Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Значение молекулярного строения

    Как видим, эти формулы были навеяны успехами органической химии. В этот период всем неорганическим соединениям приписывалось молекулярное строение, что в общем оказалось неверным. Неверными поэтому оказались и молекулярные формулы силикатов. Однако работы Вернадского имели большое положительное значение, так как выяснение роли алюминия в алюмосиликатах существенно облегчило расшифровку кристаллохимических структур таких сложных веществ, каковыми являются, например, алюмосиликаты. Четырехчленные кольца в каркасах полевых шпатов оказались построенными аналогично каолиновому ядру. Существенная разница заключается в том, что эти кольца не являются изолированными. Во многих позднейших работах В. И. Вернадский говорит о четвертой побочной ) валентности алюминия, подчеркивая этим еще большую его аналогию с кремнием. Эта идея также получила известное подтверждение тому, что А1, изоморфно замещая в алюмосиликатах 31, аналогично последнему имеет координационное число 4. В последних работах В. И. Вернадский структурную формулу каолина писал так  [c.333]


    На рис. 1-5 в качестве иллюстрации показана зависимость п/с от с для раствора нитрата целлюлозы в циклогексаноне и гемоглобина в воде [14, с. 455], причем для удобства сравнения выбраны ВМС с примерно одинаковой молекулярной массой (70 000). Как видно из рисунка, для нитрата целлюлозы, молекулы которого имеют линейное строение, значение я/с с увеличением с возрастает, что обусловлено увеличением числа сегментов с повышением концентрации. Для гемоглобина, имеющего сферические молекулы, значение я/с не зависит от концентрации. Более точные значения молекулярной массы ВМС можно получить, если осмотическое давление его раствора найдено в нескольких растворителях. [c.36]

    На легкость получения и стойкость эмульсий оказывает большое значение молекулярное строение эмульгируемых жидкостей [c.150]

    Термин макромолекулы обычно применяется к молекулам с молекулярными весами более 10 000. Такие макромолекулы, как белки, полинуклеотиды и полисахариды, необходимы для жизни, их структуры осуществляют сложные функции. Макромолекулы типа синтетических высокополимеров являются основой многих синтетических волокон, пластиков и синтетического каучука. Соотнощение между физическими свойствами этих материалов и их молекулярным строением имеет огромнейшее значение. В этой главе будут рассмотрены белки и синтетические высокополимеры. Изучая такие свойства, как вязкость, ультрацентрифугирование, диффузия осмотическое давление и рассеяние света, можно получить информацию об их молекулярном весе, о распределении и форме распределения молекулярных весов. [c.601]

    V. ЗНАЧЕНИЕ МОЛЕКУЛЯРНОГО СТРОЕНИЯ [c.56]

    При изучении термодинамики электрохимических процессов достаточно знать, что изменение энергии электрохимического элемента полностью определяется химическими реакциями на электродах. Однако при изучении кинетических закономерностей необходимо также знать механизм электродных процессов. Изменения в строении двойного электрического слоя на электродах, которые не сказываются на равновесных значениях электродных потенциалов, влияют на скорости электрохимических реакций. Поэтому при изучении кинетики электродных процессов очень важно знать потенциалы нулевого заряда, а также молекулярное строение границы электрод — раствор. [c.536]

    Состав и строение макромолекул зависят не только от химического состава и строения молекул мономера, но и от способа, с помощью которого осуществлено соединение малых молекул в большие. При этом как в цепных, так и в ступенчатых процессах синтеза полимеров невозможно представить себе случай, когда все образующиеся макромолекулы имели бы одинаковую степень полимеризации, т. е. одинаковую молекулярную массу. В любом образце полимера присутствуют вместе макромолекулы разных размеров, т. е. любой полимер неоднороден по молекулярной массе. Эта полимолекулярность является одним из основных понятий в химии и физике полимеров. Существенные прочностные свойства полимеров проявляются при довольно больших значениях молекулярной массы (5—10 тыс. ед.) и далее возрастают с ее увеличением. Регулирование молекулярной массы полимера в процессе синтеза является, таким образом, важным фактором влияния на его механические свойства. [c.16]


    Равновесность — более узкое понятие, оно применимо лишь для изолированных систем, для которых понятия стационарность и равновесность эквивалентны. В микроскопическом смысле под равновесным (стационарным) состоянием системы понимают такое ее состояние, когда при заданных и фиксированных макроскопических состояниях микроскопические параметры с точностью до малых флуктуаций, обусловленных молекулярным строением системы, однозначно определены и имеют конкретные численные значения. Подчеркнем, что это справедливо лишь для системы, находящейся в состоянии равновесия — для неравновесного состояния задание макроскопических параметров не определяет однозначно микроскопических свойств системы. Термодинамической вероятностью W называется число микроскопических, состояний, соответствующих одному и тому же макроскопическому состоянию. В отличие от математической вероятности Р, нормированной в пределах О < Р <С 1, термодинамическая вероятность, как число допустимых состояний может иметь любые численные значения в пределах 0< РУ<оо. [c.22]

    Вопрос об истинных значениях массы молекул асфальтенов, или об их молекулярном весе, имеет принципиальное научное значение для понимания важнейших физических свойств самых сложных по химическому составу и наиболее высокомолекуляр-ных по размерам молекул неуглеводородных составляющих нефти. Не менее важное значение имеет и знание истинных величин их молекулярных весов для решения вопроса о химической структуре и физическом строении этих твердых аморфных компонентов нефти. Неудивительно поэтому, что разработкой методов определения молекулярных весов асфальтенов и установлением связи между размерами их молекул и рядом фундаментальных физических их свойств, прежде всего реологическими свойствами и растворимостью, с образованием как истинных, так и коллоидных растворов, занимались многие исследователи на протяжении более 50 лет. Накоплен большой экспериментальный материал по изучению молекулярных весов смол и асфальтенов, выделенных из сырых нефтей, из тяжелых остатков продуктов переработки, из природных асфальтов. Если для нефтяных смол нет существенного расхождения в значениях молекулярных весов, полученных разными исследователями (обычно значения молекулярных весов лежат в пределах 400—1200), то для асфальтенов уже можно наблюдать большие расхождения. Данные, полученные различными методами, лежат в весьма широких пределах от 2000—3000 до 240 000—300000. Совершенно ясно, что самые низкие значения должны быть отнесены к собственно молекулам асфальтенов, т. е. истинным молекулярным их величинам. Значения же молекулярных весов в пределах от 10000 до 300 ООО соответствуют надмолекулярным частицам асфальтенов, т. е. ассоциатам молекул асфальтенов различной степени сложности. Значения молекулярных весов этих ассоциатов, или мицелл, зависят от многих факторов, но прежде всего от растворяющей способности и избирательности применяемых растворителей и концентрации асфальтенов в растворах. Весьма существенно на значениях найденных молекулярных весов частиц сказываются чистота и степень разделения по размерам молекул [c.69]

    Различные виды твердого топлива в той или иной степени реагируют с кислородом и другими окислителями в зависимости от их свойств и молекулярной структуры. Изучение процессов окисления углей и полученных при этом продуктов является одним из направлений исследования молекулярного строения твердого топлива. Кроме того, окисление углей и изменение их свойств при хранении в естественных условиях имеет большое практическое значение. [c.162]

    Закономерное изменение прочности и твердости углей и полученных при их нагревании твердых продуктов имеет большое теоретическое значение, так как эти параметры характеризуют важные свойства, связанные с особенностями их природы, петрографического состава и степени метаморфизма. Кроме того, механические свойства отражают, в некоторой степени, и различие молекулярного строения отдельных видов твердого топлива. Исследование прочности и твердости углей дает также возможность определить их техническую пригодность для тех или иных технологических процессов. [c.195]

    Все большее значение при изучении молекулярного строения вещества приобретает спектральный анализ, причем оперируют как спектрами излучения, так и спектрами поглощения. Первые используются особенно широко при разведке редких и рассеянных элементов. [c.205]

    Изучение специфических физико-химических свойств смол и асфальтенов и установление связи со структурой молекул последни имеет существенное значение для выбора схем исследований этих компонентов нефти, в частности методов выделения и разделения, и поможет корректно использовать информативную способность современных методов физического и химического анализов для установления молекулярного строения смол и асфальтенов. [c.181]


    Таким образом, при чисто механическом подходе на основе понятий механики сплошных сред или с учетом молекулярного строения твердых тел описание прочностных свойств сводится к оперированию понятиями предела прочности, предельных состояний и к системе расчетов потери устойчивости изделий из тех или иных материалов. Основная задача механики разрушения — определить те предельные критические условия, при которых наступает разрушение. Соответствующие теории называют теориями предельных состояний. К ним относятся теории максимального нормального напряжения, максимального удлинения, предельного значения упругой энергии и другие, более сложные. В этих теориях разрушение рассматривается как критическое событие при достижении предельного состояния (предельной поверхности разрушения), которое описывается в общем случае комбинацией компонентов тензора деформаций и тензора напряжений. [c.284]

    Атомно-молекулярная теория определила не только круг основных понятий, но и ряд важных законов. Правда, необходимо отметить, что все представления этой теории были сформулированы по отношению к веществам, имеющим молекулярное строение. В настоящее время известно громадное число веществ немолекулярного строения. Это, как правило, твердые тугоплавкие неорганические вещества, к которым законы стехиометрии либо вообще неприменимы, либо применимы только как существенно приближенные. Но все-таки подавляющее большинство известных человечеству веществ состоит из молекул, и поэтому законы стехиометрии до сих пор сохраняют свое значение. [c.17]

    Наряду с ЭТИМ в пределах одного и того же интервала температур кипения выделенные из различных нефтей фракции имеют разные значения молекулярного веса. Это является следствием различного углеводородного состава и строения углеводородов этих фракций (табл. 21). [c.50]

    Спектры комбинационного рассеяния получили широкое распространение как для изучения молекулярного строения вещества, так и для аналитических целей. По своему значению для аналитических целей они немногим уступают абсорбционной инфракрасной спектроскопии. [c.339]

    Теория ВС чрезвычайно удобна для объяснения насыщаемости химической связи, направленной валентности, энергии активации химических реакций и др. Однако оказалось невозможным использовать эту теорию для количественного описания строения соединений с сопряженными связями, с нечетным числом электронов (например, молекулярные радикалы), а также для расчета количественных значений молекулярных характеристик и строгого описания спектров молекул. [c.285]

    Вязкость растворов полимеров определяется не только молекулярным весом, но и формой молекулы, зависящей от строения полимера (линейность, разветвлен ность), концентрацией раствора и характером взаимодействия полимера с растворителем . Поэтому вискозиметрия не может применяться для определения абсолютных значений молекулярного веса, но простота этого метода приводит к тому, что он широко используется для сравнения свойств разных фракций полисахаридов. В тех слу чаях, когда для полисахаридов хорошо известного типа зависимость вязкости от молекулярного веса установлена эмпирически, метод применим и для непосредственного определения молекулярных весов  [c.515]

    Определение молекулярной рефракции часто служит для проверки предварительных предположений о составе и строении исследуемых органических соединений и результатов химического анализа [31]. С этой целью экспериментальное значение молекулярной рефракции сравнивают с суммой соответствующих аддитивных констант (атомных рефракций и рефракций связей, приведенных в литературе в виде таблиц Эйзенлора и Фогеля), вычисленной исходя из предполагаемой химической формулы. Расхождения до 0,2-0,4 мл/моль относятся на счет возможных ошибок эксперимента и неточности аддитивных констант. Выбор между возможными изомерными структурами можно сделать только в том случае, если разница аддитивных зна- [c.199]

    Большинство известных методов исследования разветвленности полимеров связано с изучением свойств их разбавленных растворов и основано на зависимости размеров макромолекулярного клубка в растворе от степени разветвленности. При равных значениях молекулярной массы макромолекулы разветвленных полимеров в данном растворителе занимают меньший объем по сравнению с линейными молекулами того же химического строения. [c.339]

    Кроме того, в полиуретанах удлинение успешно осуществляется не только на стадии получения преполимеров, но и на стадии отверждения конечного продукта. Несоответствие абсолютных значений молекулярной массы, полученных различными авторами, обусловлено особенностями строения полимеров, а именно наличием устойчивых ассоциатов высокой энергии когезии. Использование таких методов, как светорассеяние, осмометрия, ультрацентрифугирование, химический анализ концевых групп оправдано только для молекулярной массы эластомеров не выше 2,5-10 . Так, молекулярная масса линейных полиуретанов, определенная виско-зиметрически, составила З-Ю" [42]. Для полиуретанов молекулярной массы 5-10 и более можно считать вполне надежными данные спектров ЯМР [43]. [c.537]

    Как правило, значения молекулярной рефракции, вычислерные по аддитивным постоянным, находятся в хорошем соответствии с экспериментальными значениями. Иногда возникают значительные различия, вызываемые изомерным строением. [c.261]

    При определении молекулярных весов асфальтенов по вискозиметрическому методу были использованы коэффициенты, найденные для масел и смол тех нефтепродуктов, из которых выделялись асфальтены. Принималось, что эти компоненты (мас.11а, смолы, асфальтены), подобно высокомолекулярным полимерам, образуют полимергомологический ряд. Ошибочность этой исходной предпосылки, а также наличие агломерации в большей или меньшей степени (в зависимости от концентрации растворов) частиц асфальтенов в бензольных растворах и объясняют неудовлетворительность результатов, полученных при использовании вискозиметриче-ского метода для определения молекулярных весов асфальтенов. Эккерт и Уитмен [34] правильно отмечают, что о возможности применения виско-зиметрического метода определения асфальтенов нельзя ничего определенного сказать до тех пор, пока не будут получены более достоверные сведения о строении асфальтенов, а значения молекулярных весов, определенные по этому методу, будут подтверждены другими экспериментальными методами. [c.358]

    С возникновением и развитием мезофазы формирование состава и молекулярной структуры КМ происходит за счет термохимических превращений в объемах газопаровой и конденсированных изотропных и жидкокристаллической фаз (гомогенный процесс) и на границах раздела этих фаз (гетерогенный процесс). Однако и в этом случае КМ представляет собой объединение множеств органических соединений, развивающееся в направлении накопления углерода за счет образования полициюшческих конденс1фованных ароматических молекулярных структур. Поэтому вопрос о составе и молекулярном строении КМ на этом и последующих этапах формирования нефтяного углерода приобретает особое значение, поскольку именно на стадии мезофазных превращений формируется надмолекулярная структура высокотемпературных форм нефтяного углерода [100]. Однако молекулярная структура нефтяного углерода в рассматриваемом аспекте изучена слабо, преимущественно методами, дающими информацию о среднестатистической молекуле или молекулярноструктурной единице, относящейся ко всей массе объекта исследования, базируясь на известных гипотезах о молекулярной структуре углеродных материалов [35,36,40,93,116]. [c.40]

    Важное значение имеет конформационное состояние макромолекул в растворе, которое зависит от ее строения, природа дисперсионной среды, концентрации ВМС в растворе, температуры и наличия микроэлементов, которые являются причиной образования внутри- и межмолекулярных комплексов. Для нефтяных ВМС возможность образования той или иной конформации прежде всего определяется их молекулярным строением. Так, анализ данных [170] предполагает, что в состав асфальтенов могут входить ВМС, молекулы которых имеют плоскую конформацию вследствие того, что состоят из крупных конденсированных нафтено-ароматических фрагментов, соединенных непосредственно или через короткие мостики, не позволяющие молекуле сгибаться или складываться за счет вращения вокруг связей. Характерными для нефтяных систем могут бьггь макромолекулы, в которых нафтено-ароматические фрагменты с алифатическим и гетероа-томным "обрамлением" связаны между собой через несколько линейно связанных атомов углерода или гетероэлемента. В этом случае создается возможность складывания макромолекулы за счет сближения плоских фрагментов. Степень их сближения, которую можно характеризовать величиной угла пересечения плоскостей, проведенных вдоль плоских фрагментов, зависит от гибкости и длины связующего звена и стерических препятствий, создаваемых алифатическим обрамлением " плоских фрагментов, и их нафтеновой или гетероатомной частью. В результате образуется слоистая вторичная молекулярная структура с параллельной или непараллельной (зигзагообразной или спиралевидной) укладкой плоских фрагментов. Если макромолекула представляет собой разветвленную цепь плоских разнозвенных фрагментов, то слоистые структуры могут образовываться за счет складывания плоских фрагментов каждой ветви, и тогда макромолекула может рассматриваться как "гроздь" вторичных молекулярных складчатых структур, или за счет параллельной или почти параллельной укладки плоских фрагментов, входящих в состав различных ветвей макромолекулы, с образованием менее разветвленной вторичной молекулярной структуры. Образование такой конформации макромолекулы энергетически выгодно [c.82]

    Константы в соотношениях, приведенных выше, как показывает анализ, проведенный для большого числа полимеров, всегда представляют собой числа, большие нуля, но меньшие единицы. Более точное значение константы можно установить лишь зная особенности молекулярного строения и надмолекулярной структуры полимеров. Для этого все полимеры можно классифицировать по степени гибкости их цепей гибкоцепные, полужесткоцепные и жесткоцепные. При этом важно знать, содержат ли макромолекулы полимеров боковые группы или более крупные ответвления и имеются ли в них звенья разных видов (статистические сополимеры, блок-сополимеры). Проведенные подсчеты зависимостей числа полимеров N от отношения TdT - показали, что в общем случае они имеют вид, представленный на рис. 10.23. [c.273]

    Изучение спектров кбмбинационного рассеяния значительно проще, чем инфра-крясных, поэтому большинство исходных значений м для расчета силовых констант получено именно из этих спектров. Вместе с тем даваемые ими волновые числа (которые обычно называют частотами) имеют большое самостоятельное значение, так как позволяют устанавливать наличие тех или иных связей даже в сложных молекулах. Например, характеристические волновые числа ( рамановскир. частоты ) связей С—вообще лежат в пределах 2800—3350 см , но для метановых углеводородоЁ типичны значения около 2900 см-, для этиленовых — около 3050 см а для ацетиленовых— около 3300 см-, причем четко выявляются и более тонкие различия в зависимости от состава и строения молекул. Поэтому, произведя на сравнительно простых соединениях отнесение частот к определенным связям, можно затем по спектру комбинационного рассеяния выяснять многие вопросы молекулярного строения (а также анализировать смеси молекул разного типа). [c.101]

    М — средневязкостиое значение. молекулярного веса а — коэффициент, зависящий от строения полимера и его взаимодействия с растворителем. [c.153]

    Изменение энергии макроскопической системы в термодинамике удается определить, не обращаясь к представлениям о ее молекулярном строении. Частные формы первого закона термодинамики были установлены экспериментально, когда одно или несколько слагаемых в правой части уравнения (1.3) сохраняли по-стоятпюе значение. [c.17]

    Закон постоянства состава веществ был открыт и сформулирован на основе представлений, что все вещества состоят из молекул. Дальнейшие исследования показали, что лишь около 5% из всех неорганических веществ имеет молекулярное строение. И только для них справедлив закон постоянства состава. Вещества немолекулярного строения этому закону в полной мере не подчиняются. Так, например, на основе точных современных исследований установлено, что состав сульфида железа (II) следует изображать не формулой Ре5, а формулой Ре1 х5, где х меняет значения от О до 0,05, а оксида титана (IV) —не формулой ТЮг, а формулой ТЮ( 9 2,о Но эти отклонения незначительны, и при составлении. химических формул мы их учитывать не будем. [c.57]

    По Гиббсу межфазная поверхность рассматривается как конечный по толщине слой, где состав и термодинамические характеристики отличны от тех, которые присущи объемам граничащих фаз. Такой подход позволяет описать свойства поверхности раздела фаз строго фе-номенологичеоки, в терминах избытков термодинамических функций в поверхностном слое по сравнению с объемом фаз, не привлекая модельных представлений о молекулярном строении поверхностного слоя и конкретных значениях его толщины. [c.14]

    Если величина давления ру превышает значение, определяемое уравнением (52а), то о кривой зависимости давления парар от Х1 говорят, что кривая имеет положительное отклонение с другой стороны, в случае, когда р С Х р , говорят о зависимости с отрицательным отклонением. В работе [14 нри анализе причин положительных и отрицательных отклонений используются представления о молекулярном строении вещества. Характерные кривые давления пара с положительными отклонениями приведены на рис. 1. [c.468]

    Вместе с тем, увеличение плотности структуры кокса из жирных и коксовых углей в связи с большей их спекаемостью приводит к увеличению электропроводности и, в свою очередь, способствует снижению РС кокса. Наоборот, чем меньше спекаемость углей и менее плотный контакт между остаточным материалом угольных зерен или микрокомпонентов в зерне, тем больше дефектов в структуре вешества кокса, выше его РС и УЭС. Особенности углей, обусловливающие физико-химические свойства кокса, отчетливо проявляются в шихтах, составленных на основе или с их участием. РС и УЭС линейно зависят от толщины пластического слоя шихт (рис.3.7). При близких значениях толщины пластического слоя проявляется влияние его кажущейся вязкости, выхода летучих веществ и молекулярного строения вещества угля. РС и-УЭС кокса можно повышать с помощью углей в большей мере газовых, в меньшей отошенных, или понижать хорошо спекающимися углями. [c.76]

    Корреляция влияния М на октановое число по исследовательскому методу (ОЧИМ) проводилась применительно к н-алканам от этана до нонана, имеющих идентичное молекулярное строение и молекулы которых состоят только из линейно связанных между собой СНз - и -СНт - алкильных составляющих. Поскольку н-алаканы с числом атомов (п > 7) имеют отрицательные значения 04, что не имеет физического смысла, для оценки ДС примем показатель, названный нами октановым индексом (2), связанный с октановым числом выражением [c.63]

    Каждый из этих методов имеет свои достоинства и недостатки. Преимущество метода поликонденсации (в среде пиридина или в смеси пиридина и органического растворителя) заключается в том, что процесс протекает в гомогенной жидкой фазе при низкой температуре с использованием диоксисоединений любого строения при этом можно получать полимеры с широким интервалом значений молекулярных весов, в том числе высокомолекулярные (для получения пленок и волокон из раствора). Недостатком метода является необходимость приме1Гёния дорогостоящего и токсичного пиридина, растворителя и осадителя поликарбоната и их регенерации.  [c.13]

    Криоскопич еские и эбулиоскопические методы не могут быть использованы при работе с такими высокомолекулярными соеди нениями, как белки и полисахариды, так как небольшое число больших молекул в разбавленном растворе мало влияет на температуру замерзания или кипения раствора. Дополнительные затруднения связаны с ассоциацией молекул, приводящей к образованию агрегатов даже при концентрациях ниже 1%, и с отклонением в поведении раствора от идеального впрочем, последнее затруднение можно обойти экстраполяцией полученных результатов к бесконечному разбавлению. Более серьезной трудностью является полидисперсность большинства высокомолекулярных соединений, которая состоит в том, что образцы состоят обычно из молекул сходного строения, но различной длины. В связи с этим экспериментально найденное значение молекулярного веса зависит от применяемого метода. Так, например, осмотические методы дают значения среднечислового молекулярного веса, зависящие главным образом от присутствующих в растворе молекул меньшего размера, тогда как измерения вязкости дают значения средневесового молекулярного веса, которые определяются массой молекул больших размеров. [c.48]

    Условия термопластификации в значительной мере зависят от особенностей молекулярной структуры органической массы углей. Наличие, например, в ней большого количества весьма реакционноспособного кислорода, способного в условиях термической деструкции связывать водород в момент его выделения, препятствует гидрированию промежуточных продуктов и образованию термопластификата. Большое значение имеют строение и размеры элементарных структурных единиц. С ростом конденсированной ароматической части макромолекул веществ угле также снижается возможность их термопластифи- [c.248]


Смотреть страницы где упоминается термин Значение молекулярного строения: [c.251]    [c.74]    [c.506]    [c.34]    [c.153]    [c.56]    [c.203]    [c.204]    [c.150]    [c.11]    [c.366]   
Смотреть главы в:

Катализ - исследование гомогенных процессов -> Значение молекулярного строения




ПОИСК





Смотрите так же термины и статьи:

Значение строения



© 2024 chem21.info Реклама на сайте