Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизмы химических реакций Реакции органической химии

    Вследствие внедрения в современную аналитическую химию неорганических веществ большого числа органических реагентов и в результате современного развития теории химической связи и механизма химических реакций курс аналитической химии еще больше укрепляет свое положение в качестве дисциплины промежуточной— уже не только в отношении курса физической химии, но и курса органической химии. Однако и здесь необходима созидательная работа по оформлению этой связи [c.7]


    Учебное пособие Экспериментальные методы химической кинетики представляет собой изложение теоретических основ некоторых физико-химических методов исследования и описание возможностей их применения для изучения кинетики и механизмов химических реакций. Оно предназначено для студентов химических специальностей и рассчитано на тот уровень знаний, который они получают из общих курсов физики, неорганической, аналитической, органической и физической химии. При этом авторы исходили из того, чтобы как для [c.3]

    Книга Питера Сайкса Механизмы реакций в органической химии представляет собой хорошее учебное пособие, которое может быть использовано при изучении органической химии. В ней последовательно излагаются основные идеи английской химической школы, касающиеся механизмов органических реакций и оказавшие, как известно, огромное влияние на становление современных представлений о связи между строением химических соединений и их реакционной способностью. [c.9]

    Применение метода меченых атомов для исследования механизмов химических реакций. Несомненно, что успехи тех разделов неорганической и органической химии, которые посвящены механизмам химических процессов, в значительной степени объясняются широким распространением в последние десятилетия в практике химических исследований метода меченых атомов. Здесь будут проиллюстрированы возможности метода меченых атомов в приложении к проблеме механизмов реакций. [c.141]

    Понятия заместителя и функциональной группы широко применяют в химии, особенно в органической. Так, в бензойной-кислоте карбоксильную группу рассматривают как функциональную группу, так как большинство химических реакций, в которых участвует эта кислота, включают карбоксильную группу. В п-хлорбензойной кислоте атом хлора влияет на относительные скорости многих реакций, протекающих с участием карбоксильной группы, но обычно не влияет на действительный механизм реакции. Поэтому атом хлора рассматривают как заместитель. Было бы естественным, если бы атом хлора оказывал аналогичное влияние на относительные скорости целого ряда реакций, включающих карбоксильную группу. Сравнение влияния одной и той же серии заместителей на относительные скорости ряда довольно близких реакций приводит к так называемым соотношениям свободной энергии, из которых наиболее известно уравнение Гаммета. Если сравнить логарифмы скоростей гидролиза эфиров с логарифмом отношения констант диссоциации соответствующих кислот, то найдем, что данные для мета- и пара замещенных кислот и эфиров лежат на прямой, в то время как данные для орто-замещенных соединений и алифатических кислот и эфиров лежат вне линии. Эта прямая определяется соотношением [c.339]


    Но этот переход от классической органической химии к химии природных соединений, а именно в такой последовательности должны изучаться эти два раздела химии вообще, не является чисто количественным — этого "количества" стало достаточно для появления и нового качества , связанного с пространственным строением сложных органических молекул, механизмами их реакций, межмолекулярными взаимодействиями. Кроме того, надо заметить, что на определенных этапах природная химия включает объекты и представления классической неорганической химии (особенно показательно такое участие в химии энзимов) и физической химии (энергетика химических процессов, межфазные взаимодействия). [c.3]

    Уровень 5. Тема Теория электролитической диссоциации , помимо мировоззренческого значения (иллюстрация единства противоположных процессов — диссоциации и моляризации), вносит много нового в объяснение механизма реакции. На базе понятия об обратимости реакций можно объяснить сущность процесса диссоциации, а также гидролиза солей. Гидролиз рассматривается только в ионной форме, чтобы не вводить понятие о гидроксосолях. Гидролиз — очень важное теоретическое понятие, которое развивается в последующих темах и в органической химии. Его следует изучать с использованием понятия о химическом равновесии. [c.278]

    Области применения метода разнообразны. Его можно использовать для исследования механизма электродных процессов, для определения ряда физико-химических констант, изучения кинетики химических реакций, установления состава и прочности комплексных соединений в растворах и т. п. С другой стороны, полярографический метод широко применяется и в аналитической химии для качественного обнаружения и особенно для количественного определения многих неорганических и органических веществ. [c.209]

    Итак, с возникновением и быстрым распространением теории химического строения в органической химии появились первые достаточно надежные методы изучения механизма органических реакций критерием истинности этих методов служил органический синтез. G возникновением теории появились также первые возможности систематического изучения каталитических реакций, а с ними и возможности обнаружения промежуточных металлоорганических соединений переменного состава, т. е. тех промежуточных каталитических форм, основным назначением которых является расслабление связей в молекулах исходных продуктов, или, иначе говоря, снижение потенциальных барьеров. [c.162]

    Название книги Влияние растворителя на скорость и механизм химических реакций у представителей различных специальностей вызывает разные ассоциации. Физикохимик вспомнит о влиянии растворителя на характер зависимости скорости реакций от диэлектрической проницаемости, вязкости, внутреннего или внешнего давления. Специалист по физической органической химии задумается о таких свойствах растворителя, как кислотность, основность, способность к образованию водородных связей, электроотрицательность и способность к сольватации, а также о связи структурных эффектов со свойствами растворителя. Для химика-органика, в строгом смысле слова, растворитель — это просто среда, в которой образуются интересующие его продукты, а интересует его прежде всего растворимость реагентов и продуктов в этой среде. При выборе растворителя химик-органик может руководствоваться тем, насколько легко можно за разумное время получить относительно чистый продукт методом экстракции или иных процедур. [c.7]

    Итак, с возникновением и быстрым распространением теории химического строения в органической химии появились первые достаточно надежные методы изучения механизма органических реакций критерием истинности этих методов служил органический синтез. С возникновением теории появились также первые возможности систематического изучения каталитических реакций. [c.73]

    Первые четыре главы касаются структуры важнейших классов органических соединений, их номенклатуры, нахождения в природе и использования. Здесь же приводится несколько химических реакций для иллюстрации переходов функциональных групп друг в друга, а также для выявления принципов, применяемых при определении структуры путем деградации. В гл. 5 рассматривается химическая связь в выражениях резонансного метода и метода молекулярных орбит. В гл. 6 обсуждаются вопросы стереохимии на основе валентных углов и расстояний, свободного и заторможенного вращения вокруг связей, а также на основе симметрии молекул и конфигурации циклических соединений. В гл. 7 показана зависимость между физическими свойствами органических соединений и их структурой. В гл. 8 вводится вопрос о соотношении между структурой соединения и его химической реакционной способностью. Реакции кислот и оснований, знакомые студентам из курса общей химии, использованы для иллюстрации резонансного, индуктивного и стереохимического эффектов. В гл. 9 разъясняется наша схема классификации органических реакций и вводятся механизмы реакций. В гл. 8 и 9 заложен переход от статических описаний органической химии к динамическим. [c.11]


    Реакции органической химии обычно подразделяют на нуклеофильные, электрофильные и радикальные. Однако реагирующие в каждом из этих случаев молекулы можно представить также как доноры и акцепторы электронов. Тогда химическое взаимодействие можно рассматривать как реакцию, включающую перенос электронов от одного из реагентов к другому. Изучение механизмов реакций, важное для управления их ходом, должно поэтому включать выявление роли электронных переносов в наблюдаемых превращениях. В этом смысле существенно сопоставить поведение органических соединений в жидкофазных реакциях электронного переноса с величинами окислительно-восстанови-тельных потенциалов донора и акцептора. На первый взгляд такая постановка вопроса кажется тривиальной представляется, что порядок и степень протекания таких реакций можно предсказать еще до опыта на основании различий в потенциалах восстановления сравниваемых соединений. Однако экспериментальная практика показывает, что не во всех случаях существует соответствие между наблюдаемыми электронными переходами и предсказаниями, построенными на разнице восстановительных потенциалов реагирующих частиц. Так, Л. А. Блюменфельд с сотр. [1], наблюдая электронный перенос от гидроксил-аниона к сульфокислотам антрахинона, отмечает, что возможность такого процесса не предсказывается расчетами, которые базируются на стандартных потенциалах. [c.232]

    Реакции нуклеофильного замещения в ряду галогенпроизводных являются одними из наиболее важных в препаративном отношении и наиболее изученных в теоретическом. Разделы, посвященные изучению нуклеофильного замещения у насыщенного атома углерода, включены в любой учебник но теоретической органической химии. И тем не менее среди органических галогенпроизводных можно выделить определенные классы, химическое поведение которых обычно либо не рассматривается, чтобы не портить блестящую картину торжества теории, либо эти соединения часто списываются со счета как мало реакционноспособные и потому бесперспективные в препаративном отношении. К таким соединениям относятся, например, полигалогениды. Далее необходимо подчеркнуть, что для галогенидов имеются отдельные типы реакций с нуклеофилами, которые трудно поддаются обычной классификации. Несомненно, что общепринятая трактовка реакций замещения как атаки реагента по атому углерода в рамках классических 5 - и 8е -механизмов является недостаточной, жбо она не охватывает большого экспериментального материала. [c.113]

    Указанные особенности творчества А. И. Бродского привлекали к нему многочисленных учеников. В отношениях с подчиненными Александр Ильич всегда был чужд диктаторства, администрирования. Он старался возбуждать в своих сотрудниках интерес к науке, никогда не пытался подавлять их склонности, инициативу. Все это способствовало созданию большой научной школы А. И. Бродского, широко известной своими работами по теории растворов электролитов, химии изотопов, теории реакционной способности и механизма химических реакций, квантовой химии органических соединений. [c.13]

    В последние годы в радиационной химии достигнуты значительные успехи в выяснении природы и реакционной способности первичных химических продуктов облучения воды, спиртов, углеводородов и других органических соединений. Новые более чувствительные методы анализа позволяют количественно определять продукты реакций этих первичных частиц с различными веществами в растворе. Методом импульсного радиолиза найдены константы скоростей многих таких реакций. Установление того факта, что гидратированный электрон является по существу простейшим нуклеофилом, а гидроксильный радикал (первичный окислитель, получающийся при облучении воды) обладает электрофильными свойствами, открыло новые перспективы в исследованиях механизма этих реакций с органическими соединениями в растворе. Число подобных работ, выполняемых специалистами в области радиационной химии, все возрастает. Цель настоящего обзора — ближе познакомить химиков-органиков с большими возможностями радиационной химии как метода исследования механизма органических реакций и показать некоторые преимущества такого подхода. [c.119]

    Кинетика каталитических реакций иногда отличается от кинетики соответствующих некаталитических реакций. Так, разложение иодистого водорода (которое, как известно, происходит по кинетическому уравнению второго порядка) на поверхности металлических катализаторов становится реакцией первого порядка. Такие наблюдения приводят к выводу, что в присутствии катализатора механизм реакции меняется, т. е. катализатор принимает участие в реакции. В органической химии известны многочисленные случаи, когда разные катализаторы вызывают различные реакции одних и тех же веществ. Многие катализаторы обладают специфическим действием, т. е. они действуют только на определенную группу веществ или даже на одно-един-ственное вещество. К их числу относятся ферменты (см. ниже). Все эти наблюдения подтверждают вывод, что катализатор непосредственно участвует в реакции и что между катализатором и субстратом происходит химическое взаимодействие (под субстратом понимают вещество, на которое действует катализатор). [c.297]

    Диеновый синтез — одна из наиболее практически важных и теоретически интересных реакций органической химии, открывшая перед химиками новые, необыкновенно широкие синтетические возможности. С помош,ью этой реакции относительно легко можно получать разнообразные карбо-и гетероциклические соединения, многие из которых находят важное практическое применение (например, в качестве инсектицидов, полупродуктов органического синтеза и т. д.). На основе этой реакции получены многие сложные природные продукты, а также родственные им соединения (некоторые аналоги стероидов, резерпин и др.), которые до этого другими путями синтезировать не удавалось, или они были трудно доступны. Реакция диенового синтеза была открыта в 1928 г. За минувшие тридцать с лишним лет с помощью реакции диенового синтеза получены тысячи различных новых химических соединений, и их число непрерывно увеличивается. Природа этой своеобразной реакции также исследовалась весьма интенсивно были установлены основные закономерности образования аддуктов, изучалась кинетика реакции и многократно обсуждался ее возможный механизм. К настоящему времени по диеновому синтезу накопился огромный экспериментальный материал, который, однако, рассматривался лишь отчасти в немногих обзорах. [c.5]

    Фундаментом прогнозирования активности, селективности и других специфических свойств катализатора должна стать детальная микроскопическая теория гетерогенного катализа, опирающаяся на современные представления квантовой химии и теории твердого тела. Описывая элементарные акты реакций и превращений вещества на поверхности реального катализатора, такая теория в принципе дает возможность не только в полной мере понять механизм, кинетику и термодинамику катализа, но и предсказать каталитическую способность того или иного металла, полупроводника, диэлектрика в конкретной химической реакции. Однако незавершенность теорий катализа не позволяет однозначно предсказывать оптимальный состав промышленных катализаторов и другие их характеристики для действующих и проектируемых производств. До сих пор решение проблемы подбора катализаторов опирается в значительной мере на эмпирические подходы, сопряженные с большими затратами рутинных форм труда. Так, в поисках первого катализатора для синтеза аммиака было исследовано около 20 тыс. различных веществ [1, 2]. В 1973 г. число известных органических соединений оценивалось в 6 млн. Ежегодно только в нашей стране синтезируется более 40 тыс. новых химических соединений. Таким образом, разработка научно обоснованных целенаправленных стратегий поиска катализаторов представляет актуальную проблему современного катализа. Актуальность проблемы подтверждается еще и тем, что коло 90% промышленных химических и нефтехимических производств ведется с применением катализаторов. [c.56]

    В рамках органической химии представления о том, как происходит термический крекинг алканов или других соединений углерода, начали развиваться задолго до того, как -появились исследования термического крекинга, так как сама химическая кинетика я вляется продуктом более позднего развития. Эти представления опирались на сведения о химическом составе продуктов крекинга различных соединений, получаемых путем химического анализа газов и жидких продуктов крекинга. Естественно, что с накоплением таких экспериментальных данных должно было начаться изучение проблемы крекинга. Только в тридцатых годах стало очевидным для исследователей, что для суждения о механизме крекинг-процесса необходимы точные опыты по изучению скорости распада, и появляются первые исследования по кинетике крекинга. К этому времени развитие экспериментальных методов изучения скоростей реакций достигло надлежащей высоты и стала возможной постановка кинетических опытов с точным учетом условий их. [c.16]

    Наконец, третье направление связано с квантовохимическими расчетами электронной структуры сложных соединений, что делает реальным определение свойств не только изолированных, но и реагирующих молекул и радикалов. Обстоятельное изложение квантовохимических аспектов проблемы реакционной способности органических соединений приведено в монографиях Багдасарьяна [73] и Базилевского [75]. Создание более совершенных теоретических и полуэмпирических методов квантовой химии наряду с применением ЭВМ делает это направление весьма перспективным при исследовании кинетики и механизма различных элементарных химических реакций. [c.7]

    Измерение спектров дисперсии оптического вращения (ДОВ) и кругового дихроизма (КД) получило широкое распространение как метод конформационного анализа оптически активных соединений. Особенно методы ДОВ и КД используются в органической химии, биохимии, энзимологии и молекулярной биологии. Данными методами исследуются белки, аминокислоты, нуклеиновые кислоты, стероиды, углеводы и полисахариды, вирусы, митохондрии, рибосомы, фармакологические средства, синтетические полимеры, координационные соединения, неорганические и редкоземельные комплексы, кристаллы, суопензии и пленки и т. п. и решаются следующие задачи 1) определение по эмпирическим пра вилам конформации и ее изменений под действием различных физико-химических воздействий 2) изучение механизма и кинетики химических реакций (особенно ферментативных) 3) получение стереохимических характеристик 4) измерение концентраций оптически активных веществ 5) определение спиральности макромолекул 6) получение электронных характеристик молекул 7) исследование влияния низких температур на конформацию соединений 8) влияние фазовых переходов типа твердое тело — жидкость — газ на изменение структуры. [c.32]

    Представляя вниманию читателей русский перевод Органикума , редактор и переводчики отчетливо представляли необычность этой книги. Она появилась на свет в результате очень интенсивной работы молодого творческого коллектива немецких ученых и преподавателей Дрезденского технического университета, которые стремились сломить ставшие архаичными многолетние традиции препаративистского практикума Гаттермана, дать возможно больший простор размышлению студента, заставить его творчески создавать экспериментальные методики на основе общих указаний и современных представлений о механизме химических реакций. В этой работе они не могли опереться на соответствующий учебник просто потому, что он еще не создан, поэтому Органикум очень сильно насыщен изложением основного теоретического материала органической химии, так что временами этот теоретический материал поглощает и перекрывает материал практикума (и уж во всяком случае значительно увеличивает объем книги). [c.5]

    Подмена реальной молекулы набором резопанс-ных структур из соображения удобства рассмотрения внесла много произвола и спекулятивного элемента и создала видимость объяснения вместо действительного критического анализа и разбора механизма химических реакций. Это относится и к объяснению течения некоторых тршовых реакций в органической химии. [c.114]

    Химические реакции представляют собой процессы, в которых происходит перераспределение электронов. Локализация, направление и механизм реакции существенно зависят от распределения электронов во встзшающих в реакцию молекулах. Поэтому изучение распределения электронной плотности в. молекулах до реакции и по возможности во время реакции является важной задачей теоретической органической химии. [c.55]

    С конца 60-х годов Лондонское химическое общество выпускает серии библиографических обзоров, имеющих общий подзаголовок А Spe ialist Periodi al Report . Выходят следующие серии механизмы неорганических реакций, неорганическая химия переходных элементов теоретическая химия радиохимия электронное строение и магнетизм неорганических соединений коллоидная химия электрохимия кинетика реакций термодинамика фотохимия масс-спектрометрия спектральные свойства неорганических и элементоорганических соединений алифатические, алициклические и насыщенные гетероциклические соединения химия ароматических и гетероароматических соединений фторорганические соединения органическая химия фосфора органические соединения серы, селена и теллура алкалоиды аминокислоты, пептиды, протеины, терпеноиды и стероиды химия углеводов и другие. [c.180]

    Молекулярная спектроскопия имеет в настоящее время широкое практическое применение и теоретическое значение. Молекулярный спектральный анализ используется в самых разиообразиых областях науки и техники. В результате интерпретации спектров можно выяснить конфигурацию молекул, распределение в них энергетических уровней, энергии связей между атомами, энергии диссоциации молекул и механизм химических реакций. Особое значение наряду с масс- и ПМР-спектроскоиией в современной органической химии имеют методы инфракрасной и ультрафиолетовой спектроскопии. [c.4]

    Несмотря на обпшрную литературу механизмы большинства важных для органической химии реакций перегруппировок остаются невыясненньши. Теоретические соображения, изучение конечных и промежуточных продуктов, кинетика процессов и стерео-химических превращений дают лишь косвенные указания и не приводят к однозначным выводам. Применение изотопного метода, хотя и не дает исчерпывающего объяснения детального механизма рассматриваемых реакций, но сразу позволяет исключить многие предполагаемые варианты как заведомо неправильные. [c.36]

    Александр Ильич Бродский был замечательным ученым и человеком. Он оставил глубокий след в науке и в умах своих учеников, сотрудников и всех близко знавпшх его людей. Еще за несколько дней до смерти, последовавшей неожиданно для всех, Александр Ильич был полон творческих Сил, новых идей, крупных назгчных замыслов. Он был главой большой школы физико-химиков, внесшей важный вклад в развитие теории растворов электролитов, химии изотопов, теории реакционной способности и механизма химических реакций, квантовой химии органических Соединений. Значительная часть работ в этих направлениях до сих пор не утратила своего значения, и опубликование избранных трудов А. И. Бродского будет полезным для развития указанных областей химии. [c.5]

    Значительное количество работ в области радиационной химии водных растворов было предпринято с целью установления механизмов химических реакций, индуцированных излучением в биологических системах. Такие большие органические молекулы, как стероиды, углеводы, аминокислоты, пептиды, белки, ферменты, витамины и гормоны, уже давно привлекают внимание исследователей в области радиационной химии в связи с той фундаментальной ролью, которую они играют в процессах функционирования живых организмов [18]. Сложность этих больших молекул заставляет выработать несколько иной подход при исследовании радиационнохимических процессов, протекающих при их участии, отличный от радиационной химии простых молекул (разд. III,В, 1, и III, Г,2). В работе [118] обсуждается применимость теории радиационной химии водных растворов вообще и роли гидратированных электронов в частности к биологическим системам in vivo. При исследовании биологических объектов основное внимание обычно направлено на установление зависимости функциональных изменений от [c.180]

    Вопрос о том, каки1м путем протекает химическая реакция, или, как теперь принято говорить, каков механизм реакции, — не нов, он был поставлен 80 лет назад в работах Вант-Гоффа и Аррениуса [216, 217]. Универсальный характер этой проблемы, ее необычайная теоретическая и практическая важность привели тому, что раздел физической химии, в котором изучаются законы химического превращения, выделился в самостоятельную науку, называемую химической кинетикой. При разрешении тех или иных задач в применении химической кинетики нуждаются теперь неорганическая, органическая, аналитическая и другие области химии. При помощи химической кинетики, соединенной с разнообразными физико-химическими методами исследований, удалось установить, что большинство химических рейк-ций протекает сложно — через ряд стадий, во время которых образуются промежуточные, неустойчивые химические формы, и число их часто бывает велико (цепные реакции, каталитические реакции и вообще циклические химические процессы).  [c.160]

    Биоорганическая химия сблизила и иереилела практическую деятельность химика-органика и биохимика. В данной главе авторы постарались показать взаимосвязи между органической химией и биохимией, с одной стороны, и химией белка и медицинской химией (фармакологией) —с другой. Как основной используется химический подход, н механизм биохимических реакций описывается в сравнении с их синтетическими моделями. Органический синтез и биосинтез пептидной и фосфоэфирной связи (гл. 3) рассматриваются параллельно таким образом выявляется удивительный ряд сходных закономерностей. Каждая аминокислота представлена как отдельное химическое соединение с уникальным набором свойств. Способность аминокислот к диссоциации обсуждается в терминах, принятых в органической химии для кислот и оснований, и фундаментальные свойства аминокислот подаются читателю так, чтобы не было впечатления, будто аминокислота — это нечто совершенно особенное. Химия аминокислот представлена как часть курса органической химии (реакции ал-килирования, ацилирования и т. п.), а сведения по биохимии рассмотрены с химической точки зрения. [c.26]


Библиография для Механизмы химических реакций Реакции органической химии: [c.435]   
Смотреть страницы где упоминается термин Механизмы химических реакций Реакции органической химии: [c.223]    [c.16]    [c.10]    [c.10]    [c.16]    [c.151]    [c.181]    [c.132]    [c.2]    [c.43]    [c.4]    [c.4]    [c.193]    [c.4]   
Смотреть главы в:

Химия изотопов -> Механизмы химических реакций Реакции органической химии




ПОИСК





Смотрите так же термины и статьи:

Механизм химической реакции

Органическая химия

Органические реакции

ХИМИИ И ХИМИЧЕСКОЙ

Химическая механизм



© 2024 chem21.info Реклама на сайте