых образцов. [c.53]

    Достижения газовой хроматографии как метода разделения веществ в сочетании с такими современными средствами качественного анализа, как инфракрасная и масс-спектрометрия, химические реакции, в определенной степени заслонили возможности чисто хроматографической идентификации, основанной на использовании закономерностей, связывающих удерживание со строением и физико-химическими свойствами сорбатов и неподвижных фаз. Однако в последние годы получило развитие новое направление, которое условно можно назвать прецизионной газовой хроматографией, имея в виду повышение точности не только результатов количественных определений, но и измерения величин удерживания, что резко увеличивает надежность групповой и индивидуальной идентификации как чистых соединений, так и компонентов сложных смесей. Кроме того, развиваются представления о хроматографическом спектре как о совокупности данных, однозначно соответствующей группе сорбатов близкого строения или индивидуальному соединению. Эти успехи позволяют рассматривать газовую хроматографию как самостоятельный метод качественного анализа. [c.3]

    Для подтверждения идентификации по параметрам удерживания применяются инструментальные и химические методы идентификации. Методы реакционной газовой хроматографии метод вычитания с помощью селективных реагентов, метод сдвига пиков по производным химических реакций анализируемого вещества с реагентом [35], пиролиза и озонолиза анализируемых веществ, а также использование цветных химических реакций со специфичными реагентами на присутствие различных функциональных групп [36, с. 75]. Применяется также качественная идентификация по относительному отклику различ-- ных типов селективных детекторов и разнообразные методы инструментального анализа препаративно выделенных компонентов (масс-спектрометрия, ИК- и УФ-спектроскопия). Большинство из перечисленных методов идентификации подробно описаны в специальной литературе по хроматографии [37—40]. [c.17]

    Быстрый анализ сложных смесей, основанный на сочетании капиллярной ГХ и масс-спектрометрии. НФ сквалан. Использована система ввода, позволяющая вводить малые кол-ва в-ва, исключая фракционирование. В качестве примера идентификации сложной смеси приведен аиализ смеси 18 парафинов. Т-ра 33—100°. Даны примеры использования коротких капиллярных колонок и заполненных для быстрого качественного анализа. [c.81]

    В. V а г s е I С. J., М о г г е II F. А., R е s п i к Р. E., Р о w е 1 1 W. А., Качественный и количественный анализ органических смесей использование масс-спектрометра с низким ионизирующим напряжением. Anal. hem., 32, 182 [c.688]

    Описан метод исследования природных соединений с использованием масс-спектрометра высокого разрешения с двойной фокусировкой типа СЕС-21-110И хроматограф, колонки. Для связывания колонки с масс-спектрометром предложена простая и надежная система для понижения давления, позволяющая проводить анализ сложных полярных и высококипящих соединений. Приведены результаты качественной расшифровки алкалоидов и других природных соединений. [c.188]

    Поэтому, несмотря на успехи, достигнутые мри исследовании состава разнообразных объектов промышленного н природного происхождения гибридными инструментальными методами (хромато-масс-спектрометрия и газовая хроматография — ИК-фурье-спектрометрия), при решении задач повышенной сложности (анализ микропримесей в окружающей среде, оценка качества натуральных пищевых продуктов и их синтетических аналогов и т. п.) необходимо комплексное использование результатов всего арсенала изложенных выше средств и методов качественного газохроматографического анализа, как показано на схеме И 1.1. [c.211]

    Методом ИИМС можно определять большое число элементов. Однако из-за относительно низкой воспроизводимости, связанной с нестабильностью процесса ионизации и возможной неоднородностью проб, искровой источник используют главным образом для качественного и полуколичественного обзорного анализа. Пределы обнаружения лежат в диапазоне 1-10 млрд для многих элементов, основным ограничением является использование фотопластинки. Даже с учетом этого, отличные пределы обнаружения в твердых пробах являются одной из важнейших характеристик искрового источника. Подобно любому методу неорганической масс-спектрометрии ИИМС может испытывать изобарные помехи из-за образования молекулярных частиц. Следует отметить, что производительность метода можно считать низкой. Это связано с использованием фотопластинок, что подразумевает ограниченный динамический диаг пазон и время на обработку и измерение. [c.143]

    Большое применение находят масс-спектрометры с химической ионизацией, основанные на использовании ионов-реагентов и регистрации масс-спектра, происхождение которого обусловлено протеканием химических процессов с переносом протона или электрона, т.е. кислотно-основных или окислительно-восстановительных реакций. Эти реагенты, обладающие различными кислотностью или окислительным потенциалом, определяют интенсивность и ггаправле-ние реакций химической ионизации, что способствует широкому использованию этого метода в качественном и количественном анализе и для исследования реакциогшой способности органических соединений. [c.141]

    Для определения хрома масс-спектральным методом используют главным образом приборы, в которых ионы получаются путем электронного удара и искрового разряда. Первые обычно используют в сочетании с предварительным концентрированием хрома в виде летучих соединений. Так, при анализе нержавеющей стали с использованием прибора с двойной фокусировкой типа МС-9 из анализируемой пробы выделяют хром в виде гексафторацетила-цетоната хрома(1П) [629]. Предел обнаружения 0,05 нг Сг. 8-Окси-хинолинат хрома(П1) применяют для определения нанограммовых количеств хрома [923] качественно этим методом можно определить 5-10" 3 хрома. Метод определения хрома в лунных образцах и геологических материалах включает процесс превращения. Сг (III) в летучий хелат по реакции с 1,1,1-трифторпентандио-ном-2,4 в запаянной трубке, экстракцию его гексаном и последующий анализ паров экстракта методом изотопного разбавления на масс-спектрометре [736]. Погрешность метода — 1 отн.%. [c.98]

    В зависимости от решаемой аналитической задачи (отнесение к индивидуальным химическим соединениям пиков на хроматограмме смеси, состав которой ориентировочно известен групповой анализ полная идентификация компонентов) с целью качественного анализа могут использоваться как чисто хроматографические приемы (сравнение параметров удерживания, получение для групп веществ коррелящ)онных зависимостей типа параметр удерживания — физико-химические характеристики, использование селективных детекторов, реакционная хроматография, пиролитическая хроматография), так и варианты, сочетающие газовую хроматографию с другими физико-химическими методами анализа (препаративный сбор фракций с их последующим исследованием, хромато-масс-спектрометрия, сочетание хроматографа с ИК-спектрометром и др.). На современном уровне развития методологии аналитической химии, аналитического приборостроения, вычислительной техники наибольшую достоверность идентификации обеспечивают комбинированные методы. Однако их аппаратурное оформление достаточно сложно, приборы имеют высокую стоимость и реально эксплуатируются только в крупных аналитических центрах либо при решении неординарных задач. Поэтому рассматриваемые ниже чисто хроматографические приемы качественного анализа и в настоящее время широко применяют в аналитической практике. [c.214]

    II часть посвящена масс-спектральным методам анализа. В настоящее время масс-спектрометрия стала, пожалуй, самым распространенным и универсальным аналитическим методом, в особенности после сочленения масс-спектрометра с хроматографом и создания хромато-масс-спектрометра с машинной записью и обработкой результатов по заданной программе. Работы, посвященные применению этого метода в том или ином виде, занимают основное место-в сборнике. Описаны методики хромато-масс-спектрометрического исследования индивидуальных соединений и смесей олефиновинафтенов, основанные на использовании микрореактора гидрирования методики качественного и количественного анализа группового состава углеводородных и гетероатомных соединений нефтяных фракций, твердых горючих ископаемых, рассеянного органического вещества осадочного чехла продуктов переработки нефти и др. Рассмотрены конкретные методики анализа указанных продуктов с использованием ЭВМ. Разобран вопрос о точности предлагаемых методик группового-анализа. Приводится подробный разбор конкретных примеров с детальным анализом всех особенностей методов для получения первичной информации о химическом составе и сделаны выводы, демонстрирующие применимость предложенных методов для решения широкого круга химических и геохимических задач. [c.4]

    Рассмотренные выше методы несомненно являются основными при установлении структуры и качественном анализе сложных смесей органических соединений. Применение масс-спектрометрии высокого разрешения ограничивается значительной стоимостью и сложностью приборов, а также большой затратой времеци на интерпретацию полного масс-спектра, записанного в режиме высокого разрешения. Последняя проблема может быть решена путем использования полуавтоматических и автоматических методов регистрации масс-спектров [722]. [c.293]

    Таким образом, проведенные исследования показали возможность использования метода лазерной масс-спектрометрии для безэталонного изотопного анализа многокомцонентных биологических объектов. Обнаружены сущест Венные различия в элементном и изотонном составе наружного и внутреннего слоя речной раковины мидии. Это, ио-ви-димому, указывает на процессы разделения и об мена изотопами в живом организме, при протекании химических радикальных реакций. Рассмотрены основные ядерные характеристики легких элементов и установлена корреляция между аномальным фракционированием изотопов и энергией связи нейтронов в цх ядрах. Наблюдаемые в эксперименте изотопные аномалии качественно объяснены с помощью ядер-но-спинового изотопного эффекта. [c.44]

    В лаборатории авторов требовалось разработать простой и быстрый метод, который давал бы достаточно точные результаты при анализе большого числа проб, содержащих два или большее число таких соединений, как вода, ацетон, диэтиловый и диизо-пропиловый эфиры, а также этиловый и изопропиловый спирты. Алализ проб с помощью масс спектрометрии нарушил бы настройку прибора кроме того затруднения, с которыми связан масс-спектрометрический анализ кислородсодержащих соединений, вообще исключает возможность использования этого метода. Перегонка в большинстве случаев могла бы дать удовлетворительные результаты для веществ, присутствующих в больших количествах, но по этому методу нельзя разделить ацетон и ди-изопропиловый эфир. Кроме того, перегонка требует постоянного внимания экспериментатора в течение длительного времени. Например, перегонка проб, содержащих эфир и ацетон, а также спирт, требует 8 часов. Авторами была исследована возможность использования метода газо-жидкостной распределительной хроматографии для рассматриваемого случая анализа. Для разделения низкокипящих спиртов и кетонов была предложена колонка с триэтиленгликолем в качестве стационарной жидкости . Была установлена опытная колонка такого типа и проведена качественная и количественная калибровка. [c.147]

    Освещены аналитические аспекты молекулярной масс-спектрометрии с использованием электронного удара. Основное внимание уделено методам, основанным на взаимодействии ионов с молекулами исследуемого соединения при повышенном давлении в ионном источнике. Рассматривается также ионизация ускоренными атомами и другие виды десорбционной масс-спектрометрии. Обсуждается возможность формализации закономеркостей образования масс-спектров, полученных нетрадиционными методами, и установления полуэмпирических правил для разработки методов качественного и количественного анализа в сочетании с новейшими приемами вычислительной техники. [c.248]

    Описан [1436, 1438] качественный и полуколичественный метод анализа продуктов пиролиза ПВХ в атмосфере гелия с использованием пиролитической газовой хроматографии и масс-спектрометрии. В результате пиролиза при 600 °С образуется целый ряд алифатических и ароматических углеводородов, причем ароматические продукты — в более значительных количествах. Основным органическим продуктом разложения является бензол. При пиролизе типичного пластизоля ПВХ (ПВХ  [c.309]

    Обычно систему напуска располагают на некотором расстоянии от источника и отделяют от него натекателем . Образец должен находиться в системе напуска при давлении около 0,1 ммрт. ст., при котором он должен быть полностью испарен, и состав паров и исходного материала должен быть идентичным. Проблемы напуска образца будут рассмотрены ниже, но следует указать, что используемые в большинстве лабораторий методы не обеспечивают возможности анализа соединений, имеющих упругость пара менее 0,1 мм рт. ст. при 350°. Температура 350° — это температура, при которой большая часть органических кислород- и азотсодержащих соединений термически неустойчивы. Из этого следуют серьезные ограничения аналитических возможностей масс-спектрометра. Упругостью пара 0,1 мм рт. ст. обладают парафиновые углеводороды (наиболее летучие высокомолекулярные органические соединения, за исключением галогеносодержащих) с молекулярным весом около 600 или ароматические углеводороды с конденсированными кольцами с молекулярным весом около 400 присутствие в молекуле атома азота или кислорода в заметной степени снижает летучесть органических веществ. Тем не менее для тех соединений, для которых масс-спектр может быть получен, он является источником наиболее полной информации по сравнению со сведениями, получаемыми любыми другими методами. Обширная информация, получаемая на основании масс-спектров, обеспечивает дальнейшее расширение применения приборов для качественного анализа и более полное использование потенциальных возможностей метода. Ниже описывается последовательность операций, необходимых для идентификации. [c.300]

    Специфический качественный и количественный анализ азотсодержащих соединений, таких, как пептиды, нуклеиновые кислоты, пестициды и загрязняющие вещества, можно осуществлять с помощью масс-спектромет-рии. Достоинствами этого метода являются его специфичность, возможность обнаружения малых количеств вещества и использования небольшого количества пробы (микрограммов или микролитров), а также возможность определения вещества в любом состоянии — газообразном, жидком и твердом. Основной его недостаток заключается в том, что для него необходимо специальное оборудование, а обработка полученных данных имеет свои трудности. Теория и применение масс-спектрометрии подробно описаны в ряде работ 69, 72, 74]. [c.366]

    Современный способ анализа органического образца предполагает использование газо-жидкостной хроматографии, которая обеспечивает не только разделение смеси на компоненты, их качественную идентификацию, но и количественное определение. Еще большие возможности открывает сочетание хроматографии с масс-спек-трометрией (хроматомасс-спектрометрия), позволяющее не только разделить, но и надежно идентифихщровать индивидуальные составляющие сложных смесей. Применение этих современных методов возможно в хорошо технически оснащенных лабораториях. [c.459]

    Хорошо известно, что, объединив несколько аналитических методов, можно существенно улучшить характеристики исходного метода анализа [154]. Так, хроматомасс-спектрометрия <ХМС) — наиболее мощный и полезный современный метод определения микроколичеств органических соединений. Он позволяет получить качественную информацию о веществах, присутствующих в образце в нанограммовых количествах, в виде масс-спектра каждого соединения, элюируемого из колонки газового хроматографа. В литературе обсуждаются и теоретические основы этого метода [155—160], и наглядные примеры его использования [156, 157, 159, 160]. [c.295]


Смотреть страницы где упоминается термин Качественный анализ с использованием масс-спектрометра: [c.102]    [c.41]    [c.120]    [c.14]    [c.22]    [c.232]   
Смотреть главы в:

Масс-спектромерия и её применение в органической химии -> Качественный анализ с использованием масс-спектрометра

Масс-спектрометрия и её применение в органической химии -> Качественный анализ с использованием масс-спектрометра




ПОИСК





Смотрите так же термины и статьи:

Анализ качественный

Масс-спектрометр

Масс-спектрометрия

Масс-спектрометрия в анализе

Масс-спектрометрия масс-спектрометры



© 2025 chem21.info Реклама на сайте