Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализ комплексообразованием

    Катализаторы со временем могут терять свою активность. Это объясняется тем, что обычно побочные химические процессы, в результате которых каталитически активный центр — атом, молекула, ион, каталитический центр на поверхности —блокируется, выводится из сферы реакции. Такими процессами могут быть реакции нейтрализации в кислотно-основном катализе, комплексообразования, когда катализатор в виде ионов комплексуется с определенными лигандами и выходит из сферы реакции реакции образования нерастворимых соединений и др. Потеря каталитической активности может быть обусловлена химическим распадом в результате термических или фотохимических процессов. Явления, когда активность катализатора резко уменьшается при прибавлении незначительных количеств некоторых веществ, иногда падая до нуля, называется отравлением катализаторов. Вещества, резко понижающие активность катализатора, называются каталитическими ядами. Сильное действие каталитического яда объясняется тем, что в большинстве каталитических процессов концентрация катализатора очень мала и для блокирования каталитических центров нужны незначительные количества каталитического яда. [c.622]


    Гетерогенный катализ через комплексообразование связан с образованием на поверхности катализатора промежуточного соединения в ходе суммарной цепи превращений в каталитическом акте. Различают два типа комплексов и соответственно два вида катализа через комплексообразование акцепторно-донорные комплексы, образуемые донорной связью с участием 8- и р-орби-талей, и координационные комплексы, образованные дативными координационными связями с участием й- и /-орбиталей. [c.59]

    Автор книги, ранее принимавший активное участие в разработке так называемой электронной теории катализа, теперь, как он сам пишет, пытается объединить химический и физический аспекты катализа . Экстраполируя от гомогенного к гетерогенному катализу , он интерпретирует механизм гетерогенного катализа с позиций теории комплексообразования, поскольку работы последних лет показали, что между гетерогенным и гомогенным катализом нельзя провести четкую границу, как это считалось ранее в обоих случаях найдены сходные элементарные механизмы и активные формы. Убедительным примером может служить сопоставление окислительно-восстановитель-ного катализа на переходных металлах и их твердых неорганических соединениях с катализом неорганическими комплексными соединениями переходных металлов в растворах. [c.5]

    И. М. Кольтгоф, В. А. Стенгер. Объемный анализ. Госхимиздат, 1950, (т. I. 376 стр.) и 1952, (т. И, 444 стр.). В т. I рассматриваются теоретические основы объемного анализа. Изложена теория методов нейтрализации и соединения ионов, приведены кривые титрования для различных случаев метода нейтрализации. Отдельные главы содержат материал ио теории методов окисления-восстановления, теории индикаторов, по ошибкам титрования. Рассмотрены явления адсорбции и соосаждения, катализа и индукции, применение объемных методов в органическом анализе описаны теоретические положения, касающиеся применения физико-химических методов для определения точки эквивалентности. В т. 11 книги изложено практическое применение методов нейтрализации, осаждения и комплексообразования. В томе 111 (840 стр., 1961 г.) описано применение окислительно-восстановительных методов объемного анализа. [c.486]

    Бимолекулярное взаимодействие фермента с субстратом. Для решения задачи о кинетической роли комплексообразования в ферментативном катализе целесообразно записать реакции (2.1) и (2.2) в виде следующей схемы  [c.38]


    Важная роль в ферментативном катализе отведена сорбции на активном центре боковых фрагментов субстратной молекулы, не претерпевающих в ходе реакции никаких химических изменений. Теоретический анализ двухцентровой модели химического взаимодействия, проведенный в гл. II, показал, что кинетическая роль подобного комплексообразования реагентов сводится фактически к стабилизации переходного состояния реакции и, тем самым, к понижению свободной энергии активации катализируемой реакции. В этом параграфе будут рассмотрены кинетические показатели некоторых неферментативных моделей, на примере которых удобно проиллюстрировать то, что реализация дополнительных взаимодействий реагентов за счет их боковых химически инертных групп действительно приводит к ускорению реакции. Это взаимодействие (типа E-R, см. схему 2.10) может быть электростатическим или гидрофобным, а также протекать с образова- [c.72]

    В зависимости от агрегатного состояния катализатора и реакционной среды, включающей в себя субстрат (реагирующее вещество), различают следующие типы катализа 1) гомогенный, когда и субстрат, и катализатор находятся в одной фазе (газ, жидкость) и система гомогенна 2) микрогетерогенный, когда и субстрат, и катализатор находятся в одной (обычно жидкой) фазе, но катализатор макромолекулярен, и.ии состоит из частиц коллоидных размеров, не выделяющихся в отдельную фазу. Сюда относится катализ на коллоидных металлах, а также огромной важности раздел биокатализа — ферментативный катализ. Важную роль здесь также играют процессы комплексообразования на макромолекулярном уровне 3) гетерогенный, когда катализатор и субстрат находятся в разных фазах обычно катализатор твердый, а реагирующие вещества — газ или жидкость, причем процесс протекает на поверхности катализатора. Это наиболее распространенный и важный для промышленности тип каталитических процессов. [c.286]

    Высокочастотное титрование применяют во всех объемно-аналитических методах, основанных на использовании реакций нейтрализации, окисления-—восстановления, осаждения, комплексообразования и т. п. Особенно удобен метод высокочастотного титрования, если реакцию следует проводить в. герметичной аппаратуре, при работе с окрашенными и темными растворами, при образовании осадков и титровании взвесей и эмульсий, а также в условиях, когда контакт электродов с раствором недопустим вследствие возможности катализа, поляризации и других осложняющих обстоятельств. [c.113]

    Диапазон областей использования различных модификаций описанного метода очень широк комплексообразование, кинетика, катализ, структурные исследования, анализ состава многокомпонентных систем и др. Это определяется простотой установки, прецизионностью измерений и экспрессностью получения результатов и делает метод легко внедряемым в системы автоматизации технологического контроля. [c.713]

    За последние 20 лет появилось более тысячи публикаций, посвященных кислородсодержащим макроциклическим соединениям. Макроциклические полиэфиры вызвали всеобщий интерес исследователей благодаря способности образовывать координационные соединения с катионами металлов в кристаллическом виде и в растворе. Спектр действия этих лигандов настолько широк, что вопреки принятому мнению о необходимости соответствия жесткости координирующихся частиц они вступают в реакции комплексообразования с представителями самых различных групп металлов — щелочных, щелочноземельных, -переходных, лантаноидов, актиноидов Известны также комплексные соединения краун-эфиров с некоторыми нейтральными молекулами — водой, бромом, органическими растворителями и основаниями, однако в данной книге комплексы такого типа не рассмотрены. Все аспекты возможного практического применения макроциклических полиэфиров — в экстракции, межфазном катализе, аналитической химии, в биологии и медицине, безусловно, связаны с их комплексообразующей способностью. [c.147]

    Кингу можно рекомендовать студентам, специализирующимся в области биоорганической химии, ферментативного катализа, в смежных дисциплинах, в качестве вполне современного учебного пособия. Однако при чтении последней главы, которая называется Катализ в результате комплексообразования и скорее отражает персональную точку зрения авторского коллектива, нежели [c.5]

    Величина положительного заряда иона металла служит важной характеристикой промотируемых или катализируемых металлами реакций [13]. Для многих процессов эффективность катализа непосредственно коррелирует с изменением заряда катиона. Так, как этот заряд распространяется на весь комплекс, а не только сосредоточен непосредственно на ионе металла, электростатическая природа координированных лигандов играет не менее важную роль, чем заряд иона металла. В некоторых рассмотренных выше реакциях активность многозарядного иона металла падала до нуля при комплексообразовании с анионными лигандами. Кроме того, плотность заряда может оказаться более важным фактором, чем общий заряд. Сила взаимодействия между двумя зарядами или диполями обратно пропорциональна квадрату расстояния между ними. Для достижения максимального. каталитического эффекта ион металла должен быть непосредственно связан с молекулой субстрата, а точнее — с разрываемой связью молекулы. Таким образом, важнейшую роль приобретает стереоспецифическая координация иона металла. В случае ионов переходных металлов на электростатическую природу иона оказывает также влияние экранирование заряда ядра иона металла его -электронами и полем лигандов. [c.233]


    КАТАЛИЗ КАК РЕЗУЛЬТАТ КОМПЛЕКСООБРАЗОВАНИЯ [c.297]

    Влияние комплексообразования на характер каталитического действия отмечалось нами неоднократно. Во всех гетерогенных каталитических реакциях процесс начинается с адсорбции субстрата (или субстратов) на поверхности катализатора. В ферментативных процессах реакция обычно начинается с образования фермент-субстратного комплекса. Во многих из этих реакций энергия комплекса, образованного между катализатором и субстратом, ниже энергии исходных компонентов. Этот факт трудно согласовать с ускорением реакции, в которой свободная энергия активации должна понижаться. Однако все становится на свои места, если при комплексообразовании свободная энергия переходного состояния понижается еще сильнее, чем энергия основного состояния. В этом случае действительно идет катализ. Необходимое понижение свободной энергии возможно либо в результате изменения маршрута реакции при комплексообразовании, либо в результате понижения энергии переходного состояния без изменения маршрута реакции, как в простых каталитических реакциях. [c.297]

    Эти два уравнения отражают два типа комплексообразования обеспечивающее катализ и препятствующее ему. Комплекс в уравнении (12.15) называют продуктивным , а комплекс в уравнении (12.16) — непродуктивным . [c.311]

    Кинетическая роль в химотрипсиновом катализе комплексообразования с активным центром а-ациламидиой субстратной группы [c.136]

    Первые две стадии реакций контактного окисления, наряду с изложенными выше механизмами, могут протекать по механизму комплексообразования в тех случаях, когда катионы решетки сохраняют свою индивидуальность. Вервей [241 для обратных шпинелей , а затем Морин [25] — для окислов металлов с незапол- ненными З -уровнями электронов указали на такую возможность, объяснив возникновение в таких соединениях электропроводности присутствием в них ионов одного и того же металла в различных валентных состояниях и в эквивалентных позициях кристаллической решетки. Можно предполагать, что подобного рода механизм электропроводности возможен не только для окислов (в том числе и тройных систем окислов [26]), но и для многих полупроводниковых соединений переходных металлов. Базируясь на этих представлениях, Дауден [27 ] рассматривает хемосорбцию на поверхности и явления замещения одного сорбента другим как реакции образования и превращения комплексов по механизму и 8)у2-замещения. Киселев, [28] также рассматривает адсорбцию как процесс поверхностного комплексообразования, когда при возникновении донорно-акцеп-торных связей неподеленная пара электронов лиганда оказывается затянутой на внутренние орбитали атома решетки, являющегос центром адсорбции. При таком механизме адсорбированные молекулы всегда будут в той или иной мере реакционноспособны. Действительно, затягивание неподеленной пары лиганда на внутренние орбитали центрального атома приведет к деформации адсорбированной молекулы и ослаблению внутримолекулярных связей. Отметим попутно, что трактовка Киселева справедливо распространяет электронные представления и на механизм кислотно-основного гетерогенного катализа. Развивая представления теории поля лигандов, Руней и Уэбб [29 ] показали, что механизм реакций дейтеро- бмена, гидрирования и дегидрирования углеводородов на переходных [c.27]

    Используемая для краун-эфиров сокращенная номенклатура довольно проста первое число означает общее число атомов в кольце, а второе — общее число гетероатомов. Легко усмотреть аналогию между такими комплексами, имеющими полость для связывания лиганда Ь, и активным центром фермента, специфически узнающим свой субстрат. Размер макроцикла может меняться и тем самым обеспечивать связывание лигандов разных размеров. Циклические полиэфиры типа краун сравнительно легко можно получить и подвергнуть разнообразным структурным модификациям. Эту область химии Крам предложил назвать химией до-норно-акцепторного комплексообразования [134—136]. Напомним также о гипотезе замка и ключа , предложенной Фишером в 1894 г. для описания структурного соответствия между ферментом и его субстратом в ферментсубстратном комплексе. Помимо ферментативного катализа и ингибирования комплексообразование играет первостепенную роль в таких биологических процессах, как репликация, хранение и передача генетической информации, иммунный ответ и транспорт ионов. В настоящее время накоплено уже достаточно сведений о структуре таких комплексов, чтобы подтолкнуть химиков-органиков к созданию высокоструктурированных молекулярных комплексов и к изучению специфического химизма процессов комплексообразования. [c.266]

    Из уравнения (2.21) видно, что термодинамически эффективность ферментативного катализа определяется разницей свободных энергий межмолекулярного (при образовании комплекса Михаэлиса) и внутримолекулярного (в переходном состоянии реакции) образования связи Е-Я. Следовательно, в количественном отношении кинетическая роль комплексообразования Е Н в ускорении ферментативной реакции представляется несколько иной, чем в кинетическом режиме второго порядка (уравнение 2.19). Однако и здесь движущей силой катализа остается свободная энергия взаимодействия Е-Н именно в переходном состоянии реакции (а не в промежуточном комплексе). Действительно, чем более термодинамически выгодным будет внутримолекулярное взаимодействие Е-К в активированном состоянии (чем более отрицательные значения примет величина АОз внутр). тем более благоприятным должно быть отношение VI/ии для ферментативной реакции [см. (2.21)]. Это связано с тем (см. рис. 12), что барьер свободной энергии активации ферментативной реакции (ДО/. внутр) в этом случае уменьшается (по сравнению с ДОи) и, следовательно, скорость процесса [уравнение (2.20)] возрастает. Наоборот, при заданном значении ДО .ппутр термодинамически более благоприятное взаимодействиеЕ -Н в исходном состоянии реакции (фермент-субстратный комплекс ХЕ-КУ) будет тормозить ее протекание. Так, более отрицательные значения Д(3 приводят к неблагоприятным значениям VI /иц в отношении ферментативного процесса [уравнение (2.21)]. Это связано с тем, что активационный барьер Д01% утр (см. рис. 12), определяющий скорость превращения фермент-субстратного комплекса [уравнение (2.20)], при этом возрастает. [c.41]

    К гомогенному катализу относятся многие реакции кислотноосновного взаимодействия, реакции комплексообразования и окисления—восстановления, многочисленные реакции гидрирования, сульфидировапня и др. [c.294]

    Таким образом, варьируя химический состав, изменяя химический потенциал катализатора можно попытаться осуществлять переход от раздельного механизма к высококомпенсационному слитному механизму кроме того, возможно предвидение каталитической активности на основе значений энергии связи реагентов с катализатором [19, с. 495]. Это трудный путь, однако определенные успехи в его реализации имеются, особенно в металлкомплексном гомогенном катализе. В этом случае реагенты входят в координационную сферу иона металла (т. е. становятся дополнительными лигандами), благодаря чему существенно облегчаются их взаимная ориентация, поляризация реагента в поле центрального иона металла и лигандов, электронные переходы в комплексе наконец, такое комплексообразование легко контролировать, варьируя природу исходных лигандов и центрального иона металла. Отметим, что в последнее время возникла и успешно реализуется идея ге-терогенизации катализа металлкомплексными соединениями, закрепленными (иммобилизованными) на полимерных гелях при этом остается возможность перехода к слитному механизму, а также удается использовать в качестве катализаторов соединения, нерастворимые в реакционной среде (основное преимущество классического гетерогенного катализа). [c.99]

    Ацетилен взаимодействует с 2 молями ароматического соединения, давая 1,1-диарилэтаны, а другие алкины, если и реагируют, то плохо. Спирты более реакционноспособны, чем алкилгалогениды, хотя при катализе реакции кислотами Льюиса требуется большее количество катализатора, так как он расходуется на комплексообразование с группой ОН. Для катализа реакций с участием спиртов часто применяют протонные кислоты, особенно серную. При использовании в качестве реагентов сложных эфиров реакция осложняется конкуренцией между алкилированием и ацилированием (реакция 11-15). И хотя в этой конкуренции обычно преобладает алкилирование и вообще ею можно управлять правильным подбором катализатора, сложные эфиры карбоновых кислот редко используются в реакциях Фриделя — Крафтса. Среди других алкилирующих агентов — тиолы, сульфаты, сульфонаты, алкилнитросоединения [199] и даже алканы и циклоалканы в условиях, когда их можно превратить в карбокатионы. Здесь следует отметить и этиленоксид, с помощью которого можно ввести в кольцо группу СН2СН2ОН, и циклопропан. Для реагентов всех типов реакционная способность соответствует следующему ряду аллильный и бензиль-ный тип>третичный>вторичный> первичный. [c.349]

    Касаясь гомогенно-каталитического варианта, необходимо остановиться на комплексообразовании в катализе. Обычно для технологических процессов характерно использование больших количеств субстрата, а главной задачей является увеличение селективности каталитического процесса и снижение выхода побочных продурстов, приводящих к загрязнению окружающей среды. При этом постепенный переход к технологиям, в которых в качестве окислителей используют лишь О2, Н2О2 и О3, кажется перспективным и экономически и экологически, поскольку продуктом их восстановления является вода, а не водные растворы солей различных металлов (натрия в случае таких окислителей, как гипохлорит, хрома — в случае хроматов и т. д.). [c.619]

    Применение. Методом ЭПР можно определять концентрацию и идентифицировать парамагн. частицы в любом агрегатном состоянии, что незаменимо для исследования кинетики и механизма процессов, происходящих с их участием. Спектроскопия ЭПР применяется в радиационной химии, фотохимии, катализе, в изучении процессов окисления и горения, строения и реакционной способности орг. своб. радикалов и ион-радикалов, полимерных систем с сопряженными связями. Методом ЭПР решается широкий круг струк-турно-динамич. задач. Детальное исследование спектров ЭПР парамагн. ионов d- и /-элементов позволяет определить валентное состояние иона, найти симметрию кристаллич. Поля, количественно изучать кинетику и термодинамику многоступенчатых процессов комплексообразования ионов. Динамич. эффекты в спектрах ЭПР, проявляющиеся в специфич. уши-рении отдельных компонент СТС, обусловленном модуляцией величины констант СТВ за счет внутри- и межмол. хим. р-ций, позволяют количественно исследовать эти р-ции, напр, электронный обмен между ион-р калами и исходными молекулами типа + А. < А + Д , лигандный обмен типа LK + L + L, внутримол. процессы вращения отдельных фрагментов в радикалах, конформац. вырожденные переходы, внутримол. процессы перемещения атомов или Фупп атомов в радикалах и т. д. [c.450]

    Все рассмотренные выше реакции циклических кетонов легко объясняются сопряженным образованием енамина и о-хинонметида и их циклоприсоединением. Формальная схема предполагает диссоциацию аминаля или замещенного основания Манниха на хинонметид и амин и конденсацию последнего с циклическим кетоном в енамин. Возможность такой диссоциации подтверждается спектральными данными [3, 6, 30]. Известно, однако, что получение енаминов - процесс длительный с многочасовым кипячением компонентов в толуоле. Продолжительность реакций в описываемых случаях - десятки секунд. Эти факты заставляют думать, что в действительности образование енамина и процесс циклоприсоединения проходят в комплексе, образованном азотистым производным салицилового альдегида и циклическим кетоном. В комплексообразовании участвуют циклические структуры с ВВС. Предполагаемый механизм, включающий такой внутримолекулярный кислотный катализ, приведен на схеме 41. [c.487]

    Прежде всего остановимся на кислотно-основном катализе, который известен, по-видимому, наиболее давно и представляет собой простейшую (по крайней мере на первый взгляд) разновидность катализа. Затем будут рассмотрены общий кис-лотпо-основной катализ, нуклеофильно-электрофильный катализ, реакции с участием коферментов, катализ окружением и ионами металлов. Наконец, заключительные главы книги посвящены таким разновидностям катализа, которые имеют более прямое отношение к ферментативным процессам. Речь идет о полифункциональном и внутримолекулярном катализе, а также о катализе путем комплексообразования. В необходимых случаях для иллюстрации изложения привлекаются соответствующие ферментативные реакции и модели ферментов. [c.21]

    Ионы металлов, включая переходные и редкоземельные, катализируют гидролиз различных амидов. В этих соединениях помимо связывания с амидной группой ион металла может координироваться с одним или несколькими аминными или карбоксил атными лигандами. Таким образом, структурные предпосылки катализа металлами гидролиза амидов и сложных эфиров аналогичны. Однако в гидролизе амидов катализ проявляется не столь ярко, как в гидролизе сложных эфиров. Например, гидролиз глицинамида в присутствии 0,02 моль/л ионов двухвалентной меди идет только в двадцать раз быстрее самопроизвольного процесса. Зтот результат на первый взгляд представляется довольно неожиданным, так как большая часть данных инфракрасной спектроскопии, касающихся комплексов ионов металлов с производными карбоновых кислот, показывает, что амиды сильнее связаны с металлами по сравнению со сложными эфирами, вероятно, из-за меньшей основности последних. Следовательно, более сильное комплексообразование иона металла в основном состоянии по сравнению с переходным должно неизбежно приводить к замедлению, а не ускорению реакции. [c.227]


Библиография для Катализ комплексообразованием: [c.334]    [c.141]   
Смотреть страницы где упоминается термин Катализ комплексообразованием: [c.306]    [c.78]    [c.106]    [c.225]    [c.146]    [c.274]    [c.306]   
Биоорганическая химия ферментативного катализа (1987) -- [ c.297 , c.341 ]




ПОИСК





Смотрите так же термины и статьи:

Катализ вследствие комплексообразования

Катализ гетерогенный роль комплексообразования

Катализ как результат комплексообразования

Комплексообразование

Комплексообразованне

Фермент также Катализ за счет комплексообразования

Энергетический профиль катализа комплексообразование



© 2025 chem21.info Реклама на сайте