Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние заместителей и стерические факторы

    Если степень ионизации субстрата ииже почти максимальной, может иметь место специфической основной катализ, г Имеется в виду влияние на скорость реакции, не вызывающее изменения механизма стерические факторы, возникающие при замещении у и Ср, не рассматриваются. Прогнозирование скорости основывается на эффектах заместителя так же, как и на константах Гаммета при замещении ври а-положениях в ароматическом ядре. [c.19]


    Такой процесс циклизации затрудняется с увеличением расстояния между функциональными группами, в результате чего образуются малоустойчивые циклы. Таким образом, способность бифункциональных мономеров к циклизации зависит от напряженности образующегося цикла, что, в свою очередь, определяется расстоянием между функциональными группами. Кроме того, на процесс поликонденсации и иа реакционную способность мономеров влияет также и расположение в них функциональных групп. Например, внутримолекулярная циклизация становится невозможной, если две функциональные группы находятся в пара-положении бензольного кольца. В то же время циклизация происходит, если эти группы находятся в орго-положении. Оказывают влияние и стерические факторы. Так, если в орго-положении присутствуют нереакционноспособный заместитель или мешающие друг другу в пространстве функциональные группы, то это сказывается и на процессе поликонденсации. Например, близость аминогрупп в орго-фенилендиамине способствует образованию циклических продуктов, что приводит [c.402]

    Потенциальный барьер и 01 для копланарного расположения бензольных колец в молекулах дифенила, его метилзамещен-ных (см. таблицу на форзаце) и в терфенилах определяется стерическими факторами. Эти факторы вызываются вандерваальсовым отталкиванием атомов Н бензольных колец или метильных и фенильных (в терфенилах) групп, находящихся в орто-положениях к связи между бензольными кольцами. Это отталкивание наименьшее у самого дифенила, а также у его метил- или фенилзамещен-ных в мета- и пара-положениях к связи между бензольными кольцами, когда замест ители находятся достаточно далеко от связи между этими кольцами и не могут существенно повлиять на отталкивание атомов водорода, находящихся в орго-положениях к связи между кольцами. В соответствии с этим выделим в первую группу рассматриваемых ниже молекул сам дифенил и его метильные производные с мета- и пара-положениями одной или нескольких метильных групп по отношению к связи между кольцами, а также мета- и пара-терфенилы. В этой группе молекул барьер связанней со стерическим эффектом, определяется во всех случаях преимущественно отталки1ванием атомов водорода, остающихся в орго-положениях к связи между кольцами. Поэтому барьеры для молекул этой группы должны быть близкими. Если же замещение идет в орто-положениях к связи между бензольными кольцами, то оно из-за больших, чем атомы водорода, размеров заместителей (групп СНз, СбНб) вызывает усиление отталкивания, в результате чего должен увеличиться барьер о], т. е. должно усилиться влияние стерического фактора. Орто-замещенные дифенилы выделим во вторую группу рассматриваемых молекул. [c.193]


    Для того чтобы выяснить возможность перехода от одного механизма реакции к другому, необходимо рассмотреть влияние как электронных, так и стерических факторов на переходное состояние. В случае, если атака осуществляется по механизму 8 2, можно ожидать, что возрастание индуктивного эффекта по мере увеличения числа метильных групп должно приводить к постепенному уменьшению положительного заряда на атоме углерода, связанном с бромом, и, следовательно, к затруднению атаки этого атома ионом "ОН, Этот эффект выражен, вероятно, не очень сильно, вследствие чего наиболее важную роль должны играть стерические факторы. Этим можно объяснить тот факт, что по мере увеличения объема заместителей у атома углерода, связанного с бромом, возможность атаки этого атома углерода ионами "ОН существенно затрудняется. Кроме того, следует иметь в виду, что при атаке по механизму 5 у2 этот атом угле- [c.96]

    Ранее уже отмечалось, что замещение в о-положение осложняется стерическими факторами. По этой причине влияние полярности заместителя лучше всего оценивать в единицах отношения тг- ле-замещения, чем в единицах отношения, включающего о-положение [234]. Аналогично активность замещающих групп можно наиболее хорошо оценивать в единицах отношения, не включающего скорость замещения в о-положение. Чтобы избежать этого осложнения, сравнительная скорость замещения [c.423]

    Кроме того, на процесс поликонденсации и на реакционную способность мономеров влияет также и расположение функциональных групп. Например, внутримолекулярная циклизация становится невозможной, если две функциональные группы находятся в -положении бензольного кольца. В то же время циклизация происходит, если эти группы находятся в о-положении. Оказывают влияние и стерические факторы. Так, если в о-положении присутствуют нереакционноспособный заместитель или мешающие друг другу в пространстве функциональные группы, то это сказывается и на процессе поликонденсации. Например, близость аминогрупп в о-фенилендиамине способствует образованию циклических продуктов, что приводит иногда к полному прекращению линейной поликонденсации. [c.380]

    Для интерпретации полярных влияний заместителей, стерических и резонансных эффектов, роли деформаций и родственных эффектов необходимо знать влияние этих факторов на потенциальные энергии реагирующих веществ, различных возможных переходных состояний и продуктов реакции. Первая трудность заключается в том, что экспериментально определяемая теплота реакции или теплота активации не является прямой мерой искомой потенциальной энергии, поскольку она содержит члены, включающие функции распределения и будет существенно отличаться от потенциальной энергии при любой температуре выше абсолютного нуля, при которой существенны колебательная и вращательная энергии. Фактически измеренные значения АН и АН — не лучшая, а может быть, даже и худшая, мера искомых разностей потенциальной энергии по сравнению с АР и АР= , которые непосредственно экспериментально определяются из константы равновесия или константы скорости [61]. [c.246]

    Количественная оценка влияния на стерического фактора пока, насколько нам известно, не проводилась. Можно думать, однако, что неспособность к гомополимеризации наиболее активных (по данным сополимеризации) мономеров (малеиновый ангидрид, стильбен) есть не только проявление основного закона классической теории радикальной полимеризации, но и следствие неизбежного роста массивности заместителей с увеличением сопряжения. [c.78]

    Напротив, в случае введения таких заместителей, как алкильные и аминогруппы, возрастает отрицательный заряд у атома азота и реакционная способность ароматического изоцианата отношению к гликолям уменьшается. Большое влияние на протекание реакций бифункциональных соединений оказывают также стерические факторы [13]. [c.159]

    Стерический фактор — фактор, учитывающий необходимость определения взаимной ориентации реагирующих частиц при их столкновении для осуществления химической реакции. Помимо электронных эффектов (см. Индуктивный и Мезомерный эффекты) существенное влияние на ход химической реакции оказывают размеры заместителей в пространстве. Такое влияние, как правило, тем больше, чем ближе расположен заместитель к реакционному центру. [c.282]

    Влияние заместителей и стерические факторы [c.52]

    Таким образом, характер алифатического радикала не оказывает заметного влияния на механизм нуклеофильного замещения в бензольном положении, но скорость превращения от природы заместителя зависит чрезвычайно Здесь играют роль как электронные взаимодействия, так и стерический фактор [c.145]

    В ряду 0-арил-0,0-диэтилфосфатов активность соединений по отношению к комнатным мухам зависит от нуклео-фильности заместителей и стерических факторов [13]. Стериче-ские факторы оказывают большое влияние на инсектицидную активность многих препаратов. Так, цис- и гранс-изомеры енол-фосфатов различаются по инсектицидности практически на порядок. Как известно, аналогичная зависимость наблюдается в ряду синтетических пиретроидов и химических соединений некоторых других классов. [c.414]


    Химическая природа и размер заместителей, содержащихся в бисфенолах, существенно влияют на константу скорости реак1щи (табл. 2.20) [278], что объясняется влиянием как стерических факторов, так и индукционных эффектов заместителей. [c.136]

    Стерические факторы замещающего агента. Общее стерическое на-пряжепие в оуото-с-комплексе (LXVII) должно зависеть как от стерических влияний заместителя R, так и от стерических требований вводимой группы Z. Следовательно, если стерические факторы заместителя остаются постоянными, степень замещения в о-положение должна уменьшаться с увеличением стерических препятствий замещающего агента. Данные по распределению изомеров при алкилировании толуола подтверждают это положение. Наблюдается уменьшение выхода о-изомера при повышении стерических препятствий вводимой группы (табл. 7). [c.420]

    По-видимому, было бы неправильно сводить влияние алкильных заместителей к какому-либо одному эффекту. Так, например, отмеченные выше различия между высокотемпературными катализаторами нельзя объяснить лишь стерическими факторами, поскольку спи действуют только в условиях низких температур. Если же все свести к энергетическим факторам, то следовало бы ожидать, что заместители, имеюш ие положительный или отрицательный индуктивные эффекты, оказывают противоположное влияние. Между тем из кинетических данных следует, что аналогичное алкильным заместителям влияние оказывают не только гидроксильные и метоксиль-ные, но и фенильные и карбоксильные группы (см. табл. 12). [c.143]

    Термины трехцентровое связывание и четырехцентровое связывание используются для обозначения конфигурации взаимного расположения донора и акцептора. Названия не совсем правильны и недостаточно полно отражают суть дела, но удобны и поэтому широко используются [136]. В то же время они устанавливают наиболее стабильный диастереомер и указывают на возможную главную структурную особенность, обусловливающую различия в стабильности двух диастереомеров. Приведенные проекции Ньюмена показывают, что в обеих моделях донорная молекула связывается с (5,5)-акцептором тремя водородными связями между NH-гpyппaми и эфирными кислородами макроцикла. Три заместителя (малый, средний и большой) у асимметрического атома углерода распределены в пространстве таким образом, чтобы свести к минимуму влияния стерических факторов. Модель четырехцентрового связывания включает дополнительное диполь-дипольное взаимодействие с эфирной группой в результате стэкинга ароматических колец донора и акцептора. Тем не менее модель трехцентрового связывания стерически более устойчива. Причина заключается в том, что введение заместителей в 3- и З -положения делает комплекс более громоздким, а систему более селективной, благоприятствуя реализации модели трехцентрового связывания. Другими словами, когда комплекс становится более тесным из-за увеличения стерической затрудненности донора или акцептора, комплексообразование становится более стереоселективным. Вследствие этого (5,5)-акцептор склонен к выбору в качестве донорной молекулы 5-изомера. Отношение констант ассоциации диастереомеров может доходить до 18. [c.271]

    В К-фенилзамещенных-1,3-оксазолидинах стерическое напряжение возникает в случае цис-ориентации объемных заместителей в положениях 2 и 3, следовательно, устойчивой оказывается конфигурация с транс-ориентацией арильных заместителей. С учетом влияния электронных истерических факторов для 2,3-диарилзаме-щенных-5-хлорметил-1,3-оксазолидинов можно предположить предпочтительной конфигурацию цис-(2Я, 5К)-2-арил-3-арил-5-хлорме-тил-1,3-оксазолидин. [c.20]

    Стерические факторы могут оказывать существенное влияние на эффекты заместителей. Важным условием, необходимым для того, чтобы р-электроны гетероатомов могли включиться во взаимодействие с л-электронамн ароматического соединения, является плоское строеине молекульг Нарушение его вызывает ослабление эффекта сопряжения, а если поворот заместителя относительно ароматического кольца достигает 90°, этот эффект подавляется полностью. Например, в приведенных ниже соединениях орго-расположенпые СНз-группы ие позволяют диметиламино-группе и нитрогруппе расположиться в плоскости бензольного кольца, в результате чего нх эффект сопряжения сильно ослаблен  [c.52]

    Введение метильных групп в положения 2 и 6 пиридина повышает донорные свойства атома азота, но одновременно создает значительные стерические затруднения при взаимодействии с акцептором. Конкурирующее влияние этих факторов проявляется по-разному в различных системах (см. табл. 68). Тепловой эффект взаимодействия ВН3 с метилзамещеп-ными пиридинами мало отличается от теплового эффекта реакции ВН3 с незамещенным пиридином. Таким образом, при взаимодействии с ВН3 индуктивное влияние заместителей, повышающее допорные свойства атома азота, практически полностью компенсируется влиянием стерических факторов. При взаимодействии замещенных пиридинов с соединениями бора, имеющими заместители большего объема (BF3, В(СНз)з), влияние стерического эффекта преобладает. Донорные свойства атома азота в [c.119]

    Эти данные согласуются с расчетами электронной плотности, результаты которых представлены в табл. 3.2. В то время как различия между фенолом и крезолами невелики, влияние объемистых заместителей в орго-положеиии явно выражено из-за стерических факторов (см. табл. 2.1). Гидрокснметилфенолы являются более сильными кислотами, чем незамещенный фенол [5, 6]. [c.41]

    Дипольные потери в полимерах — 1 бмакс и наивероятнейшне Времена релаксации определяются химическим строением повторяющейся в цепи мономерной единицы. Сильное влияние оказывают Природа и число полярных групп, размеры заместителей, изомерия бокового радикала, стерические факторы и т. д. [c.279]

    Характер углеродного скелета — индуктивный, резонансный и сте-ричеекий эффекты. Реакция замещения протекает по 8 1-механизму только в случае т х соединений, которые могут давать достаточно стабильные катионы Как правило, триалкилметильные или резонансно стабилизированные катионы обеспечивают преимущественное протекание реакции типа по сравнению с Зц2-8амещением. Влияние числа алкильных заместителей на относительные скорости сравниваемых реакций проиллюстрировано в табл. 5-4. Из данных таблицы видно, что увеличение числа алкильных заместителей облегчает реакцию 8 1 и затрудняет 8м2-реакцию. Это отражает то обстоятельство, что 8ц2-реакция наиболее чувствительна к стерическим факторам, а реакция 8 1 — к электронным факторам. Увеличение числа алкильных заместителей экранирует атом углерода, связанный с уходящей группой, и это, конечно, затрудняет 8м2-процесс. Однако те же заместители стабилизируют положительный заряд на атоме углерода, несущем уходящую группу, и это благоприятствует процессу 8ц 1. [c.200]

    Влияние стерических факторов заместителей в альдегидах на выход порфиринов б носит более сложный характер. При переходе от формальдегида к уксусному альдегиду выход порфирина б (К2=Ме) значительно увеличивается. Дальнейшее увеличение длины алкильного остатка (К2=Е1, Не) и переход к бензальдегиду относительно мало влияют на выход образуюш егося порфирина б. Однако использование альдегидов с разветвленной алкильной цепью (К2=Рг , СНс) приводит к сильному снижению выхода или невозможности образования соответствуюш его порфирина. [c.367]

    В соответствии с электрофильной природой алкилирования фенолов и ориентирующим влиянием орто-пара-заместителей в ароматическом ядре (увеличение электронной плотности в положениях 2, 4 и 6 фенола) наблюдается преимущественное замещение атома Н на полиизобутилен в положение 4 для 2,6-дизамещенных фенолов, а также б / гб -алкилирование в случае 4-алкилзаме-щенных фенолов. Важную роль играют стерические факторы, например, 2,4,6-три-777ег-бутилфенол практически не влияет на полимеризацию изобутилена. [c.107]

    На основании литературных данных и спектров ЯМР Н синтезированных соединений доказана предпочтительность псевдоак-сиального положения группы СНгС . Устойчивость молекулы определяется совокупным влиянием электронных и стерических факторов. В случае М-алкилзамещенных 1,3-оксазолидинов сте-рическое напряжение незначительно, поэтому заместители в положениях 2 и 3 могут находиться как в цис-, так и в /иранс-ориента-ции по отношению друг к другу. Таким образом, изомерия [c.27]

    Для трифторметильного заместителя наблюдается аномальное течение реакции с образованием бис-азиридинилкетона. Это, вероятно, определяется не стерическими факторами, а может быть объяснено специфическим электроноакцепторным влиянием группы СРз, резко ускоряющим дегидроброми-рование с образованием трехчленного цикла по сравнению с дегидратацией [176]. [c.241]

    При термолизе диацилфуроксанов с объемистыми заместителями образуются ожидаемые нитрилокснды КСО-С=Ы О, как видно выше нз строения продуктов перехвата их 1,3-диполярофнлами. Отсюда был сделан вывод [408] о влиянии стерических факторов иа ход термолиза, механизм которого сформулирован в виде двух возможных направлений  [c.248]

    Константы скорости хорошо коррелируют с константами заместителей а Гаммета (за исключением 2,6-днхлорбензоннтрилокснда, в случае которого явно преобладают стерические факторы). Величина р = 0,86 в уравнении Гаммета показывает, что влияние заместителей малб. Поэтому чисто качественные наблюдения, представленные в табл. 13, и не позволили распознать направление влияния. Так, напрнмер, введение в ароматическое ядро бензонитрилоксида столь разных по электронному влиянию заместителей, как С1 и N 2, с одной стороны, и Ме и МеО — с другой, приводило якобы к замедлению димеризации. [c.153]

    Изменение константы в зависимости от энергии гидратации аниона наиболее значительно в слу чае экстракции третичными аминами. Для вторичных и особенно первичных аминов характер зависимости становится более пологим. Влияние строения амина на экстракцию кислот связано с двумя факторами изменением подвижности электронной пары атома азота (индукционный эффект заместителя) и проявлением стерических эффектов. При этом чем значительнее проявляется отрицательный индукционный эффект, тем меньше экстрагируемость кислоты. Так, константа экстракции в ряду вторичных аминов заметно снижается (на 3-5 порядков) при замене алкильной группы у атома азота на фенильную. Замена радикала у атома азота приводит не только к изменению подвижности электронной пары, но и к изменению стерических факторов, которые сильнее влияют на константу экстракции, чем электронные. Энергия связи в солях аминов между катионом и анионом в первом приближении определяется электростатическим притяжением. Рост числа углеводородных цепочек, их длины и степени разветвления способствует увеличению расстояния между катионом и анионом, т.е. снижению энергии связи и, следовательно, уменьшению константы экстракции. Поэтому, например, устойчивость солей аминов, образующихся по реакции кислотноосновного взаимодействия, изменяется в последовательности первичные > вторичные > третичные. [c.162]

    Таким образом, показано, что при взаимодействии N-бензоил-тиомочевины с акрилоилхлоридом идет присоединение серы по С=С-связи и ацилирование по замещенному атому азота, а в случае N-циклогексилтиомочевины — по незамещенному. Следовательно, результаты проведенных исследований еще раз подтверждают полученные нами ранее экспериментальные данные об отсутствии электронных факторов заместителя и решающем влиянии стерических факторов его на направление ацилирования.. [c.102]

    Другие кислоты Льюиса. Пиридин легко дает в инертном растворителе при 0° устойчивые комплексные соединения с тригало-генидами бора, алюминия и галлия (пример 290), двухокисью и трехокисью серы (291) и т. д. Заместители в р- и -положениях влияют на эту реакцию, соответственно меняя способность атома азота к протонизации. В случае а-замещенных соединений сильно влияют стерические факторы. Например, теплоты реакции пиридина, 2-метилпиридина и 2,6-диметилпиридина с трехфтористым бором равны 32,9 31,2 и 25,4 ккал1моль соответственно [8], что не согласуется с данными о влиянии строения метилпиридинов на их рКа- [c.58]

    Основность алнфатнческнх амннов. Сравнивая электронное влияние радикалов в молекулах первичного, вторичного и третичного алифатических аминов, можно предположить, что третичные амины, имеющие три алкильных заместителя, обладающих +/-эффектом, будут более сильными основаниями, чем вторичные и первнчные амины. Однако стерические факторы (пространственное строение молекулы), определяющие доступность основного центра для атаки протоном, оказывают прямо противоположное влияние. Чем больше радикалов имеется у атома азота, тем труднее он будет атаковаться протоном. Следовательно, самыми сильными основаниями должны быть первичные и вторичные амины со сравнительно короткими и неразветвленными радикалами. Сольватация (взаимодействие молекулы растворенного вещества с молекулами растворителя) оказывает на основность влияние, сходное с влиянием стерических факторов, поскольку с увеличением числа и разветвленности углеводородных радикалов уменьшается способность катиоиа заменхенного аммония (сопряженной кислоты) связывать молекулы растворителя. Таким образом, чисто умозрительные теоретические рассуждения не позволяют предсказать сравнительную основность алифатических аминов. [c.211]


Смотреть страницы где упоминается термин Влияние заместителей и стерические факторы: [c.180]    [c.481]    [c.62]    [c.20]    [c.246]    [c.241]    [c.190]    [c.278]    [c.40]    [c.167]    [c.366]    [c.30]    [c.553]    [c.32]    [c.153]   
Смотреть главы в:

Химия и технология ароматических соединений в задачах и упражнениях -> Влияние заместителей и стерические факторы

Химия и технология ароматических соединений в задачах и упражнениях Издание 2 -> Влияние заместителей и стерические факторы




ПОИСК





Смотрите так же термины и статьи:

Влияние заместителей и стерических факторов на геометрию переходного состояния

Заместителей влияние

Заместители стерическая

Стерический фактор



© 2025 chem21.info Реклама на сайте