Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Выделение высших парафинов

    Практически наибольщий интерес представляет методика выделения парафиновых углеводородов нормального строения из содержащих их смесей. Для этого должны быть выполнены некоторые условия и в первую очередь высокая концентрация мочевины и низкая температура. Наиболее целесообразно проводить такое фракционирование с применением насыщенных водных растворов мочевины. [c.56]


    Повышение антидетонационных свойств бензинов. Бензины прямой гонки и газовые бензины содержат самый высокий процент парафиновых углеводородов нормального строения, близость температур кипения которых с углеводородами других классов весьма затрудняет выделение нормальных парафинов методом фракционпрованпя. Парафиновые углеводороды, входящие в состав бензинов и лигроинов, имеют диаметр молекул 4,9 А, следовательно, могут адсорбироваться цеолитами СаА. Более высокомолекулярные и разветвленные парафиновые углеводороды поглощаются медленнее, п благодаря этому, свойству цеолитов стало возможным повысить октановые числа бензинов. В технике разработаны непрерывные процессы выделения нормальных парафиновых углеводородов путем пропускания смеси углеводородов различного типа через слой цеолитов типа СаА. [c.114]

    Большое количество работ было проведено по изучению алкил-карбонатов, примененных в качестве растворителей для выделения ароматических углеводородов [41, с. 319—328 72 81—86]. Алкил-карбонаты характеризуются селективными свойствами по отношению к ароматическим углеводородам, высокой плотностью, высокой температурой кипения и низкой теплоемкостью. Исследование диаграмм равновесия этилен- и пропиленкарбонатов с парафиновыми и с ароматическими углеводородами Се — Се показало, что бинодальные кривые имеют закрытый характер. Поэтому прямой экстракцией получить экстрактную фазу, не содержащую парафиновых углеводородов, невозможно [41, с. 319—328]. Наиболее пригодным в качестве растворителя оказался пропиленкарбонат. [c.67]

    Самый высокий процент нормальных парафиновых углеводородов содержат газовые бензины и бензины прямой перегонки. В бензинах каталитического риформинга общее содержание их независимо от режима процесса составляет около 10 %. В связи с близостью температур кипения нормальных парафинов и углеводородов других классов выделять нормальные парафины обычными методами фракционирования технически трудно и экономически невыгодно. В технике разработаны непрерывные процессы выделения нормальных парафиновых углеводородов путем пропуска смесей углеводородов различного типа через слой искусственных цеолитов типа СаА. Часто из исходного сырья вначале перегонкой выделяется требуемая [c.97]


    В связи с этим из растворов в жидких углеводородах твердые компоненты масляных фракций выделяются при более высоких температурах. Высокая растворимость твердых углеводородов в неполярных растворителях требует для их выделения глубокого охлаждения. Этим объясняется высокий ТЭД (15—25°С) при депарафинизации в растворах нафты и сжиженного пропана, что делает процесс неэкономичным из-за больших затрат на охлаждение раствора. В сжиженных углеводородах парафинового ряда растворимость твердых углеводородов изменяется с ростом молекулярной массы растворителя, причем при переходе от метана к бутану растворимость твердой фазы увеличивается, а начиная с пентана уменьшается (рис. 45) [32]. Этим объясняется более низкий ТЭД в растворе пропана, чем во фракции бензина. Неполяр- [c.139]

    Выделение ароматических углеводородов из нефтяных фракций может быть осуществлено также с помощью азеотропной ректификации. Бензол и толуол высокой степени чистоты могут быть выделены этим методом из смесей, содержащих непредельные и парафиновые углеводороды, с использованием в качестве разделяющих агентов ацетонитрила, метанола, этанола, изопропанола, ацетона, метилэтилкетона и уксусной кислоты [272]. Метанол был рекомендован также для выделения ксилолов [273]. Из числа указанных соединений наиболее эффективен, по-виднмому, ацетонитрил. В качестве разделяющего агента может применяться также пропионитрил [274]. В виде дистиллата отгоняются азеотропные смеси парафиновых углеводородов с нитрилами, расслаивающиеся после конденсации. Нижний слой, богатый нитрилом, возвращается в колонну в виде флегмы, а верхний слой, содержащий преимущественно парафиновые углеводороды, отбирается в качестве дистиллата, из которого углеводороды выделяются путем отгонки. [c.274]

    При изомеризации гексановой фракции из нее предварительно отбирают головную фракцию (до 60°С), имеющую достаточно высокую октановую характеристику. Такое выделение целесообразно также потому, что по условиям термодинамического равновесия для реакции следует использовать сырье, обогащенное нормальными парафиновыми углеводородами [7]. [c.332]

    Высказано предположение, что высокоплавкие твердые углеводороды, выделенные из нефти и озокерита Бориславских месторождений, представляют собой парафиновые углеводороды, в длинной цепи которых вблизи центра имеется одно или несколько разветвлений в виде коротких боковых парафиновых цепей [2]. Однако это предположение экспериментально не доказано. Кроме того, указание па наличие в этих твердых углеводородах значительных количеств (5,3—13,5%) олефинов свидетельствует о том, что при выделении их из нефти и озокерита они подвергались воздействию высоких температур, в результате чего развивались процессы крекинга. Следовательно, в изучавшихся твердых углеводородах содержались продукты вторичного происхождения. [c.26]

    Если нафталин выделяют кристаллизацией, в цикл возвращаются маточные растворы после выделения нафталина и фракции, кипящие при температурах выще 230 °С. Каталитический процесс целесообразно использовать при гидрогенизационном деалкилировании сырья, содержащего циклоалкановые и парафиновые углеводороды, а термическое гидрогенизационное деалкилирование — при переработке сырья с высоким содержанием бициклических ароматических углеводородов. При каталитическом процессе получается бессернистый нафталин, тогда как для получения подобного продукта при термическом процессе необходима гидрогенизационная очистка исходного сырья либо конечных продуктов. [c.199]

    В промышленности органического синтеза ксилолы потребляются преимущественно в виде индивидуальных изомеров. Однако выделение изомеров ксилола из технической смеси задача сложная, что обуславливается, с одной стороны, высокими требованиями к качеству изомеров, с другой стороны, близостью их физикохимических свойств (см. табл. 1—3) и наличием примесей в исходном сырье. Парафиновые и циклоалкановые углеводороды, содержащиеся в сырье, образуют с ароматическими углеводородами Са азеотропные смеси с температурами кипения, близкими к температурам кипения изомеров ксилола (130—144°С), что дополнительно осложняет процесс разделения. [c.249]

    Ароматические углеводороды. К ароматическим углеводородам, используемым в химических синтезах, предъявляют высокие требования по чистоте. Трудность выделения ароматических углеводородов из продуктов риформинга объясняется тем, что многие парафиновые и нафтеновые углеводороды по температурам кипения близки к ароматическим углеводородам и образуют с ними азеотропные смеси, которые не могут быть разделены обычной ректификацией. Выделение ароматических углеводородов в этих случаях может быть основано на двух принципах  [c.57]


    Наиболее широко распространенным растворителем для выделения ароматических углеводородов является диэтиленгликоль. На рис. 54 приведены данные по относительной растворимости в диэтиленгликоле ароматических, нафтеновых и парафиновых углеводородов, содержащихся в бензиновых фракциях [59]. Вследствие различной растворимости низко- и высококипящих парафиновых углеводородов в диэтиленгликоле можно сконцентрировать в экстракте ароматические и низкокипящие парафиновые углеводороды с высокими октановыми числами. Экстракт после отделения диэтиленгликоля является компонентом бензина, а углеводородная часть рафината вновь подается на риформирование. В результате вторичного риформинга содержание нормальных и изопарафиновых углеводородов приближается к равновесным концентрациям. Протекают также реакции гидрокрекинга и дегидроциклизации [59, 60]. [c.131]

    Наличие в сырье парафиновых и нафтеновых углеводородов, которые образуют с ароматическими углеводородами азеотропные смеси [1—4], обладающие близкими к о-ксилолу температурами кипения, затрудняет выделение о-ксилола высокой степени чистоты. Парафиновые и нафтеновые углеводороды, кипящие в пределах 136—141 °С, образуют азеотропные смеси с о-ксилолом с температурой кипения ниже 130 °С, а парафиновые II нафтеновые углеводороды, кипящие при 141—152 С, образуют азеотропные смеси с о-ксилолом, температура кипения которых 139—144 °С [1—4] (см. гл. 2). [c.74]

    При выделении мочевиной -парафиновых углеводородов из бензиновых фракций повышается октановое число топлива. Подобное разделение применимо к высококинящим фракциям с целью получения -парафиновой фракции, используемой в качестве компонента дизельных топлив. Мочевина селективно удаляет компоненты с длинной цепью, имеющие высокую температуру плавления, поэтому комплексообразование может быть использовано для депарафинизации при понижении температуры застывания керосинового сырья для удовлетворения требованиям спецификаций на реактивные топлива. Этот же процесс может применяться при дспарафинизации сырья для смазочных масел с целью понинтения температуры текучести масла, а также для получения и модификации нефтяных парафинов. Вполне возможно использование мочевины и для получения чистых фракций -углеводородов. [c.225]

    Нормальные парафиновые углеводороды имеют наименьшую объемную теплоту сгорания, наименьшую плотность по сравнению с другими углеводородами такого же молекулярного веса. Кроме того, они имеют высокие температуры застывания. Следует отметить, что содержание нормальных алкановых углеводородов в топливах невелико. Ниже приводятся свойства нормальных парафиновых углеводородов, выделенных из девонских кероси-нов (табл. 7). [c.16]

    В табл. 61 физические свойства полученных нормальных парафиновых углеводородов сравнены с литературными данными. По второму способу фракцию подвергали четкой ректификации с отбором пятиградусных фракций и последующим выделением к-парафиновых углеводородов при помощи карбамида. Результаты псследования полученных парафинов представлены на рис. 67. Первый способ позволяет получить индивидуальные и-парафпновые углеводороды высокой степени чистоты (95— 100 мол. %). По второму способу можно установить, как распределяются к-парафиновые углеводороды в узких фракциях. [c.191]

    Одной из первых работ в этом направлении явилась работа X. И. Арешидзе и Е. М. Бенашвили 15] по выделению н-парафиновых углеводародов из фракций 150—200° мирзаанской нефти, в которой была показана возможность выделения при комнатной температуре таких низкомолекулярных парафиновых углеводородов, как н-нонан, н-декан и н-ундекан достаточно высокой степени чистоты. Этим же методом В. А. Некрасова и Н. И. Шуйкин [16] выделили н-ундекан из фракции 190—200° крымской нефти. [c.17]

    Фракции смол молекулярного веса 280—793, выделенные из парафиновой сернистой нефти, отличались плотностью выше единицы, большим содержанием серы (3,59—4,72%), кислорода (3,14—4,61%1 и азота (0,59—1,30%). Часть смол большого молекулярного веса (564—793) характеризовалась высокой полицикличностью, отвечающей гомологическому ряду С Н2 (25- -34). [c.160]

    Еще в 1883 г. [58] было высказано мнение, что, в нефтяном парафине содержатся углеводороды предельного ряда нормальные и изостроения. Аналогичное мнение высказывалось в работе [59], где сравнивались температуры плавления, кипения и плотности парафиновых углеводородов, выделенных из пенсильванской нефти, и синтетических н-алканов. Более высокая плотность природных парафиновых углеводородов объяснялась [59] возможным присутствием изоалканов (указывалось, однако, на возможность присутствия углеводородов других гомологических рядов). Результаты изучения физических свойств узких фракций парафина, выделенного из нефти Мид-Континента методом дифракции рентгеновских лучей [60], позволили заключить, что н-алканов в парафине содержится не более 65 вес. %, содержание изоалканов достигает 20 вес,%. [c.38]

    Аппаратура на установках изомеризации во многом схожа с аппаратурой ранее описанных установок, особенно каталитического риформинга. При переработке только узкой фракции колонн может быть на две меньше (с соответствующим оборудованием и обвязкой), что снижает капиталовложения и энергетические затраты на 10—15%. Применяются также комбинированные установки, сочетающие процессы изомеризации и выделения нормальных парафиновых углеводородов из изомеризата. На них изомеризат подвергают денормализации, при этом получают два продукта концентрат парафиновых углеводородов, который в смеси со свежим сырьем поступает на блок изомеризации, и концентрат изомеров — готовый продукт с более высоким октановым числом. [c.237]

    Наконец, из изложенных выше положений о связи между химической природой твердых углеводородов нефти и их физикохимическими свойствами следует, что парафины с равной температурой плавления, но выделенные из сырья различного фракционного состава не являются равноценными по химической природе. Так, технический парафин с температурой плавления 50—52°, полученный из легкого дистиллята, выкипающего в пределах 350— 420°, может представлять в основном смесь н-алканов примерно от С21 до С27 с относительно небольшой примесью циклических и изомерных углеводородов. Но если парафин с той же температурой плавления 50—52° будет выделен тем или иным способом из более тяжелого сырья, например из дистиллята с пределами кипения 420—500° путем дробного осаждения, то такой парафин будет содержать высокий процент углеводородов циклических и изостроения. Точно так же и легкоплавкие парафины, получаемые для синтеза высокомолекулярных жирных спиртов, из концевых фракций дизельных топлив и состоящие в основном из н-алканов, совершенно пе будут идентичны легкош1авким парафинам, которые могут быть выделены из фильтратов парафинового производства при их дополнительной депарафинизации избирательными растворителями. [c.58]

    Микрокристаллический парафин, который может быть выделен в пер-пую очередь из остатков от перегонки нефтей парафинового основания, представляет большую ценность, чем нормальный парафин. Конечно, вследствие разветвленной структуры он мало пригоден для дальнейшей химической переработки. Получение такого парафина из обычного из-за плохой филь-труемости и высокой вяйкости исходного продукта представляет большие трудности. Микрокристаллический парафин вязок и пластичен. Он имеет высокую температуру плавления 60—80 (сорт церезин). Церезин получают в общем тем же способом. Возможности применения парафина показаны на рис. 9. [c.26]

    Присутствие тяжелых конденсирующихся углеводородов в природных газах, транопортируемых по трубопроводам под высоким давлением, приводит при некоторых-условиях к выделению кбнденсата, что создает многочисленные трудности. В частности, в условиях холодного климата и в гористых районах, где трубопроводы проложены с крутым уклоном, конденсат заполняет пониженные участки трубопровода. Во многих случаях количество конденсата оказывается весьма значительным и он образует своего рода гидравлический затвор. Поэтому из газов с высоким содержанием высших парафиновых углеводородов предварительно извлекают газовый бензин. В последующем по мере роста потребления сжиженных газов начали выделять также часть пропана и большую часть бутанов. В настоящее время стремятся достичь максимальной полноты извлечения как этих компонентов, так и этана. Из этана можно получать этилен с выходом 75% вес. выход же этилена иэ пропана составляет лишь около 45%, а из нефти не более 20—28%. [c.22]

    После. перемешивания раствороз при температуре около 35° смесь охлаждают приблизительно до 25°. Пульпу или взвесь комплексов отделяют на вращающемся фильтре или центрифуге. Остаток на фильтре промывают растворителем для удаления механически увлеченных непарафиновых углеводородов. Растворитель после промывки снова используют в качестве разбавителя. Фильтрат разделяют на два слоя водный раствор мочевины и раствор остаточного масла в кетоне. Кетоновую фазу промывают водой, а раствор мочевины кетоном. Растворы в кетоне направляют на дистилляционную установку для регенерации кетона и выделения масла. Раствор мочевины нагревают с фильтровальной лепешкой, в результате чего разделяются масло и водный раствор мочевины, который уже не является насыщенным при более высокой температуре. Механически связанный парафиновыми компонентами кетон удаляют перегонкой, а раствор мочевины снова возвращают в процесс. [c.57]

    В отношении кристаллической структуры парафиново-дистиллятных фракций, выделенных из нефтей различной природы и происхождения, работами ГрозНИИ установлено следующее обстоятельство, имеющее весьма важное прикладное и теоретическое значение. Оказалось, что фракции парафинового дистиллята, полученные при одинаково высокой четкости ректиг фикации из нефтей любого происхождения и состава, выкипающие в одинаковых пределах (325—460°) и охлажденные в равных условиях, дают крупные, хорошо выраженные кристаллические структуры, совершенно одинаковые как по характеру, так и по форме кристаллов. Отличаются эти фракции лишь количеством вьщелившегося парафина. Данное положение было проверено и оказалось действительным не только для нефтей Советского Союза, но и для ряда зарубежных нефтей самого различного происхождения. [c.27]

    Парафино-нафтеновые углеводороды, полученные при адсорбционном разделении на силикагеле (АСК), отличаются высоким числом симметрии по-р.ядка 150) и низким значением интерцеита рефракции"(г,- 1,0327—1,0388), ято, доказывает присутствие значительного количества би- и полициклических нафтеновых углеводородов. Парафино-нафтеновые углеводороды, выделенные из фракций валенской нефти, отличаются низко температурой застыпапия (значительно более низкой, чем у других исследованных нефтей), ири этом иара-фино-нафтеновые углеводороды, выделенные из фракций валенской нефти, имеют, в отличие от углеводородов из других нефтей, более низкую температуру застывания, чем исходные фракции. Но самое основное отличие нарафино-нафте-новых углеводородов, полученных из фракций валенской нефти, заключается а следующем они не образуют комплекс с карбамидом. Это свидетельствует о том, что фракции валенской нефти практически не содержат парафиновых углеводородов нормального строения. [c.410]

    Проведя полное гидрирование смол, авторы получили нафтеновые углеводороды высокой вязкости с низким (О—37) индексом вязкости. Это подтверждает полицикличность исследованных смолистых веществ, а также косвенно указывает на присутствие в них ко,ротких боковых парафиновых целей. Нафтены, получаемые при гидрировании высокомолекулярных ароматических углеводородов, выделенных из тех же нефтей, заметно отличаются от полученных при гидрировании смол их индекс вязкости значительно более высок, что, очевидно, связано с меньшей цикличностью исходных ароматических углеводородов к наличием в них более длинных боковых цепей. Исследование инфракрасных спектров у-казанных выше смолистых веществ показало большое сходство между собой этих продуктов все они соде,ржат ароматические кольца (полосы 1600 см ) и группы СНз и СНа (полосы 1380 см , 1460 см ) в насыщенной части всех смол преобладают группы СНа, что подтверждает, по мнению авторов, наличие в смолах нафтеновых циклов. В отличие от ароматических углеводородов для исследованных образцов смол в инфракрасной части спектра обнаружены полосы, характерные для связей С—О (1720 см- ). Полос, ха,рактерных для связей 5—Н, О—Н и N—Н, в спектрах изученных смол не обнаружено. [c.31]

    В первый период освоения процесса депарафинизации выделение твердых углеводородов из рафинатов проводили в одну ступень. На таких установках твердые углеводороды, являющиеся сложной смесью компонентов, различающихся по структуре молекул, но содержащих парафиновые цепи нормального или сла-боразветвленного строения, кристаллизовались совместно, образуя мелкие смешанные кристаллы, а при депарафинизации сырья широкого фракционного состава — эвтектические смеси. Такой способ кристаллизации приводил к образованию труднофильтруемых осадков, в результате чего выход масла и скорость отделения твердой фазы были недостаточно высоки, а повышенное содержание масла в гаче усложняло процесс получения парафинов. В связи с этим встал вопрос о раздельной кристаллизации высоко-и низкоплавких углеводородов, который был решен внедрением в промышленность двухступенчатой депарафинизации. Этот процесс позволил увеличить выход депарафинированного масла, значительно повысить скорость фильтрования суспензии и снизить содержание масла в гаче, так как твердые ароматические углеводороды, уменьшающие размер кристаллов парафиновых и нафтеновых углеводородов, концентрируются в низкоплавких компонентах, кристаллизующихся во второй ступени процесса. [c.159]

    Из-за высоких затрат на стадию регенерации экстрагента нерентабельно подвергать экстракционной деароматизации весь объем прямогонной дизельной фракции. Кроме того, при удалении ароматики из суммарной прямогонной дизельной фракции наравне с псшициклическими АУ удаляются и моноароматические, молекулы которых на две трети состоят из парафиновых или нафтеновых структур. В тяжелой части прямогонной дизельной фракции сконцентрированы би- и трициклические АУ - наиболее нежелательные компоненты дизельного топлива [2], а также содержится подавляющая часть высокоплавких парафинов. Деароматизация только тяжелой части, выделенной на основной сгшосферной колонне АТ, позволит в 2-3 раза снизить сырьевой поток блока экстракционной деароматизации и повысить селективность удаления полициклических ароматических компонентов с сохранением моноароматических. [c.106]

    Большой объем работ, связанных с разработкой двухстадийного алкилирования, был проделан целым рядом нефтеперерабатывающих фирм [3]. В этом процессе существенно уменьшается фракционирующая часть, являющаяся наиболее дорогостоящей секцией установки. Наряду с исследовательскими работами на пилотной установке было проведено несколько испытаний в заводских условиях. Олефин абсорбировали отработанной или рециркулирующей серной кислотой, нереакционноспособные компоненты и парафиновые углеводороды удалялись на стадии абсорбции, а смесь кислоты с олефинами поступала на алкилирование. Удаление инертных примесей способствовало повышению октанового числа алкилата и снижению нагрузки на колонну депропанизации, где получают циркулирующий изобутан. Однако слабым местом процесса являлся более высокий расход кислоты. Еще одним недостатком (или, во всяком случае, усложнением) процесса было то, что когда абсорбцию проводили с очень высокой степенью превращения серной кислоты в эфиры в жидкой фазе, значительное количество нейтральных эфиров (диалкилсульфатов) оказывалось преимущественно в углеводородной фазе, а не в кислотной. Хотя фракционирование и является наиболее дорогостоящей секцией установки, введение в практику системы охлаждения отходящим потоком в 1953 г. [4, 5] и системы изостриппинга в 1956 г. способствовало снижению затрат на фракционирование. Обе эти системы позволили уменьшить колонну деизобутанизации и снизить эксплуатационные затраты на выделение циркулирующего изобутана фракционированием. [c.226]

    Сырьем для получения нафталина служат высоко-ароматизированные фракции, выделенные из дистиллятов каталитического риформинга, крекинга, пиролиза и других продуктов и содержащие в основном бицикли-ческие ароматические углеводороды. В связи с тем что нафталин с парафиновыми и нафтеновыми углеводородами образует азеотропные смеси [12], температуру начала кипения исходного сырья обычно выбирают около 200° С. В сырье не должно содержаться трициклических ароматических углеводородов, в противном случае в продуктах реакции будет накапливаться высококипя-щий остаток. Поэтому конец кипения сырья для производства нафталина не должен быть выше 300° С. Другое требование, предъявляемое к сырью, — максимальное содержание производных нафталина при минимальном среднем молекулярном весе углеводородов во фракции. Однако получение высокоароматизированных фракций из нефтяных продуктов с малым содержанием парафиновых углеводородов не всегда возможно поэтому при проведении процесса гидродеалкилирования применяют специальные методы, позволяющие уменьшить деструкцию парафиновых углеводородов в газообразные продукты. Содержание сернистых соединений в исходном сырье также оказывает влияние на схему производства нафталина и на выбор метода гидродеалкилирования. [c.295]

    Парафино-нафтеновые углеводороды, полученные при ад-сорбциопиом разделении па силикагеле (марка АСК), отличаются высоким числом симметрии (порядка 150) и низким значением интерцепта рефракции Г (1,0327—1,0388), что характеризует присутствие значительного количества би- и нолицг[к-лических нафтеновых углеводородов. Аналогичные углеводороды, выделенные нз соответствующих фракций туймазинской нефти, так же как и из других исследуемых в этом отношении нефтей, имеют число симметрии, не превышающее 63, и интерцепт рефракции выше 1,0415, что характеризует присутствие наряду с нафтеновыми углеводородами значительного количества парафиновых углеводородов. Парафино-нафтеновые углеводороды, выделенные из фракций валенской нефти, отличаются тем- [c.617]

    Твердые парафиновые углеводороды (начиная с С16Н34 и выше) составляют в своей массе парафин и церезин. Твердые парафины имеют высокую температуру застывания, которая У возрастает по мере увеличения их молекулярного веса. При J прямой перегонке нефти основная масса твердого парафина остается в мазуте и только небольшая часть перегоняется вместе с керосино-соляровыми фракциями. При перегонке мазута под вакуумом твердые парафины перегоняются вместе с масляными фракциями, а также остаются в гудроне. Присутствие твердого парафина в масляных фракциях повышает их температуру застывания, а следовательно, ухудшает их качество. Поэтому масляные дистилляты, содержащие твердый парафин, подвергают депара-финизации, т. е. освобождению от твердого парафина. Твердый, парафин, выделенный из нефти или нефтепродуктов, используется как товарный продукт. [c.9]

    На рис. 2 также показаны удельный расход реагента при разрушении эмульсии воды в растворах мухановского и узеньского гудрона в маслах, выделенных из тех же нефтей. Как и следовало ожидать, устойчивость (удельный расход) эмульсий обоих гудронов повышается с уменьшением содержания ароматики в маслах. Так же наблюдается более высокая устойчивость эмульсии для раствора гудрона в масле той же нефти по сравнению с раствором гудрона в смеси парафинового и ароматического углеводорода с той же концентрацией ароматических углеводородов, как и в масле. Возможно, вто связано с тем, что в нефти ароматические кольца находятся не в свободном виде, [c.12]

    Детально изучал свойства твердых углеводородов, выделенных из нефтей и озокеритов Бориславских месторождений, Залозецкий [113]. Сопоставляя свойства церезинов, выделенных из озокерита до воздействия на них высокой температуры и после воздействия, Залозецкий пришел к заключению, что в необработанных озокери-тах парафиновые углеводороды находятся в аморфном состоянии, и только после действия на них высокой температуры (при перегонке) они переходят в кристаллическую форму. Эти представления Золо-зецкого вызвали большой интерес и послужили толчком к более интенсивным исследованиям с целью выяснения химической природы и физических свойств нефтяных парафинов. [c.78]

    Технология процесса гидрогенизационного деалкилирования гомологов нафталина аналогична процессам производства бензола из толуола за исключением способа выделения нафталина. Возможны два приема извлечения последнего. Так, если имеющиеся в сырье примеси претерпевают глубокую деструкцию (моноциклические ароматические углеводороды с длинными боковыми цепями превращаются главным образом в бензол, парафиновые и циклоалкановые углеводороды — в легкокипящие жидкие и газообразные продукты), то нафталин практически любой степени чистоты можно получить ректификацией. Если же близкокипящие углеводородные примеси не расщепляются при гидрогенизацион-ном деалкилировании, то нафталин высокой степени чистоты может быть выделен кристаллизацией. [c.198]

    Дальнейшее повышение октановых чисел бензинбв риформинга (выше 100) может быть достигнуто за счет увеличения жесткости условий риформинга и путем комбинирования риформинга с дополнительной обработкой дистиллята. В этом случае можно, например, использовать процесс экстракции с целью выделения концентрата ароматических углеводородов с высоким октановым числом. Полученный при этом неароматический рафинат направляется на каталитический риформинг или на изомеризацию, или из него выделяют нормальные парафиновые углеводороды, используя процессы адсорбции. [c.150]

    В последние годы в качестве сырья пиролиза все больше начинают применять рафинаты, выделенные из бензинов каталитического риформинга. Обычно в рафинатах содержится (в вес.%) изопарафи-новых углеводородов 60—65, нафтеновых 5 — 7, нормальных парафиновых 15—20, ароматических 1—4. Необходимость проведения пиролиза такого вида сырья при более высоких температурах, чем при пиролизе обычных прямогонных бензинов, приводит к увеличению выхода метана, некоторому снижению выхода непредельных углеводородов и возрастанию коксообразования. Поэтому рафинаты целесообразно подвергать пиролизу в смеси с прямогонным бензином [67]. [c.28]

    Пропиленкарбонат не обладает достаточной термической стабильностью — при нагреве он частично распадается с образованием двуокиси углерода и ацетона, а в присутствии воды подвергается гидролизу [72. Поэтому выделение из экстрактивной фазы ароматических углеводородов перегонкой может привести к загрязнению их продуктами распада пропиленкарбоната, в связи с чем потребуется дополнительная очистка ароматических углеводородов. Лучше всего ароматические углеводороды выделять реэкстракцией кипящим при высокой температуре парафиновым углеводородом, например пентадеканом (С15Н32) [86]. [c.67]


Смотреть страницы где упоминается термин Выделение высших парафинов: [c.208]    [c.500]    [c.141]    [c.105]    [c.113]    [c.76]    [c.182]    [c.183]    [c.338]    [c.317]    [c.178]   
Смотреть главы в:

Химия и технология основного органического и нефтехимического синтеза -> Выделение высших парафинов




ПОИСК





Смотрите так же термины и статьи:

Выделение парафиновых



© 2024 chem21.info Реклама на сайте