Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Концентрация ионов на поверхностях раздела

    Причиной электрофореза, как и других электрокинетических явлений, служит наличие двойного ионного слоя (ДИС) на поверхности раздела фаз. При положительно заряженной дисперсной фазе коллоидные частицы вместе с адсорбированными на них положительными потенциалопределяющими ионами движутся к катоду, отрицательно заряженные противоионы диффузного слоя —к аноду. В случае отрицательного заряда частиц движение происходит в обратных направлениях. Дисперсная фаза смещается относительно дисперсионной среды по поверхности скольжения. Поэтому, измерив скорость электрофореза, находят потенциал коллоидной частицы, т. е. электрокинетический или (дзета) потенциал. Величина -потенциала характеризует агрегативную устойчивость золя и зависит от толщины диффузного слоя, концентрации и заряда противоионов. Скорость электрофореза определяют методом подвижной границы — наблюдают за передвижением границы между окрашенным коллоидным раствором и бесцветной контактной жидкостью. Наилучшей контактной жидкостью является ультрафильтрат самого золя. Для приближенных измерений используют воду. Сущность метода состоит в определении времени, за которое граница окрашенного золя переместит- [c.205]


    Электрическое поле, создаваемое зарядом металла в окружающем его растворе, вызывает неравномерное распределение ионов в растворе вблизи металла. Если металл заряжен отрицательно (рис. 146), то катионы, находящиеся в растворе вблизи него, притягиваясь металлом, концентрируются около него, в особенности в слое, непосредственно прилегающем к поверхности металла. Анионы же отталкиваются металлом, и их концентрация в растворе вблизи металла будет понижена, в особенности в слое, непосредственно прилегающем к поверхности металла. В результате раствор вблизи металла приобретает заряд, противоположный по знаку заряду металла. Образуется двойной электрический слой. Этот слой характеризуется различным распределением ионов разного знака в поверхностном слое раствора и неодинаковым распределением зарядов в поверхностном слое металла. Он связан с определенной разностью потенциалов (скачком потенциала) на поверхности раздела металл/раствор .  [c.416]

    Представим себе поверхность твердого тела на границе с га-зом. Внутри твердого тела частицы (атомы, ионы или молекулы), образующие его решетку, правильно чередуются в соответствии с кристаллической структурой, причем их взаимодействия уравновешены. Состояние же частиц, находящихся на поверхности, иное—их взаимодействия не уравновешены, и поэтому поверхность твердого тела притягивает молекулы вещества из соседней газовой фазы. В результате концентрация этого вещества на поверхности становится больше, чем в объеме газа, газ адсорбируется поверхностью твердого тела. Таким образом, адсорбция представляет собой концентрирование вещества на поверхности раздела фаз (твердая—жидкая, твердая—газообразная, жидкая газообразная). Вещество, на поверхности которого происходит адсорбция, называется адсорбентом, а поглощаемое из объемной фазы вещество называется адсорбатом. Адсорбция из смесей связана с конкуренцией молекул различных компонентов. Например, при адсорбции из бинарного жидкого раствора увеличение концентрации у поверхности одного компонента (сильнее адсорбирующегося) приводит к уменьшению концентрации другого (слабее адсорбирующегося). [c.436]

    Действие трифенилметильного иона проявляется при его относительно высоких концентрациях в кислоте. Измерения поверхностного натяжения не показали избытка этого иона на поверхности раздела кислота/воздух или кислота/углеводород, так что, по-ви-димому, он равномерно распределен в массе кислоты. Трифенил-метильный ион может приводить к структурным изменениям кислоты или выступать в качестве промежуточного соединения при гидридном переносе, но, не обладая поверхностно-активными свойствами, он вряд ли оказывает действие на реакции, протекающие на поверхности раздела фаз. [c.25]


    Если два раствора с различными концентрациями ионов водорода разделены тонкой стеклянной мембраной, то между ее внутренней и внешней поверхностями возникает разность потенциалов, Электродный процесс сводится в этом случае к обмену ионами водорода между двумя фазами - раствором и стеклом  [c.50]

    Подобное соединение может быть осуществлено с помощью мембраны, обе поверхности которой соприкасаются с двумя непрерывно обновляющимися растворами электролитов таким образом, концентрации у поверхностей раздела и толщина промежуточного слоя сохраняются постоянными, а внутри слоя поддерживается устойчивое состояние. Математическая обработка случая соединения с вынужденной диффузией сложна для электролитов, содержащих только одновалентные ионы, может быть получено так называемое уравнение Планка [c.296]

    D Ns, и если концентрация на поверхности раздела металл— окисел пренебрежимо мала, то уравнение (70) сводится для двухвалентных ионов к равенству [c.130]

    Действительно, при растворении металлического железа в шлаках по реакции (7) образующиеся ионы Ре2+ диффундируют в объем жидкой фазы, выравнивая градиент концентраций между поверхностью раздела и массой расплава. Необходимая концентрация ионов Ре " в зоне реакции, или окислительный потенциал поддерживается диффузией электронов, или точнее электронным об меном из объема шлака к межфазно границе. [c.170]

    Если два раствора с различными концентрациями ионов водорода разделены тонкой стеклянной мембраной, то между ее поверхностями возникает очень небольшая разность потенциа- [c.298]

    Условия мгновенной реакции полностью не выполнимы. Действительно, даже при о/ 7 о нельзя утверждать, что концентрация 0Н на границе раздела фаз будет равна нулю. Между границей раздела фаз и фронтальной плоскостью реакций будет существовать конечная концентрация продукта реакции СОз . Карбонат-ион может гидролизоваться по реакции (VI). Таким образом, между поверхностью раздела фаз и фронтальной плоскостью реакции будет хотя и низкая, но конечная концентрация ОН . В некоторых аспектах этот вопрос рассматривался Данквертсом и Кеннеди [5]. Они получили уравнения, позволяющие оценить поправку к уравнениям мгновенной реакции. Влияние этой поправки невелико [4]. [c.138]

    Ион Н5- не может десорбироваться в газовую фазу, так что его поток к поверхности раздела равен нулю. Если подразумевается, что градиент концентраций Н5- на поверхности равен нулю (что является упрощением в случае иона), то имеем [c.158]

    В ряде случаев процесс экстракции усложняется, в частности, вследствие химической реакции, протекающей в объеме или на поверхности раздела фаз. При определенных условиях для лучшего разделения исходного раствора применяют специфические способы экстракции. Так, например, исходный раствор, представляющий собой смесь органических веществ, оказывается целесообразным обрабатывать двумя взаимно нерастворимыми экстрагентами, между которыми распределяются извлекаемые компоненты (стр. 537). Для облегчения перехода экстрагируемых компонентов, например солей металлов, в органическую фазу иногда применяют высаливание, осуществляемое путем добавки соли с одноименными ионами в исходный водный раствор, а также регулируют кислотность или pH раствора, концентрацию экстрагента в инертном разбавителе, служащим для уменьшения его вязкости, и т. д. [c.521]

    Как было показано в разд. 33.3, при растворении вещества при определенной температуре образуется насыщенный раствор, в котором существует равновесие между нерастворившимся веществом, так называемым донным осадком (если растворяют твердое вещество в жидкости), и ионами растворившегося вещества. Скорость растворения определяется преимущественно площадью поверхности вещества и перепадом концентраций. Площадь поверхности увеличивают путем измельчения, а перепад концентраций— перемешиванием или встряхиванием раствора он возрастает при перемещении концентрированного раствора к границе раздела твердое вещество/жидкость. Поскольку скорость реакции увеличивается при повышении температуры, растворение ускоряют нагреванием. [c.486]

    Таким образом, при погружении металла в воду или в раствор, содержащий ионы, данного металла, на поверхности раздела металл раствор образуется двойной электрический слой и возникает разность потенциалов скачок потенциала) между металлом и раствором. Величина этой разности потенциалов зависит от свойств металла и раствора, в особенности от концентрации ионов данного металла в растворе и от характера взаимодействия между частицами в двойном электрическом слое. [c.417]

    Диффузионным потенциалом называется разность потенциалов, возникающая на поверхности раздела между двумя растворами, различающимися или по виду растворенного вещества, или по его концентрации. Эти скачки потенциала невелики они обычно не превышают 0,03 в и могут уменьшаться до нуля. Причиной их служит различие в подвижностях и, следовательно, в скоростях диффузии ионов различного вида. Рассмотрим только простейший случай, когда соприкасающиеся растворы содержат один и тот же электролит и различаются только по его концентрации. Обратимся к цепи (ХП1, 26). [c.438]


    Большинство опубликованных данных по кинетике осаждения показывает, что скорость процесса столь низка, что диффузия не может быть лимитирующей стадией, а решающую роль играют явления па поверхности раздела [11]. Осаждение сильно зависит от pH, концентрации раствора, температуры, порядка смешивания, скорости перемешивания и наличия примесных ионов. [c.19]

    Следует ожидать, что эти вещества способны регулировать поведение карбоний-ионов на поверхности раздела кислота/углеводород при значительно более низких концентрациях, чем трифенилме-тильный ион. Полной картины превращения 3-метилпентана не имеется, однако гфи пилотных и промышленных исследованиях установленно, что катионоактивные вещества заметно улучшают алкилирование. [c.26]

    Модель реакции алкилирования, разработанная в настоящей статье (рис. 18), предполагает протекание процесса как в кислотной фазе, так и на поверхности раздела кислота/углеводород. Образование триметилпентанов и других октанов протекает преимущественно на поверхности раздела фаз. Добавка катионоактивных азотсодержащих веществ снижает стабильность промежуточно образующихся карбоний-ионов, ускоряя отрыв гидрид-ио- нов от молекулы изобутана или других потенциальных доноров гидрид-ионов. Ускорение гидридного переноса способствует более быстрому насыщению карбоний-ионов на поверхности раздела фаз, ведущему к образованию целевого алкилата, и соответственно замедляет протекание полимеризации и других побочных реакций. Вполне вероятно также, что поверхностно-активные вещества физически отделяют карбоний-ионы один от другого на поверхностной пленке, препятствуя полимеризации карбоний-иона и олефина. В такой пленке концентрация карбоний-ионов должна быть ниже, чем без добавки, и эффект действия масс тоже будет направ- [c.31]

    Скорость окисления цинка почти не зависит от давления О , так как концентрация промежуточных ионов цинка на границе раздела кислород — оксид очень мала и дальнейшее ее снижение вследствие повышения давления Ог лишь незначительно влияет на градиент концентрации между границей раздела и поверхностью металла, где концентрация в междоузлиях наибольшая. [c.198]

    Поверхностная проводимость, отнесенная к I см поверхностного слоя, называется удельной поверхностной проводимостью Кв- Она не зависит от величины поверхности и, следовательно, от радиуса капилляра, иначе говоря, не зависит от дисперсности системы и концентрации раствора. Таким образом, Ка характеризует ионную природу поверхности раздела. [c.170]

    Здесь значения представляют собой относительную концентрацию противоиона, необходимую для снижения электрокинетического потенциала до одного и того же значения, например 50 мВ. Как видно, этот ряд не дает каких-нибудь точных отношений. Этого, впрочем, и нельзя было ожидать, так как способность иона сжимать двойной электрический слой зависит не только от его валентности, определяющей электрическое взаимодействие со стенкой, но и от его размера, поляризуемости, способности гидратироваться и т. д. Мюллер, исходя из представлений Гуи и Чэпмена, чисто математическим путем показал, что способность противоионов понижать -потенциал действительно должна быстро расти с их валентностью, причем для случая плоской поверхности раздела его вычисления дали такой ряд  [c.180]

    Диффузионный потенциал возникает на поверхности раздела двух растворов электролитов, различающихся либо по виду электролита, либо по концентрации. Причиной возникновения диффузионного потенциала является различие в подвижностях ионов электролита. Ионы, обладающие большей подвижностью, диффундируют в более разбавленный раствор с большей скоростью, поэтому поверхность соприкосновения двух растворов заряжается положительно со стороны более разбавленного раствора, если катион движется быстрее аниона. 06- [c.217]

    Диффузионный потенциал возникает на поверхности раздела двух растворов электролитов, различающихся либо по виду электролита, либо по концентрации. Причиной возникновения диффузионного потенциала является различие в подвижностях ионов электролита. Ионы, обладающие большей подвижностью, диффундируют в более разбавленный раствор с большей скоростью, поэтому поверхность соприкосновения двух растворов заряжается положительно со стороны более разбавленного раствора, если катион движется быстрее аниона. Образуется диффузный двойной электрический слой с соответствующим скачком потенциала. Эта разность потенциалов ускоряет медленно перемещающийся ион и замедляет более подвижный, пока не наступит состояние, при котором скорости ионов сравняются. Результирующий ток через границу станет теперь равным нулю. Таким образом, дальнейшее взаимное удаление зарядов прекращается. Стационарная разность потенциалов в пограничном слое между растворами называется диффузионным потенциалом. [c.181]

    Таким образом, не изменяясь со степенью дисперсности капиллярной системы и с концентрацией ионов в растворе, удельная поверхностная проводимость Кз характеризует ионную природу поверхности раздела. [c.214]

    Приведенное выражение показывает, что коэффициент эффективности а увеличивается при уменьшении радиуса пор г, а также с уменьшением концентрации раствора (пропорциональной электропроводности иу). Действительно, в обоих случаях общее количество ионов в объеме капилляра уменьшается гораздо быстрее, чем число ионов двойного слоя. Поэтому относительная доля поверхностных ионов будет возрастать с уменьшением г и ху. Таким образом, коэффициент эффективности а, подобно изменению чисел переноса в диафрагме (работа 36), характеризует долю участия поверхности раздела, т. е. ионов двойного слоя, в общем переносе электричества через капиллярную систему. [c.215]

Рис. 48. Распределение концентрации ионов К" " и 1 у поверхности раздела раствор — воздух Рис. 48. <a href="/info/30656">Распределение концентрации</a> ионов К" " и 1 у <a href="/info/472871">поверхности раздела раствор</a> — воздух
    Когда между частичками дисперсной фазы и дисперсионной средой нет значительного взаимодействия (система лиофобна), сближение частичек происходит подобно сближению в вакууме. Расклинивающее давление равно нулю до расстояний Ю"" см, затем оно становится отрицательной величиной, т. е. фактором коагуляции. Чем выше лио-фильность системы, тем выше положительное расклинивающее давление или толщина сольватных оболочек, уравновешивающих своим расклинивающим давлением постоянную внешнюю силу, стремящуюся сблизить частички, и тем выше устойчивость системы. Поэтому стабилизация лиофобных дисперсных систем основана на лиофилизации поверхности частичек дисперсной фазы. Такая лиофилизация осуществляется либо созданием адсорбционного слоя ориентированных молекул поверхностно-активного вещества, изменяющего природу поверхности дисперсных частичек, либо адсорбцией ионов и созданием двойного электрического слоя на поверхности раздела фаз. Двойной электрический слой ионов при достаточно малой концентрации электролита в дисперсионной среде всегда размыт и образует вокруг коллоидной частички гидратную оболочку значительной толщины. Эта оболочка проявляет положительное расклинивающее давление, обусловленное электростатическими силами. [c.89]

    Схематически водородный электрод обозначают 2Н+[Н2, Р1, где вертикальная черта обозначает поверхность раздела фаз. Электродный потенциал такого электрода зависит от концентрации ионов водорода в растворе и от давления водорода в газовой фазе. Платина здесь играет роль только инертного проводника. Когда водородный электрод соединяется с электродом, окисляющимся легче водорода, на нем протекает процесс восстановления ионов водорода  [c.329]

    И. Каково строение двойного электрического слоя в растворах 1,1-зарядных поверхностно-инактивных электролитов по Гельмгольцу, Гун —Чапману, Штерну Нарисуйте график изменения концентрации ионов (катионов и анионов), а также потенциала электрода как функцию расстояния от поверхности раздела электрод — раствор для трех названных моделей. [c.229]

    Рассмотрим влияние химически адсорбированного кислорода и паров воды на полупроводниковые свойства германия. Окисленная поверхность германия, содержащая оксид и гидроксид, проницаема для водных паров. На поверхности раздела между германием и оксидным слоем молекулы воды отдают электроны германию и образуют ионы Н, а гидроксильные группы связываются с поверхностными атомами германия. Процесс образования ионов Н резко возрастает при большой концентрации дырок вблизи поверхности. При этом энергетические уровни непосредственно пол поверхностью полупроводника настолько искажаются, что, например, приповерхностные участки базовой области германиевого триода от эмиттера до коллектора могут превращаться в материал л-типа, и базовый слой окажется за-шунтированным.-Очевидно, окончательные этапы изготовления прибора должны проходить в сухом воздухе и р—л-переходы должны быть герметизированы. В оксидном слое у поверхности раздела с полупроводником ионы Н способны перемещаться. В определенных условиях ионы Н захватывают электроны из объема германия, уменьшая тем самым число свободных электронов. При этом изменяются объемный [c.250]

    Шервуд и Вей [4] установили, что для ионных компонентов движущая сила массопередачн не адекватна просто градиенту концентраций. В этом случае условия отсутствия массопереноса. могут создаться при конечном градиенте концентраций на поверхности раздела. [c.24]

    Поскольку 0 = 2 (Nio2-), концентрация вакансий ионов Ni на поверхности раздела окисел—кислород зависит от корня шестой степени из величины давления кислорода, т. е. [c.131]

    Как указывалось выше, поливиниловый спирт является стабилизатором, который, распределяясь на поверхности раздела дисперсной фазы и дисперсионной среды, создает структурно-механический барьер, препятствующий сближению частиц. Данные физико-химического анализа смешанного стока после злектрообработки в течение 4 мин в однородном поле при напряженности 5 В/см в зависимости от концентрации ионов Са и сольвара в исходной дисперсии приведены ниже  [c.105]

    В настоящее время существуют следующие представления о строении двойного слоя. Соприкосновение двух фаз, как указывалось, приводит к возникновению противоположных зарядов на границах раздела фаз. Ионы и молекулы л идкой фазы, находящиеся в непосредственной близости от поверхности твердой фазы, испытывая действие больших электростатических сил, образуют адсорбционный слой. На ионы вне этого слоя действуют противоположно направленные силы с одной стороны — силы молекулярного теплового движения, которые стремятся распределить их равномерно, с другой стороны — силы электростатического поля зарядов, представляющего разность между поверхностной плотностью зарядов твердой фазы и плотностью зарядов адсорбционного слоя. В результате концентрация ионов по мере удаления от границы адсорбционного слоя уменьшается по статистическому закону Больцмана аналогично распределению газовых молекул в поле сил тяжести. Слой с рассеянным распределением. ионов называется диффузным. [c.112]

    Результаты упомянутых исследований показывают, что окисление протекает за счет диффузии ионов кислорода через поверхность раздела металл—оксид (решетку с анионными дефектами). На основании этого было сделано предположение, что трехвалентные ионы азота, присутствующие в решетке 2гОг, увеличивают концентрацию анионных дефектов и ускоряют, благодаря этому, движение ионов кислорода. Однако при таком механизме окисление непременно ускорялось бы в атмосфере кислорода, а это не так. Толкование этих процессов осложняется к тому же [c.380]

    Анализ последнего уравнения показывает, что если объем частиц V большой, то второй член очень мал и им можно пренебречь. И, наоборот, если при высокой степени дисперсности объем частиц V очень мал, энергия частиц будет в основном связана с энергией поверхности. Иными словами, в грубодисперсных системах преобладает объемная энергия, связанная с массой, а в высокодисперсных системах — поверхностная энергия. Дальнейшее дробление дисперсной фазы вплоть до молекул или ионов приводит к исчезновению поверхности раздела фаз. Прп этом второй член уравнения будет равен ну-лю. Поэтому высокодисперсные системы обладают большой свободной поверхностной энергией а5. Так даже при малой концентрации, например 1 %, суммарная площадь поверхности раздела 5 в 1 л беггтонитовои суспензии измеряется тысячами квадратных метров. [c.39]

    Образо11ание тонких слоев этих соединений на поверхности металла вызывает яоявленне цветов побежалости, увеличение толщины слоя продуктов реакции лриводит к окалине. Стадии этого довольно сложного процесса включают адсорбцию газа на поверхности, реакции на поверхности раздела, фаз, образование зародышей кристаллов, образование поверхностного слоя и про-дессы диффузии подвижных частиц сквозь этот слой в обоих направлениях. Это движение обусловлено уменьшением концентрации реагирующих частиц на поверхности и возникшим вследствие этого градиентом концентрации диффундирующих по ионным вакансиям катионов металла (например, Си+) и одновременным движением дефектов электронов (дырок) (например, Си +) к поверхности раздела твердых фаз. На поверхности протекает окислительно-восстановительная реакция с образованием нового твердого вещества. Для системы Си/Оа происходит, например, образование оксида меди(1)  [c.436]

    Ид йз самой запйсй, пofeнцйaл, йбзнйкающии на поверхности раздела угольIсерная кислота, в общей цепи встречается дважды и притом с противоположными знаками. Можно мысленно удалить оба угольных электрода, тогда на их месте в цепи возникает граница раздела раствор [раствор. В этом случае э. д. с. всей гальванической цепи также будет складываться из суммы трех потенциалов двух потенциалов, возникающих на поверхности раздела фаз металл I раствор, и одного — на границе раздела раствор II раствор II. Внутри растворов солей (при одинаковых их концентрациях) и внутри металлической фазы скачка потенциалов не возникает. Тот скачок потенциала, который возникает на границе раздела растворов (так называемый диффузионный потенциал), имеет в общем сравнительно малую величину. Напомним, что возникновение этого скачка потенциалов обусловлено тем, чта различные ионы обладают неодинаковой подвижностью в растворе. [c.135]

    Из приведенного уравнения вытекает, что ионная атмосфера должна быть тем меньше, чем выше концентрация ионов в растворе и чем больше их валентность. Естественно, что аналогичное соотношение соблюдается и тогда, когда ионная атмосфера образуется не вокруг иона, а вблизи границы раздела фаз. Однако только при малых потенциалах поверхности значение -потенциала определяется одной толщиной ионной атмосферы и только в этих условиях на нее могут одинаково влиять как заряды противоионов, так и заряды побочных ионов, присутствующих в системе. При высоких потенциалах поверхности (больше 50 мВ), как показывает теория, на снижение -потенциала во много раз сильнее влияет заряд противоиона, в особенности когда он велик. Физический смысл этого явления заключается в том, что сильно заряженный противоион-здектролита притягивается к поверхности и сильно ее экрандрует. Возрастание способности противоиона снижать -потенциал с ростом его валентности наглядно видно из следующих опытных данных  [c.180]

    Интенсивному применению техники ЭПР для обнаружения и исследования электрохимически генерированных (ЭХГ) органических анион- и катион-радикалов положили начало опубликованные в 1961—1962 гг. работы А. Маки и Д. Джеске Дж. Френкеля и сотр. Такое сочетание спектроскопии ЭПР с ЭХГ связано с необходимостью учета ряда специфических обстоятельств. Главная особенность ЭХГ состоит в том, что образование радикальных частиц происходит не в объеме раствора, а на границе раздела фаз электрод/раствор и контролируется скоростью диффузионного подвода молекул деполяризатора к поверхности электрода. Тем самым ограничиваются возможности создания в растворе достаточно высокой концентрации ион-радикалов, необходимой для получения надежного спектра. Этот недостаток обычно не удается скомпенсировать увеличением концентрации исходного органического вещества, так как появление обменных взаимодействий ион-радикалов между собой, а также между ион-радикалами и молекулами реагента вызывает уширение линий и приводит к потере СТС. [c.225]

    В момент соприкосновения растворов ионы переходят из одного раствора в другой. Скорость перехода ионов из более концентрированного раствора в менее концентрированный будет больше, нежели скорость перехода ионов в обратном направлении. Так как подвижности катионов и анионов различны, то и количество их, проходящее в начале диффузии через границу соприкосновения растворов, будет различно. Если подвижность катионов больше, то их больше перейдет в менее концентрированный раствор, чем анионов. Тогда менее концентрированный раствор у поверхности раздела зарядится положительно, а более концентрированный — отрицательно. Вследствие этого скорость движения катионов начнет уменьшаться, а скорость движения анионов — увеличиваться. Через некоторое время скорости катионов и анионов сравняются и количества их, переходящие границу раздела между растворами, станут равными. Образуется двойной электрический слой с определенным скачком диффузионного потенциала. Диффузионные потенциалы невелики их величина не превышает нескольких сотых вольта. Точно измерить величину диффузионного потенциала трудно, так как она зависит не только от состава и концентрации прикасающихся растворов, но и от других причин, например формы сосуда. Поэтому при измерениях э. д. с. нужно сделать диффузионный потенциал возможно малым. Это достигается соединением двух различных электролитов солевым мостиком. Последний представляет собой концентрированный раствор соли, ионы которой обладают примерно одинаковой подвижностью (КС1, KNO3). [c.289]

    При изучении адсорбции ПАВ из растворов весьма важно учитывать динамический характер адсорбции (см. раздел VIII. 4). В отличие от обычных молекул и ионов, адсорбционное равновесие на границах раздела достигается медленно даже для наиболее подвижной границы раствор ПАВ — воздух, как показывают работы Маркиной и других [12]. Это связано, по-видимому, с существованием энергетического барьера адсорбции вблизи поверхности раздела . Прецизионные измерения а на поверхности растворов ПАВ в зависимости от времени показали, что если для концентраций ПАВ, больших чем ККМ, время установления равновесия сравнительно невелико, то в разбавленных растворах оно составляет 40—50 мин . Таким образом, величина ККМ является важным критерием кинетики адсорбции коллоидных электролитов на границе раздела. [c.326]


Смотреть страницы где упоминается термин Концентрация ионов на поверхностях раздела: [c.231]    [c.28]    [c.233]    [c.22]    [c.106]    [c.264]   
Смотреть главы в:

Катализ - исследование гетерогенных процессов -> Концентрация ионов на поверхностях раздела




ПОИСК





Смотрите так же термины и статьи:

Ионная концентрация

Концентрация ионов

Поверхность раздела фаз

Поверхность разделяющая



© 2025 chem21.info Реклама на сайте