Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свойства и методы получения чистых элементов

    В первые годы после открытия гафния были синтезированы многие его соединения и изучены их физико-химические свойства, а также методы отделения гафния от циркония. Эти исследования проводились в ограниченном масштабе, так как области применения гафния не были установлены, а трудности получения чистых соединений и дороговизна металла делали его малодоступным элементом. [c.6]


    СВОЙСТВА И МЕТОДЫ ПОЛУЧЕНИЯ ЧИСТЫХ ЭЛЕМЕНТОВ [c.458]

    При переработке поллуцита, литиевых и калиевых минералов, радиоактивных отходов и других сырьевых источников получают рубидиево-цезиевые, цезиево-рубидиевые и рубидиево-калиевые концентраты в виде квасцов, хлоридов, сульфатов, карбонатов и других солей. Такие концентраты содержат примеси К, На, Mg. Са, 81, А1, Ре, Сг, Т1 и других элементов. Из них калий наиболее близок по химическим свойствам к рубидию и цезию, поэтому их разделение (особенно пары калий — рубидий) — самая трудная проблема в технологии получения чистых солей рубидия и цезия. В связи с этим в дальнейшем будут в основном рассмотрены методы, связанные с решением упомянутой проблемы, а также возможность удаления других примесей. [c.138]

    Узкое место в ионообменном разделении близких по свойствам щелочных элементов — получение чистых по калию (менее 0,1 %К) солей рубидия в промышленных масштабах. Хотя принципиальная возможность разделения рубидия и калия методом ионообменной (фронтальной) хроматографии показана, тем не менее степень их разделения вследствие наложения краев полос десорбции небольшая [10]. [c.145]

    В 1902 г. М. Г. Вырубов [1] предложил быстрый метод отделения бериллия от железа и алюминия с целью получения чистых препаратов бериллия. Этот способ основан па различии свойств двойных щавелевокислых солей указанных элементов. [c.35]

    Методы получения. Хотя диспрозий не уступает лантану и самарию и превосходит празеодим, по распространенности в природе, свойства его значительно менее изучены, чем свойства этих элементов. Это объясняется трудностью получения диспрозия в чистом виде. Только совсем недавно появилось сообщение [574] О методе получения и некоторых свойствах диспрозия, содержавшего в качестве примесей 0,4 /о Si. Металл был получен электролизом расплавленных солей при температуре 700—750 с применением в качестве электролита смеси солей, состоящей из безводного хлорида диспрозия и эвтектической смеси хлористых натрия и калия. Анод применялся графитовый, а катодом служил молибден, погруженный в расплавленный кадмий. Таким способом был получен сплав кадмия с диспрозием, с содержанием диспрозия 7,5 /о. После 24-часовой отгонки кадмия из сплава в вакууме при температуре 500° был получен сильно окисляющийся на воздухе сплав, содержащий до 50 /о диспрозия. При подъеме температуры до 1100° кадмий был отогнан полностью. [c.727]

    Титан обладает весьма ценными свойствами, делающими его металлом самой современной техники — высокой прочностью, небольшой плотностью, высокой коррозионной стойкостью. Титан является очень распространенным элементом. Обычная пахотная земля содержит 0,5% титана [33]. Титановые руды не дороги. Все это указывает на потенциальную возможность широкого использования титана. Однако из-за высокой химической активности титана в мелкораздробленном состоянии и стойкости его природных соединений обычные процессы восстановления руды не позволяют получить титан в чистом виде. Для получения элементарного титана применяются такие сильные восстановители как натрий и магний. Современные методы получения элементарного титана основаны на выделении его либо под действием натрия и магния из его хлорида, либо путем термического разложения его иодистых солей. Каждому из применяемых методов присущи недостатки, связанные либо с необходимостью работы при высоких температурах и давлениях с такими активными агентами, как натрий и магний, либо с дорогостоящей и трудоемкой операцией получения иодида титана в больших [c.168]


    Изданная более 10 лет тому назад, книга эта интересна и в настоящее время. Она знакомит со сложной и запутанной историей открытия редкоземельных элементов (лантаноидов), пятнадцати элементов-близнецов, с их свойствами, методами разделения и получения чистых металлов, с состоянием проблемы редкоземельных элементов на 1960 г. и перспективами ее дальнейшего развития. Специальная глава посвящена вопросам практического применения редкоземельных элементов, которые долгое время считались мало перспективными для использования в народном хозяйстве. [c.23]

    Распределительная хроматография в начале своего развития довольно щироко применялась в анализе органических веществ, как очень тонкий и эффективный метод. Было произведено разделение близких по свойствам органических кислот, дубильных веществ, аминокислот, пенициллинов и т. д. Подтверждением универсальности метода распределительной хроматографии является полная пригодность и исключительная эффективность этого метода при разделении неорганических веществ с очень близкими химическими свойствами. Например, для разделения редкоземельных элементов, которые имеют незначительные различия в свойствах, требуется провести не мене 40 ООО операций (для выделения их в чистом виде). До появления многоступенчатого метода анализа лишь несколько редкоземельных элементов были получены в чистом виде с содержанием 95%- В настоящее время разработаны надежные методы идентификации редкоземельных элементов хроматографией на бумаге и получение их в чистом виде на колонках. [c.105]

    Например, до появления распределительной хроматографии для разделения и выделения в чистом виде редкоземельных элементов требовалось провести не менее 40 000 операций и лишь немногие редкоземельные элементы были получены в чистом виде. В настоящее время разработаны надежные методы идентификации редкоземельных элементов хроматографией на бумаге и получения их в чистом виде на колонках. Подобное разделение с использованием тончайших приемов хроматографического анализа было осуществлено для циркония и гафния, названных двойниками по сходству химических свойств. [c.61]

    Основные научные работы посвящены неорганическим соединениям платиновых металлов. Установил состав остатков платиновой руды после ее растворения и предложил методы разделения и получения в чистом виде платиновых металлов. Открыл (1844) рутений, изучил его свойства и определил атомную массу Впервые обратил внимание на аналогию между триадами рутений — родий — палладий и осмий — иридий — платина, что имело существенное значение для систематики химических элементов [c.240]

    Свойства простых соединений трехвалентных элементов рассматриваемой группы весьма близки между собой и не могут явиться основой для химических методов разделения в аналитических и препаративных целях. Поэтому, как правило, анализ таких смесей проводится физическими методами. Получение же чистых препаратов элементов как возможный путь анализа и как технологический метод, немыслимое без химического разделения, основывается на различиях свойств комплексных соединений или двойных солей , поскольку именно в комплексных соединениях [c.162]

    Направление научных исследований разделение редкоземельных элементов получение чистых солей и редкоземельных элементов высокой степени чистоты контроль чистоты солей и металлов спектроскопическим методом и с помощью радиоизотопов получение сплавов редкоземельных элементов изучение физических свойств (магнетизм, коэффициент дилатации, электропроводность, удельная теплоемкость, твердость, механические свойства) чистых металлов, сплавов и различных соединений (главным образом ферритов). [c.339]

    ЧИСТОЕ ВЕЩЕСТВО - простые вещества или соединения, жидкости, сплавы, смеси, содержащие примеси в таком количестве, которое не влияет на характерные свойства основного вещества. Предельное содержание примесей определяется свойствами, получением или использованием веществ и, как правило, составляет доли процента, даже меньше. Современная наука и техника предъявляют очень высокие требования к чистоте вещества. Например, в полупроводниках на сто миллионов атомов германия допускается лишь один атом примеси другого элемента (напр., бора). Ч. в. получают специальными методами зонной плавкой, вытягиванием монокристаллов и др. Определение Ч. в. отличается от определения чистоты реактивов химических. [c.286]

    Процессы разделения, основанные на резком различии в свойствах лантаноидов, находящихся в разных валентных состояниях, существенно отличаются по своей эффективности от процессов, основанных на многократном использовании постепенно изменяющихся свойств с относительно небольшим коэффициентом обогащения в единичной операции разделения [И—14]. В тех случаях, когда переменная валентность данного лантаноида достаточно четко выражена (Се, 5т, Ей, УЬ), ее использование значительно облегчает не только отделение и получение в чистом виде самого элемента, обладающего аномальной валентностью, но и разделение его ближайших соседей по группе, поскольку лишь некоторые из них обладают способностью существовать в двух валентных состояниях (IV и III, или III и II). Естественно, что как методы разделения, так и методы анализа, базирующиеся на этих особенностях, не универсальны, а специфичны. [c.287]


    Основная область научных работ — химия твердого тела, тугоплавких металлов и их соединений. Разработал (1955—1975) методы высокотемпературного синтеза чистых тугоплавких соединений — оксидов, карбидов, нитридов металлов IV—V а подгрупп периодической системы элементов, а также твердых растворов на их основе. Изучил структурные, термохимические, кинетические, диффузионные характеристики, электрические и магнитные свойства этих соединений, их устойчивость в агрессивных средах. Выполнил (1960—1970) цикл работ по теоретическому обоснованию углетермического способа получения редких металлов. Предложил способ получения ниобия. [c.566]

    По данным Хэгга [9], Гиббса и Крушвица [3], Леннинга и др. [6] и Макквиллана [4], период решетки у-фазы с повышением содержания водорода увеличивается от 4,395 до 4,45А. Выделение гидридной фазы происходит преимущественно вдоль линий скольжения и двойникования. Плотность у-фазы равна 3,78 г/см [10]. Гидрид титана неустойчив и при нагреве диссоциирует с выделением свободного водорода. На этом свойстве гидрида и основан метод получения чистейшего водорода. Ввиду значительного уменьшения растворимости водорода при комнатной температуре, даже малые количества этого элемента могут оказать значительное влияние на механические свойства титана и его сплавов. Гульбранзен и Эндрью [И] экспериментально показали, что скорость абсорбции водорода титаном становится заметной уже при 300° и быстро увеличивается с повышением температуры. [c.144]

    Методы отделения и очистки скандия от примесей. Получение чистых соединений скандия — весьма сложная задача. Это связано с тем, что скандий практически не имеет собственных руд и извлекается из комплексного сырья, содержащего много сопутствующих элементов в количествах, значительно превосходящих его содержание. Особенно большие трудности возникают при отделении от скандия РЗЭ иттриевой подгруппы, алюминия, железа, циркония, гафния и тория. Это связано с близостью ионных радиусов и ряда других свойств (см. табл. 6). [c.18]

    Научные исследования охватывают ряд направлений общей химии XIX в. Под руководством А. В. Г. Кольбе получил (1847) пропионовую кислоту омылением этилцианида и, таким образом, разработал способ получения карбоновых кислот из спиртов через нитрилы. При попытке выделить свободные радикалы — метил и этил — получил (1849) цинкал-килы, которые в дальнейшем широко использовались в органическом синтезе. Получив алкильные производные олова и ртути, ввел (1852) термин металлоорганические соединения . Наблюдая способность к насыщению разных элементов и сравнивая органические производные металлов с неорганическими соединениями, ввел (1852) понятие о соединительной силе , явившееся предшественником понятия валентности. Синтезировал (1862) органические производные бора и лития. Разрабатывая методы получения цинкалкилов и используя их в синтезах, получил кислоты — пропионовую, метакри-ловую, различные оксикислоты. Изучал (1864) свойства ацетоуксусного эфира. Обнаружил трех- и пятивалентность азота, фосфора, мышьяка и сурьмы. Исследовал (1861 —1868) влияние атмосферного давления на процесс горения. Результаты своих работ изложил в книге Исследования по чистой, прикладной и физической химии (1877). [c.526]

    Метод ионообменной хроматографии в настоящее время широко используется для получения чистых препаратов редкоземельных элементов (РЗЭ) [1—4]. Известно большое число различных методик хроматографического разделения смесей РЗЭ, но многие из них носят эмпирический характер. Наряду с этим в литературе имеется ряд сообщений, посвященных выбору условий хроматографического разделения смесей. Мейер и Тонкине [5] использовали теорию тарелок для описания процесса элюирования РЗЭ раствором лимонной кислоты теоретические кривые вымывания совпали с опытными. Метод расчета применим также для определения чистоты РЗЭ, разделяемых при помощи процесса элюирования. Корниш [6], используя выражение, данное Глюкауфом для высоты, эквивалентной теоретической тарелке (ВЭТТ), применил теорию тарелок для предсказания условий разделения смесей ряда элементов. В работах Масловой, Назарова и Чмутова [7,8] была рассчитана величина ВЭТТ для процесса вымывания церия раствором молочной кислоты, что дало возможность произвести расчет кривой элюирования и установить условия получения элемента с заданной степенью чистоты. В работе тех же авторов [8] на примере разделения церия и прометия молочной и пирофосфорной кислотами был проведен расчет процесса градиентного элюирования РЗЭ, с использованием теории Фрейлинга. Расчет удовлетворительно совпадает с экспериментальными данными. В работах Еловича и сотр. [9—12] получено выражение для расчета процесса разделения близких по свойствам элементов. На примере разделения трансурановых элементов при помощи ЭДТА показано решающее значение комплексообразования по сравнению с обычным ионным обменом. В работах Материной, Сафоновой и Чмутова[13] рассмотрена возможность применения фронтального анализа в ионообменной комплексообразовательной хроматографии. Авторы изучали процесс комплексообразования в зависимости от pH среды. Маторина [14] изучила зависимость равновесного коэффициента разделения от pH [c.170]

    Окись бериллия. Техническая окись бериллия получается из гидроокиси — конечного продук1а существующих технологических схем. Гидроокись высуишвается на противнях в сушильных печах при 100—150° С, затем прокаливается при 850— 1000° С во вращающихся печах с наружным газовым обогревом. Но для некоторых отраслей техники и, в первую очередь, ядерной энергетики требуется окись бериллия высокой чистоты. Для ее получения техническую гидроокись предварительно очищают по одному из известных методов, основанных на различии в свойствах бериллия и сопутствующих элементов. В связи с тем, что о каждом из методов говорилось в первой части настоящего пособия, здесь будут лишь схематично изображены наиболее употребительные способы получения чистой окиси бериллия (рис. 10). В Советском [c.128]

    Четыреххлорнстый углерод (тетрахлорметан) ССЦ— бесцветная тяжелая жидкость, по запаху напоминающая хлороформ, не горюча. Применяется как растворитель (жиров, смол, каучука и др.), для получения фреонов, как экстрагент, в медицине.. Чистое вещество — элементы или соединения, их растворы, сплавы, смеси и т. п., характеризующиеся. содержанием примесей ниже определенного предела. Этот предел определяется свойствами, получением или использованием веществ и, как правило, составляет доли процента и ыенее. Современная наука и техника предьявляют к чистоте вещества большие требования. См. Следы. Чувствительность химической реакции (чувствительность методов аналитической химии) — наименьшее количество вещества, которое можно обнаружить данной реакцией или количественно определить данным методом анализа. [c.154]

    Получение. Для использования в приборах полупроводниковые материалы в осповном должны быть получены в виде монокристаллов со строго определенным содержанием легирующих примесей, придающих П. тот или иной тип проводимости и соответствующие свойства. Поэтому все неконтролируемые примеси перед легированием должны отсутствовать, т. е. исходный материал должен быть очень чистым. Большинство методов очистки было разработано при получении чистых кремния и германия (см. также Зонная плавка и Монокристаллы). Требования получения монокристаллов П. в очень чистом состоянии и оптически однородных привели к со.зданию новых методов синтеза. При синтезе сложных П.— различных двойных, тройных и т. д. хнмич. соединений, часто состоящих из элементов с сильно различающимися свойствами, появились новые варнанты синтеза — С1П1тез под давлением летучего компонента, синтез в газовой фа.эе, в различных неводных растворителях— расплавленных солях, металлах и т. д. [c.124]

    Радиохимич. методы позволяют изучать физико-химич. свойства элементов и их соединений в широком диапазоне концентраций, от ультрамалых до максимальных, а также проводить концентрирование радиоактивных изотопов в очень высокой степени, переходя (непрерывно) от состояния крайнего разбавления к весовым количествам чистых соединений радиоактивных элементов. Процесс концентрирования представляет большой теоретич. интерес, т. к. позволяет изучить термодинамику распределения при переходе от микро- к макроконцентрациям вещества. На процессах концентрирования и построен ряд радиохимич. производств — получение радия, актиния, протактиния и пр. из руд, произ-во плутония из облученного урана, получение трансплутониевых элементов, получение отдельных осколочных элементов из отходов атомной пром-сти. [c.246]

    В последние годы в промышленности возрос интерес к использованию особо чистого Т102 для изготовления на его основе стекол с заданными свойствами. Как известно [1], одним из перспективных методов получения оксидов, имеющих низкое содержание примесей Ре, Си, Сг, N1, Со, V, Мп и т. п., является метод их получения из соответствующих алкоксипроизводных, для чего необходима очистка исходных алкоксипроизводных Т1 от микропримесей указанных элементов. [c.85]

    В ирннципе все существующие в природе элементы присутствуют во всех веществах, только в очень разных концентрациях. Восемь элементов, составляющих 98,6% массы земной коры — кислород, кремний, алюминий, железо, кальций, магний, натрий и калий — имеют наибольшие шансы присутствовать где только возможно. Следы этих элементов есть, конечно, во всех анализируемых материалах, от них особенно трудно освободиться при получении и. хранении чистых веществ. Само понятие чистого или ультра-чистого вещества поэтому пе очень определенно. Одно из определений ультрачистого вещества мы приведем под ультрачистым можно понимать вещество, свойства которого при дальнейшей очистке существенно не меняются. От такого идеала мы пока далеки он достигнут только для некоторых материалов. Напротив, мы постоянно читаем о том, что увеличение чистоты приводит к сильному изменению свойств веществ. Например, пластичность вольфрама и циркония сильно растет с чистотой этих металлов. Бериллий считали твердым и хрупким, но когда его очистили методом зонной плавки, оказалось, что это металл ковкий, тягучий, податливый. [c.103]

    Возможность применения хроматографии в обоих названных областях объясняется тем, что цель ее применения состоит в разделении смесей . При очевидном препаративном значении метода, состоящем в получении чистых соединений, в аналитической химии предварительное количественное разделение смесей позволяет в последующем идентифицировать компоненты и определить их содержание простыми (даже неспецифическими) химическими, физико-химическими или физическими методами. Естественно, что использовать иногда сравнительно нродолн ительные хроматографические приемы целесообразно лишь в тех случаях, когда анализ смеси трудно или даже невозможно произвести обычными способами. Это касается прежде всего смесей элементов с очень близкими свойствами, в подавляющем бо,льшииство случаев находящихся в одной и той же группе периодической системы Д. И. Менделеева (щелочные и щелочноземельные элементы, редкоземельные элементы с иттрием и скандием, следующие за ними пары элементов, почти идентичные вследствие ланта-нидного сжатия — цирконий и гафний, ниобий и тантал, молибден и вольфрам галогены, платиновые металлы, элементы подгруппы >келеза и пр.). Поэтому представляется рациональным рассмотреть работы [c.135]

    Учитывая, что применение хроматографического метода оказывается целесообразным лишь в тех случаях, в которых анализ или получение чистого препарата не могут быть осуществлены более быстрыми методами, полезно было бы в ряде случаев попытаться обосновать необходимость использования хроматографического метода. В этих целях в начале они-саиия работ по хроматографическому разделению смесей элементов каждой группы приведены предельно краткие данные о химических свойствах и методах онределения элементов с тем, чтобы в какой-то мере объяснить, например, причины различия в числе работ по разделению элементов той или другой нодгруипы. В пределах принятого выбора материала в статье по возможности приводятся данные по применению иопообмеиной хроматографии для анализа руд и минералов, силикатов, сплавов и пр. [c.136]

    Для современной химии, достигшей за последние четверть века неви данного ранее технического прогресса, характерно стремление к получению наиболее чистых от примесей новых материалов, использование с промышленной целью природного сырья совершенно определенного химического состава. Перед наукой возникла проблема получения, изучения и использования удивительных свойств этих ультрачистых веществ как неорганических, так и органических. Это, в свою очередь, не могло не повысить требований к методам анализа этих ультрачистых веществ и к контролю новых видов производства на всех этапах технологического процесса — от анализа сырья до анализа готовой продукции. Последнее следует подчеркнуть, так как конечное содержание тех или иных примесей зависит не только от содержания и характера первичных примесей в природном сырье, например. Со в никелевом сырье или ЯЬ в калиевом сырье и т. п., но и от характера технологических процессов, которые, очищая от одних примесей, могли вносить другие загрязнения, как это показал огромный промышленный опыт. Однако эти требования к химикам-аналитикам вначале в известной мере носили односторонний характер — создать универсальные методы определения всех элементов-примесей в различных материалах при содержании их в следовых- количествах. [c.5]

    Развитие таких новых отраслей промышленности, как атомная энергетика, производство полупроводников и некоторые другие, требует получения редких элементов высокой чистоты. Рассеянные в природе в чрезвычайно малых количествах, эти элементы до последнего времени в чистом виде почти не получа.пись. Некоторые из них к тому же образуют пары с чрезвычайно близкими химическими свойствами (цирконий — гафний, ниобий — тантал, молибден — рений и др.). Только высокая разделительная способность ионообменного метода позволяет выделить в чистом виде такие близкие по свойствам элементы. [c.181]

    Основным достоинством хроматографии является универсальность метода он пригоден для разделения практически любых веществ. Увеличение толщины слоя адсорбента (высоты хроматографической колонки) позволяет обеспечить высокую степень разделения даже близких по свойствам веществ, ионов. Это значит, что степень разделения можно регулировать. Метод пригоден для работы с макроколичествами и с мнкроколичествами веществ. Хроматографический метод разделения веществ легко поддается автоматизации. Эти достоинства обеспечили широкое прнмепенио хроматографии в производстве и научных исследованиях. В промышленности хроматографию применяют для получения высоко-чистых веществ (редкоземельных элементов, актиноидов и др.). Хроматография широко используется как метод физико-химического исследования. С ее помощью можно изучать термодинамику сорбции, определять молекулярные массы веществ, коэффициенты диффузии, давление паров веществ, удельные поверхности адсорбентов и катализаторов и т. д. Широкое применение хроматография получила в аналитическом контроле различных смесей веществ. Важным преимуществом хроматографии является быстрота и надежность проведения анализа, [c.176]

    Методы разделения РЗЭ. Вследствие чрезвычайной близости свойств РЗЭ разделение их и получение соединений индивидуальных элементов — одна из самых сложных задач химической технологии. Особенно трудно получить элементы иттриевой подгруппы, так как у цериевых элементов различия в свойствах проявляются более заметно и, кроме того, часть элементов цериевой подгруппы обладает ярко выраженной переменной валентностью, что дает возможность использовать это и выделять их чисто химическими способами. [c.106]

    Открытием н.члиния заполнилась группа редких земель. Иллиний, названный по штату Иллинойсу и его университету, где производились главные работы над этим элементом, принадлежит, вероятно, к наименее распространенным в природе из всех элементов этой группы. Он может быть открыт путем рентгеновского спектрального анализа и определен магнитно-оптическим методом. Его свойства сходны со свойствами других элементов. Количества его, находимые в отходах монацита при производстве газокалильных сеток или в минералах (например, гадолинит), настолько малы, что фракционированных осаждений, производившихся ежедневно в течение трех лет и требовавших много тысяч операций, оказалось недостаточно для получения сколько-нибудь значительного количества чистой иллиниевой соли. Исследования показали, что его основность немного более основности иттрия и значительно больше основности самария. В общем основность редких земель понижается с повышением атомного номера. Исключение представляет иттрий. [c.619]

    Элементарный акт процесса разделения каких-либо двух компонентов смеси, соответствующий однократному осаждению, перекристаллизации, окислению, экстракции и т. д., характеризуется определенным коэ ициентом обогащения одного компонента относительно другого. Этот фактор тем больше, чем сильнее выявлено различие в химических свойствах компонентов по отношению к тому или иному использованному способу разделения. Для большинства рзэ (за исключением Се, Ьа и некоторых восстанавливающихся элементов) вне зависимости от способа разделения коэффициент обогащения чрезвычайно близок единице, поэтому для выделения достаточно чистых соединений индивидуальных элементов элементарный акт процесса приходится повторять много раз. Достаточно сказать, что в классических методах дробног осаждения или кристаллизации для получении кон центратов в области иттриевых рзэ с 60—80% основного компонента требовалось осуществить тысячи последовательных операций. Такая работа отнимала мно-гие годы, требовала больших количеств исходного материала и давала лишь небольшой выход счистых продуктов, поэтому все усилия концентрировались на пои-сках такого процесса, в котором число элементарных актов на единицу времени было бы возможно более высоким. [c.94]

    Порошок, получаемый восстановлением двуокиси титана гидридом кальция, имеет губчатую пористую структуру, высокодисперсеп. Используется в основном в качество геттеров. Из-за сильного загрязнения примесями не пригоден для изготовления конструкционных изделий методами порошковой металлургии. Порошок, получаемый электролизом расплавов, отличается низким содержанием примесей (особенно кислорода и азота). Свойства такого порошка можно регулировать в широких пределах, изменяя параметры электролиза. Форма его частиц дендритная (см. Дендриты). Электролитический порошок применяют в нроиз-ве конструкционных деталей различных приборов, пористых элементов для фильтрации агрессивных жидкостей и газов. Его используют также для создания геттеров (распыляемых и нераспыляемых) с высокой сорбционной емкостью, в качестве сырья при произ-ве соединений титана (гидридов, карбидов, нитридов и др.), для изготовления насадок реакционных колонн (тина колец Рашига), для произ-ва титановых сварочных и наплавочных (легированных карбидами вольфрама, бора) электродов методом горячей экструзии. Механически измельченный (гидридиый) порошок получают по схеме гидрирование — механическое измельчение — дегидрирование. Форма его частиц осколочная. Качество порошка, полученного по этой схеме, зависит от чисто- [c.573]


Смотреть страницы где упоминается термин Свойства и методы получения чистых элементов: [c.69]    [c.206]    [c.244]    [c.36]    [c.206]    [c.158]    [c.5]    [c.162]    [c.6]    [c.685]    [c.738]   
Смотреть главы в:

Введение в технологию полупроводниковых материалов -> Свойства и методы получения чистых элементов




ПОИСК





Смотрите так же термины и статьи:

Метод свойствам

Элементы свойства

получение и свойства



© 2025 chem21.info Реклама на сайте