Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Значение химической кинетики

    Если исследуемая реакция является сложной и протекает как ряд параллельных и последовательных превращений, представляющих собой отдельные стадии всего химического процесса, и, если все параметры, включая порядки реакций, неизвестны, то расшифровка кинетической схемы процессов и определение значений кинетических параметров является сложной задачей. Этой проблеме в настоящее время посвящено много работ [2, 7, 8]. Здесь рассмотрим некоторые наиболее, на наш взгляд, существенные и близкие к предмету книги методы решения указанного типа задач. Последним можна дать наименование обратные задачи химической кинетики , поскольку в них по известному решению, найденному экспериментально, должны быть определены структура и параметры уравнений кинетической модели. [c.427]


    Выяснением этих условий, установлением законов, определяющих скорость химических реакций, занимается химическая кинетика. Практическое значение химической кинетики очевидно, ибо, только зная ее законы, можно управлять протеканием химических процессов. [c.8]

    Значение химической кинетики [c.27]

    Значение химической кинетики в химии, биологии и сельском хозяйстве. [c.17]

    Предметом химической кинетики является изучение факторов, определяющих развитие реакций во времени. Значение химической кинетики возрастает в связи с интенсификацией металлургического производства (применение кислородного дутья, восстановление во взвешенном состоянии, непрерывные процессы). Кинетические данные необходимы для расчетов агрегатов и автоматизации управления ими. Наряду с этим кинетика имеет большое научное значение, так как она дает общие методы выяснения механизма реакций, начиная от обычных химических превращений до процессов, происходящих в звездах, и явлений наследственности в живых организмах. Целесообразно сначала рассмотреть кинетику гомогенных реакций, а затем гетерогенных, совершающихся в многофазных системах. [c.231]

    Для расчетов пределов самовоспламенения необходимо с помощью основного постулата химической кинетики найти значение ац. Чтобы учесть роль диаметра сосуда, основной постулат химической кинетики необходимо применять не путем подсчета скорости реакции в единице объема, как это обычно делается, а путем подсчета скорости данного вида реакций во всей реагирующей системе. [c.224]

    Изучение законов, которые описывают протекание реакций и процессов во времени, является предметом раздела физической химии, называемым химической кинетикой. Значение химической кинетики для современной металлургии определяется важностью изыскания высокопроизводительных и автоматизированных способов производства металла. Учение о скоростях химических реакций, в частности о скоростях переноса, основывается на представлении о молекулярном строении веществ. [c.10]

    Из всех вопросов, которыми занимается химическая кинетика, нет, вероятно, ни одного, который так бы приковывал к себе внимание, как предмет катализа. Весьма привлекательно само представление о чрезвычайно активном материале, который в небольших количествах может вызвать значительное и специфическое ускорение скорости химической реакции, не расходуясь сам по себе в ходе процесса. Эта привлекательность в большой мере усиливается в связи с огромным промышленным значением, которое имеют катализаторы. [c.531]


    Химическая кинетика — сравнительно молодая наука. Разработанные кинетические теории имеют большое значение для выяснения того, почему и как проходит химическая реакция, но с их помощью невозможно определить скорость реакции. До сих пор для получения кинетических данных необходимо проводить соответствующие исследования. [c.203]

    Система (3.81) является системой преобразованных уравнений с параметром h, и очевидно, что (3.79) и (3.81) эквивалентны лишь в пределе h = 0). Однако в отличие от (3.79) нельзя утверждать, что любое решение (3.81) вида у(у , i, h) устойчиво при всяком значении h. Иными словами, процедуры аппроксимации и линеаризации (если последняя проводится) можно рассматривать как источники возмущения на исходную задачу, и, если не принять специальных мер, то решение преобразованной задачи может потерять устойчивость, свойственную решению исходной задачи. Это — первая особенность решения уравнений химической кинетики. [c.171]

    Таким образом, установление механизма процесса и значений его параметров — одна из центральных проблем химической кинетики. Это весьма сложная задача, не имеющая универсального алгоритма решения. Каждый раз важнейшее значение имеет количество и качество априорной информации, которое зачастую определяет и саму процедуру поиска ответа. В этих условиях решающую роль играет проведение активного эксперимента, т. е. эксперимента, направленно спланированного на выяснение либо механизма процесса, либо значений его параметров. Речь идет именно о спланированном эксперименте (блок 12, см. рис. 14), потому что, к сожалению, оптимальные условия получения ценной апостериорной информации, как правило, не совпадают с оптимальными технологическими условиями проведения эксперимента [59]. Иными словами, то, что экспериментатору достается легко, не всегда достаточно информативно. [c.233]

    Расшифровки кинетических схем сложных химических реакций, определение их структуры и значений кинетических констант являются сложными задачами, объединяемыми термином обратные задачи химической кинетики . Изложение методов решения этих задач, выходящее за рамки настоящей книги, освещено в работах [4, 15-191. [c.78]

    При практическом использовании любой реакции скорость, с которой она протекает, играет очень большую роль. Так, от скорости реакции, применяемой в каком-нибудь производственном процессе, будет зависеть производительность аппарата и, следовательно, количество вырабатываемой продукции. Скорость процесса твердения цемента определяет собой сроки введения сооружения в эксплуатацию и т. д. Поэтому очень важно знать, с какой скоростью будет совершаться та или иная реакция в данных условиях и как нужно изменить эти условия, чтобы она протекала с желательной скоростью . Теоретическое значение вопросов кинетики заключается в том, что изучение их позволяет выяснить многие важные детали химических процессов и глубже понять механизм взаимодействия веществ. [c.462]

    Формальной кинетикой называется раздел химической кинетики, в котором рассматривается количественное описание хода химической реакции во времени при постоянной температуре в зависимости от концентрации реагирующих веществ. Знание кинетических характеристик химических процессов имеет большое практическое и теоретическое значение, так как позволяет рассчитывать реакторы и различную химическую аппаратуру и находить наиболее общие методы выяснения механизма реакции, открывая пути для сознательного управления и совершенствования существующих и создания новых технологических процессов. [c.309]

    Введение наблюдаемого порядка реакции. В этом случае показатель степени концентрации определяют не из стехиометри-ческого уравнения, а подбирают по данным эксперимента. В обш,ем случае кинетическое уравнение имеет вид (У 1-14), а для реакции аА + ЬВ сС + д,0 его следует записать в виде IV = рассматриваемом случае из эксперимента должны быть подобраны как к, так и г а, г в, Гс, Гц. Методы их определения для реакций, проводимых в замкнутом объеме, приводятся в учебниках по химической кинетике, а для высокотемпературных проточных реакций, имеющих техническое значение, были рассмотрены выше (стр. 160). [c.173]

    Двухфазная модель реакторов с зернистым слоем. До сих пор часто в математической модели реакторов члены уравнений материального и теплового балансов, выражающие скорость химических реакций, аппроксимируются уравнениями формальной химической кинетики с некоторыми эффективными значениями кинетических констант. Недостатками такого приближения, во-первых, является то, что эффективные константы должны определяться для каждого размера зерна и каждой структуры катализатора, а, во-вторых, в этом случае модель обладает слабой экстраполирующей способностью, особенно для быстрых и сильно экзотермических реакций, где велика роль процессов переноса. [c.291]

    В связи с этим проблемы исследования и математического моделирования реакций с участием твердых веществ выходят в настоящее время на одно из ведущих мест среди других проблем химической кинетики. Трудности в решении указанных проблем обусловливаются сложным характером макрокинетики процессов химического превращения сополимеров [Ц. К таким усложняющим факторам можно отнести локализацию реакционной зоны на поверхности раздела фаз твердого реагента и твердого продукта реакции, перемещение этой реакционной зоны вглубь твердого тела, возможность перехода реакции из одной макрокинетической области в другую даже при постоянных значениях температуры системы и концентраций компонентов, участвующих в реакции и т. п. Типичными процессами, обладающими данной спецификой, являются реакции сульфирования и фосфорилирования сополимеров на основе стирола и дивинилбензола. [c.333]


    Однако при конкретных электрохимических процессах доминирующее значение может иметь один из видов перенапряжения, который и определяет поляризацию процесса в целом. Общие законы химической кинетики приложимы к электрохимическим процессам. Однако при этом существует соотношение между скоростью процесса (плотностью тока) и потенциалом (или перенапряжением). Это соотношение выражается или с помощью кинетических уравнений, или графическим путем посредством поляризационных кривых, которые строятся в координатах ф — т — г Ig i — т]. [c.499]

    Основной задачей химической кинетики является расчет скоростей реакций и зависимости с = Щ). Для этого надо знать константы скоростей реакций, которые определяют из опытных данных. Для реакций первого порядка значения к могут быть найдены из (198.1) по скорости химической реакции и концентрации реагирующего вещества в момент времени Р. [c.536]

    Для химиков-органиков ее значение еще больше потому, что тип реакции дает ключ к пониманию структуры реагирующих веществ. При помощи химической кинетики можно изучить относительную прочность химических связей и молекулярную структуру соединений. [c.21]

    В последние годы опубликовано несколько монографий по химической кинетике. В Советском Союзе изданы монографии Н. Н. Семенова О некоторых проблемах химической кинетики и реакционной способности (1958) и В. Н. Кондратьева Кинетика газовых химических реакций (1958). В русском переводе вышла книга С. Бенсона Основы химической кинетики (1964). Эти обширные монографии дают достаточно полное представление о ряде важнейших направлений научных исследований в области химической кинетики. Однако, поскольку они содержат большое количество специального и зачастую дискуссионного материала, изучение этих монографий требует от читателя знакомства с основами химической кинетики. В то же время учебная литература по химической кинетике все еще немногочисленна. Особенно ощущался недостаток в учебнике по современным основам химической кинетики. По-видимому вследствие этого первое издание настоящего Курса химической кинетики , вышедшее в свет в 1962 г., разошлось очень быстро и возникла необходимость в выпуске второго издания — исправленного и дополненного. В предлагаемом курсе изложены теоретические основы кинетики гомогенных химических реакций. Кинетика гетерогенных реакций в курсе не рассматривается в связи с тем, что она в основном имеет значение для области гетерогенного катализа, которая представляет собой самостоятельный раздел науки. [c.4]

    Основные уравнения химической кинетики, а также закономерности тепло- и массообмена не имеют существенных различий для реакторов с фильтрующим, кипящим (КС) или движущимся слоем катализатора. В кинетических уравнениях, характеризующих реакторы кипящего слоя, изменяются лишь абсолютные величины составляющих этих уравнений по сравнению с неподвижным слоем. Так, значения к во взвешенном слое могут увеличиться в 3—10 раз за счет изотермического режима в реакторе КС, по сравнению с адиабатическим в реакторе фильтрующего слоя, с одновременным увеличением эффективной (используемой) поверхности катализатора. Движущая сила процесса ДС в результате перемешивания в реакторе КС может значительно понизиться, по сравнению с реактором фильтрующего слоя, работающим в режиме, [c.113]

    Строение двойного электрического слоя (д. э. с.) имеет большое значение в кинетике электродных процессов. Равновесные потенциалы не зависят от строения д. э. с. Это объясняется тем, что равновесные электродные потенциалы определяются химическими потенциалами атомов металла в глубине электрода и ионов металла в глубине раствора электролита. Скорость электрохимической реакции, ее механизм и влияние на нее различных факторов зависят от строения двойного электрического слоя. Двойной электрический слой может образоваться при обмене ионами между электродом и раствором электролита. Если химический потенциал ионов в растворе электролита больше, чем атомов в металле, то выделившиеся на поверхности электрода ионы притягивают к себе анионы из раствора. Одной обкладкой д. э.с. служат положительные заряды со стороны металла, другой обкладкой — отрицательные заряды анионов со стороны раствора. Наоборот, если химический потенциал атомов в металле больше химического потенциала его ионов в растворе, то. перешедшие из металла в раствор ионы притянутся к его поверхности избыточными электронами. При этом также об- разуется двойной электрический слой, но с противоположным расположением заряда. Обкладка д. э. с. со стороны металла заряжена отрицательно (избыточные электроны), а со стороны раствора электролита — положительно (катионы). [c.299]

    Большое значение имеет и то, что уравнение (2.10) в известном смысле является прямым обобщением уравнений химической кинетики (и кинетики заселенностей уровней и т.п.). Если не учитывать переходы между уровнями, оно сводится к уравнениям обычной химической кинетики. [c.40]

    Как следует из определения жесткости, жесткая задача Коши должна иметь отрицательный спектр действительной части собственных значений якобиана. Однако может возникнуть ситуация, когда в локальной области якобиан системы уравнений имеет положительную действительную часть собственных значений. В задачах химической кинетики такая ситуация не редкость и встречается при описании взрывных процессов, когда в решении появляются резко растущие компоненты. В таких случаях сама задача Коши уже перестает быть устойчивой, и нельзя требовать устойчивости и численного метода. [c.132]

    Если на величину возмущений не накладывается никаких ограничений, то при любых возмущениях говорят об устойчивости "в большом". Обычно эту проблему исследуют, рассматривая так называемый фазовый портрет системы, с помощью которого выясняется качественная структура расположения фазовых траекторий системы. Фазовый портрет позволяет получить представление о всей совокупности процессов, которые могут иметь место в системе при данных значениях пара тров. Для построения фазового портрета не требуется аналитическое решение дифференциальных уравнений, что в химической кинетике большей частью не удается осуществить из-за нелинейности этих уравнений. [c.231]

    На основе метода переходного состояния автором был разработан и применен приближенный метод расчета стерических факторов радикальных реакций. Это перспективный метод, имеющий значение для химической кинетики вообще. [c.8]

    Многие процессы химической кинетики лимитируются скоростью диффузии реагентов [89], в связи с чем определение коэффициентов диффузии имеет большое практическое значение. [c.49]

    Химическая кинетика приобретает большое значение при изучении сложных явлений, включаюш,их химическое превращение в качестве одного из основных элементов (процессы горения, биологические процессы). [c.4]

    Химическая кинетика представляет не только научный интерес, но имеет и большое практическое значение. Химическая кинетика играет важую роль в химической технологии. Она открывает возможность сознательного управления промышленными процессами, позволяет ставить и решать вопросы интенсификации технологических процессов. [c.4]

    Больщое значение химической кинетики в современных исследованиях привлекает к ней научных работников, не получивщих специальной подготовки в этом направлении. На первых порах им крайне необходимы пособия, излагающие основы предмета на высоком научном уровне, но в сжатой и доступной форме. Именно к таким книгам и относится небольщая по объему монография Г. Эвери Основы кинетики и механизмы химических реакций . Автору удалось затронуть и кратко изложить практически все основные разделы химической кинетики. [c.5]

    Термодинамика играет исключительно важную роль в решении задач химической кинетики. Эта роль термодинамики особенно возросла с развитием экспериментальных методов атомной и молекулярной физики, сделавших возможным вычисление важных для кинетики термодинамических величин на основе статистики и квантовой механики. Одной иэ таких величин, в частности, является константа равновесия, которая с точки зрения химической кинетики прежде всего представляет самостоятельный интерес как величина, определяющая предел измепонип химической системы при заданных условиях протекания реакции константа рапнов( Сия имеет такжэ большое вспомогательное значение, так как на основании известного значения этой величины может быть вычислена константа скорости обратной реакции если известна константа скорости прямой реакции. [c.10]

    Величина Став носит название диаметра столкновения. Формула (П1,97) выведена для идеального газа( с тем лишь уточнением, что сталкивающимся частицам заданы конечные размеры), т. е. при отсутствии взаимодействия. В этом случае величина алв совпадает со значением, определенным любыми другими методами (например, спектроскопически, электронографически, рентгенографически и т. д.). Однако в химической кинетике никак нельзя пренебречь взаимодействием, ибо самим [c.119]

    Теория жидкого состояния значительно хуже разработана,, чем теория газообразного состояния, и это отчетливо сказывается на уровне теоретической интерпретации явлений химической кинетики в конденсированной фазе. Теория реакций в газовой фазе базируется иа двух следствиях молекулярно-кинетической теории — возможности расчета числа столкновений между реагирующими молекулами и применимости к реагирующей системе максвелл-больцмановского распределения. При переходе к реакциям в растворах приходится рассматривать третий объект — молекулы растворителя. При этом возможны два крайних случая 1) молекулы растворителя не входят в состав активного комплекса, и их взаимодействие с молекулами растворенного вещества сводится к столкновениям н ван-дер-ваальсовому взаимодействию 2) молекулы растворителя входят в состав активного комплекса и в той илн иной мере определяют кинетические свойства последнего. Взаимодействие второго типа, пожалуй, больше относится к каталитическим явлениям и будет рассмотрено ниже. Ограничиваясь первым случаем, рассмотрим, в какой мере методы кинетической теории применимы к реакциям в растворах. Можно лн для подсчета числа столкновений между реагирующими молекулами в растворах использовать газокинетическое уравнение Дать обоснованный ответ на этот вопрос трудно, и приходится ограничиваться критерием практической применимости расчета. Поскольку при изучении реакций в растворах удобно пользоваться значениями концентраций, выраженных в моль1л, газокинетическое выражение для константы скорости запишется в виде  [c.181]

    Химическая кинетика изучает скорость и механизм протекания хилн1ческих процессов, а также зависимость их от различных факторов. Помимо химических процессов в химической кинетике рассматриваются также скорости процессов фазовых превращений и процессов раствореиия. Прикладное значение кинетики определяется тем, что для практического иснользосапия какой-либо реакции необходимо уметь управлять ею, т. е. знать скорость ее протекания в данных условиях и способы изменения этой скорости. Теоретическое значение кинетики состоит в том, что изучение протекания процессов во времени 1юзволяет выяснить многие важные особенности процесса, проникнуть в сущность механизма химического взаимодействия. [c.322]

    Из уравнения (ХХУ.20) видно прогрессивное нарастание концентрации свободных радикалов, а следовательно, и скорости цепной реакции. Через каждые 1/ф с концентрация свободных радикалов, а следовательно, ь скорость цепной реакции возрастает в е раз и за время нескольких интервалов 1/ф практически полное отсутствие реакции сменяется взрывным протеканием процессов. Для разветвленных цепных реакций характерно наличие двух резко различающихся режимов протекания процесса. Если скорость обрыва больше скорости разветвления цепей, то обеспечивается стационарный режим процесса, причем скорость процесса неизмеримо мала. Если скорость обрыва меньше скорости разветвления, то развивается нестационарный автоускоряющий-ся процесс, заканчивающийся цепным воспламенением смеси. Переход от условия / к условию / > <7 может произойти при незначительном изменении одно] о из параметров, определяющих скорости обрыва или разветвления цепей давления, температуры, состава смеси, размера реакционного сосуда, состояния стенок сосуда. Таким образом, незначительное изменение одного из параметров может вызвать переход эт неизмеримо медленной стационарной реакции к быстрому взрывному процессу или наоборот. Такие явления в химической кинетике назьЕваются предельными или критическими явлениями. Значение парг1метра, при котором происходит переход от одного режима к другому, называется пределом воспламенения. [c.390]

    Проблема редукции систем дифференциальных уравнений химической кинетики к системам меньшей размерности является одной из классических задач математического моделирования механизмов сложных химических реакций. В работе [1] был предложен метод редукщи, который состоит в расчете в каждый момент времени значений всех скоростей реакций и/, и отношений модулей концентраций ко времени х, 1) 1 /г. В [2] построен компьютерный алгоритм, основанный на методе [1], позволяющий автоматизировать щюцесс редукции (то есть процесс выделения временных масштабов и соответствующих им упрощенных подсистем, которые могут быть решены аналитически). [c.45]

    Входящие в выражения для к и сечения можно во многих случаях определить из пучковых экспериментов, функции распределения и заселенности уровней — тоже из эксперимента, а для медленных реакций принять их максвелловскими и больцманоаскими. Тогда, зная пороговую энергию реакции, можно рассчитать к, а затем сравнить полученное значение с величиной к, найденной из химического кинетического эксперимента. Заметим, что в обычной полуэмпирической химической кинетике теоретическое и экспериментальное значения к практически никогда не сопоставляются. Возможные для молекулы химические реакции и их скорости определяются ее строением (а для немономолекулярных реакций — также и строением других участников реакции) и потенциалами взаимодействия. Понятие строения молекулы может быть сформулировано различным образом. По-видимому, его лучше всего выразить так строение молекулы, состоящей из некоторых атомов, - это система ее квантовых уровней и пространственного распределения составляющих ее частиц. [c.12]

    Низкие значения скорости могут наблюдаться либо во внутридиффузион-ной области, либо в области чистой химической кинетики. Первый случай отмечается, если пористость гранул катализатора мала, гранулы большие, а давление высокое (и, следовательно, коэффициент диффузии невелик). Во втором случае имеет место чистая кинетическая область. Большинство катализаторов работает во внутридиффузионной области, некоторые — на границе с внешнедиффузионной областью, другие — в области химической кинетики. Наивысшиё активности (отмеченные на кривых) находятся в верхней части графика слева, что показывает желательность высокого соотношения объема каталитического вещества и объема носителя, малых размеров кристаллов активной фазы, малого размера и оптимальной пористости гранулы катализатора. [c.36]

    Начало XX века ознаменовалось, после открытия Ромбергом свободного трифенилметильного радикала, возрождением представления о свободных радикалах как реально существующих осколках молекул. До этого времени на протяжении-40 лет идея о реальности радикалов была изгнана из химии. В радикалах видели только удобный символический прием изображения строения органических соединений. После экспериментального подтверждения реальности радикалов с новой силой ожил интерес исследователей к радикалам, к изучению той роли, которую они могут играть в реакциях. Эту роль еще в середине XIX века предвидели А. М. Бутлеров и другие исследователи, полагавшие, что радикалы реально существуют. Новый мир радикалов как частиц с весьма своеобразными свойствами, необычайно активных относительно реакций, в которые они могут вступать, прёдстал перед взором исследователей. Возникла новая область науки — химия радикалов, тесно связанная с учением о скоростях превращений — химической кинетикой. Неудивительно-поэтому, что в первой четверти XX века появляются работы, в которых настойчиво проводится мысль о значении радикалов в процессе пиролиза органических веществ [Ц —13]. Встречающиеся в этих работах данные о влиянии температуры и давления на быстроту крекинга и выход продуктов но-13 [c.18]

    За последние несколько лет из лаборатории крекинга Института нефтехимического синтеза Академии наук вышел ряд работ (К. П. Лавровский, А. М. Бродский, Р. Д. Калиненко и др.), посвященных исследованию крекинга алканов при высо-з(их температурах (700—1000° )i[110—122], называемого в технической литературе пиролизом. Эти исследования являются непосредственным и логическим развитием выпаеописанных работ по теории крекинга алканов. С переходом к более высоким температурам возможны изменения механизма распада и отклонения от кинетических зависимостей. Выяснение причин этих отклонений имеет большое значение для представлений о крекинг-процессе и практического применения его. С точки зрения химической кинетики, эти исследования представляют значительный интерес, так как позволяют выяснить пределы экстраполяции общих кинетических [c.58]


Библиография для Значение химической кинетики: [c.9]   
Смотреть страницы где упоминается термин Значение химической кинетики: [c.328]    [c.18]    [c.214]    [c.103]    [c.15]    [c.55]    [c.155]    [c.333]   
Смотреть главы в:

Неорганическая химия Изд2 -> Значение химической кинетики




ПОИСК





Смотрите так же термины и статьи:

Кинетика химическая



© 2025 chem21.info Реклама на сайте