Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристалличность и аморфность полимеров

    С увеличением степени кристалличности прочность полимеров увеличивается. Однако при синтезе эластомеров представляет интерес создание только такой структуры цепи, при которой и скорость, и степень кристаллизации в области обычных температур не очень велики, так как в противном случае материал быстро теряет эластичность при понижении температуры. Таким образом, особенность строения эластомерных цепей состоит в том, что кристаллизация их должна происходить только при растяжении полимера, Перечисленные выше каучуки регулярного строения при комнатных температурах являются практически полностью аморфными. [c.85]


    Рентгенографические исследования поливинилового спирта указывают на высокую степень его кристалличности. Эти наблюдения, на первый взгляд, трудно согласовать с рентгенографическими исследованиями поливинилацетата, которые позволяют рассматривать его как типичного представителя аморфных полимеров. Причиной аморфного состояния поливинилацетата является стереоизомерия отдельных звеньев макромолекулярной цепи, поскольку эфирные группы в звеньях могут занимать любое положение относительно основной цепи макромолекулы  [c.286]

    Поляризуемость полимерной молекулы по направлению главной оси и поперек ее различна. Поскольку главные оси полимерных молекул ориентированы перпендикулярно радиусу сферолита, такие агрегаты обладают способностью к двулучепреломлению и рассеивают лучи света, если их размер оказывается соизмерим с длиной волны видимого света (в то же время аморфные полимеры, например полистирол, оптически прозрачны). Размеры сферолитов влияют не только на оптические свойства полимеров, но также и на их механические характеристики. Степень кристалличности, число и размеры кристаллитов так же, как и скорость кристаллизации, существенно зависят как от температуры кристаллизации (отжига), так и от величины молекулярной ориентации (степени ориентации) в момент кристаллизации, вызванной воздействием внешнего поля механических напряжений. [c.40]

    Механические свойства частично-кристаллических полимеров ниже температуры Т, сильно зависят от их степени кристалличности. Чем выше кристалличность полимера, тем больше его хрупкость. Модуль сдвига высококристаллических полимеров достигает 10- МПа и практически не зависит от времени. При температуре выше Т,п модули частично-кр1 сталлических полимеров измерить трудно, потому что в отличие от аморфных полимеров они превращаются в жидкости, обладающие практически постоянной энергией активации вязкого течения. Только при очень большой молекулярной массе их поведение напоминает поведение резин. [c.258]

    Важным технологическим приложением ИК-спектроскопии является измерение степени кристалличности это возможно благодаря различиям в положении и интенсивности полос поглощения в спектрах высококристаллического и полностью аморфного полимеров. Однако этот метод необходимо сочетать с другими методами измерения степени кристалличности. В сочетании с другими методами, например ЯМР-спектроскопией высокого разрешения и рентгеноструктурным анализом, ИК-спектроскопия может быть использована и для изучения стереохимической структуры макромолекулы. [c.188]


    Надмолекулярная структура. Способ укладки макромолекул в конденсированном состоянии определяется их регулярностью. Регулярные макромолекулы кристаллизуются, нерегулярные образуют аморфные системы. Количественными параметрами надмолекулярной структуры кристаллического полимера являются параметры его кристаллической решетки, а также степень кристалличности. Структура аморфного полимера характеризуется ближним порядком в расположении структурных единиц (сегментов) и однозначно охарактеризована быть не может. Косвенными характеристиками аморфной структуры полимера и интенсивности взаимодействия макромолекул являются его плотность и энергия когезии. [c.92]

    Например, степень кристалличности полиэтилена может достигать 80%. Наиболее выражена способность к образованию кристаллов у полиолефинов, полиамидов и полиэфиров. Кристаллическое строение имеет полимер карбин. Свойства кристаллических и аморфных полимеров существенно различаются. Так, аморфные полимеры характеризуются областью температур размягчения, т. е. областью постепенного перехода из твердого состояния в жидкое, а кристаллические полимеры — температурой плавления. [c.359]

    При полимеризации других оле-финов повышение регулярности строения также ведет к увеличению кристалличности полимеров, которые благодаря этому отличаются повышенной температурой плавления и большей механической прочностью. Кристаллические компоненты продукта сопровождаются высокомолекулярными аморфными полимерами и эластомерами. Стереорегулярность строения сообщает продуктам новые и необычные свойства, которые, несомненно, расширят области применения высокополимеров. [c.290]

    Наиболее простым и употребительным методом исследования кристалличности полимеров является измерение их плотностей. Метод основан на том предполол ении, что разность удельных объемов полностью аморфного и исследуемого образцов пропорциональна степени кристалличности полимера [25]. С повышением кристалличности плотность полимера возрастает. Зная значения плотности полностью аморфного и полностью кристаллического образцов, можно рассчитать степень кристалличности X полипропилена (в %) по формуле [26]  [c.70]

    Участок FG. В области, лежащей выше Тт, происходит абсорбция молекул сорбата полностью аморфным полимером. На этом участке диаграмма удерживания представляет собой прямую линию, экстраполяцией которой на низкие температуры (пунктирная линия FE) можно определить степень кристалличности неподвижной фазы, для чего берется отношение экспериментально определенного удерживаемого объема и величины его, полученной экстраполяцией. [c.48]

    Количественный анализ диаграмм удерживания на участках плавления полукристаллических полимеров (рис. 24.4) позволяет оценить кристалличность полимера и получить кривую плавления. Выше Тт полимер становится полностью аморфным, при этом диаграмма представляет собой прямую линию. Экстраполяцией ее на более низкие температуры находят удерживаемый объем для идеального аморфного полимера. [c.51]

    При менее интенсивной полимеризации в присутствии газообразного трехфтористого бора (образование полимера за 1 шхн) полученный продукт обладает некоторой кристалличностью, хотя и меньшей, чем в процессе А. Аморфный полимер обладает хорошими адгезионными свойствами, каучукоподобен, но не способен к холодной вытяжке. [c.38]

    Наиболее распространенной формой надмолекулярного образования в ориентированных полимерах является фибрилла, которая может иметь различное строение. У ориентированных аморфных полимеров фибриллы сравнительно гомогенны. У ориентированных аморфно-кристаллических полимеров (например, у целлюлозы - см. рис. 9.3) фибриллы гетерогенны чередуются кристаллические и аморфные области, причем проходные макромолекулы переходят из одного кристаллита в другой через аморфную прослойку. Механическая прочность ориентированных полимеров непосредственно связана со строением фибрилл. Аморфные прослойки из проходных макромолекул обеспечивают эластичность (способность к большим обратимым деформациям) в сочетании с высокой прочностью на разрыв. Прочность тем больше, чем больше доля проходных макромолекул. При 100%-й кристалличности полимер имеет высокую прочность на разрыв (макромолекулы, прервавшиеся в кристаллической части, почти не влияют на прочность из-за высокой энергии когезии), но малую эластичность из-за отсутствия аморфных прослоек. Уменьшение числа проходных макромолекул в случае складчатого строения снижает прочность на разрыв. [c.142]

    Кристаллические полимеры со степенью кристалличности, близкой к 100 %, характеризуются ТМ-кривой подобного типа (кривая 3), но переход из кристаллического состояния с малыми упругими деформациями в состояние с большими обратимыми высокоэластическими деформациями является фазовым переходом, причем температурный интервал этого перехода более узкий, чем интервал размягчения аморфного полимера. При достижении Т происходит плавление кристаллического полимера. Температурная область высокоэластического состояния (Тп ...Тт) у кристалли- [c.158]


    При условии корректной интерпретации из этих различий можно извлечь дополнительную информацию о деталях структуры кристалло-аморфных полимеров. Заметим только, что нужно с осторожностью использовать измерения плотности для оценок степени кристалличности. Хотя собственная дефектность кристаллических областей может несколько меняться, это мало отражается на их плотности, которую в первом приближении можно считать одной и той же. Напротив, в зависимости от расположения межкристаллитных цепей, входящих в аморфные области (близко или далеко от поверхности кристаллита, степени натяжения этих цепей, наличия свободных концов), плотность аморфных областей может колебаться довольно сильно и ее нельзя принимать равной плотности 100%-го аморфного блочного полимера того же состава. [c.93]

    Например, для отнесения полос к разным типам колебаний, строго говоря, калибровка не является необходимой для выявления определенных групп (могущих вносить вклады в разные типы колебаний) уже необходимо предварительное сопоставление бланкового ( пустого , для системы, где этих групп заведомо нет) спектра с реальным . Тут нужно знать только положение полосы, поскольку наперед известно, что ее интенсивность пропорциональна содержанию интересующих нас групп. Но возможны и более сложные ситуации, связанные например, с ИК-спектроскопическим методом определения степени кристалличности (в своем месте мы уже указывали, что определение ее разными методами приводит к разным результатам, что не дезинформирует правильно мыслящего исследователя, а, наоборот, дает ему дополнительную информацию). Ясно, что вхождение части цепей и, соответственно, содержащихся в них групп в решетку кристаллита влияет на характер колебаний, что может привести к смещению, изменению интенсивности и расширению или сужению полосы. Но вспомним о граничных областях в кристалло-аморфных полимерах (и вообще расщеплении релаксационных переходов из-за наличия разных типов аморфных цепей). Из всех возможных кристаллических полос ИК-спектра желательно поэтому выбрать наименее чувствительные к дополнительным релаксационным помехам. Тут предварительная калибровка, причем по степеням кристалличности, определенным разными методами, уже не только желательна, но и необходима. Намного отчетливее эти затруднения выявляются в ЯМР или ЭПР со спиновыми зондами, где кристаллизация и стеклование могут привести к практически одинаковым результатам, регистрируемым на выходе прибора. [c.319]

    Механические свойства кристалло-аморфных полимеров во многом определяются долей и релаксационным состоянием-аморфных областей. Если степень кристалличности велика (как в полиэтилене), кристаллические области доминируют, и хотя-аморфные области находятся при комнатной температуре в высокоэластическом состоянии, полимер в целом проявляет механические свойства твердого пластика. С другой стороны, в большинстве кристаллизующихся каучуков, обладающих низкой степенью кристалличности, цепи между кристаллитами достаточно длинны, чтобы в полной мере проявилась высокоэластичность, предопределяющая технические применения каучуков и резин. [c.330]

    Получаемая этим методом качественная информация является весьма ценной, помогая не только выявить различие протяженности ориентированных участков цепей в аморфных полимерах при одинаковых Р, но и определить температуры релаксационных переходов (в первую очередь, конечно, а), выявить наличие кристалличности и оценить Т и, наконец, как мы уже видели, выявить наличие или отсутствие КВЦ, точнее, сплошного каркаса из них. [c.368]

    Полимеры по отношению к нагреванию существенно отличаются от низкомолекулярных соединений. Только полимеры с высокой степенью кристалличности имеют достаточно резко выраженную точку плавления аморфные полимеры, а также полимеры с низкой степенью кристалличности размягчаются в довольно широком температурном интервале. Наиболее важной характеристической температурой для полимеров является температура стеклования. [c.87]

    Кристалличность поливинилхлорида не превышает 10%, поэтому его относят к аморфным полимерам. Он растворим при нагревании в хлорированных углеводородах, циклогексаноне и некоторых других растворителях. Благодаря высокому содержанию клора поливинилхлорид затухает при выносе из пламени, но при [c.105]

    Для оценки степени кристалличности полиоксипропилена кроме рентгеновских методов используют измерения плотности (плотности кристаллического и аморфного полимеров равны 1,157 и 1,002 г/см Соответственно) [83]. Стереорегулярность полимеров оценивают также по температуре плавления [83, 114], исходя из уравнения [c.257]

    Кристаллические полимеры легко подвергаются ориентации при растяжеггии. Рентгенограмма ориентированного полимера показывает, что с повышением степени кристалличности такой полимер становится прочнее и тверже. Стереорегулярпые полимеры простых виниловых эфиров менее растворимы по сравнению е аморфными. Они нерастворимы в бута ноле и метилвинилкетоне. тогда как аморфные полимеры растворяются в этих жидкостях. [c.296]

    О влиянии длины цепей и их распределения на механические свойства изотропных и подвергшихся ориентационной вытяжке полимеров в литературе имеются весьма противоречивые сведения. Имеются данные о линейной зависимости между прочностью капронового волокна и величиной обратной молекулярной массы , но это — кристаллизующийся полимер и поэтому к подобным корреляциям следует отнестись осторожно. Наиболее существенные изменения прочности связываются с областью молекулярных масс З-Ю —15 10 т. е. там, где резко меняется прочность изотропного полимера. Обнаруживается также линейная зависимость между логарифмом прочности волокна и обратной величиной молекулярной массы полимеров, однако, в случае волокон, которые всегда кристалличны, тип зависимости любого параметра от М связан не с готовой структурой, а с технологической предысторией, где доминируют реологические факторы. Для ориентированных пленок поливинилацетата наблюдается линейное увеличение прочности с молекулярной массой. Однако эта зависимость четко проявляется лишь по достижении молекулярных масс, при которых прочность изотропного поливинилацетата становится неизменной. При изучении аморфных полиметилметакрилата, полистирола и поливинилацетат, получаются близкие результаты, хотя соответствующие зависимости не являются строго линейными. На механические свойства ориентированных полимерных материалов гораздо больше влияют условия формован 1я и вытяжки волокон и пленок [22].-Влияние молекулярной массы на механические свойства линейных аморфных полимеров следует оценивать с учетом изложенных представлений об их квазисетчатом строении. Прочность и другие механические свойства полимеров определяются их строением, однако при формовании и вытяжке волокон молекулярная масса полимера регулирует протекание процессов ориентации макромолекул, определяя структурные особенности и свойства получаемых полимерных материалов. [c.197]

    Получаемая таким образом информация сходна с получаемой при механических воздействиях в том смысле, что позволяет достаточно четко регистрировать по меньшей мере два из, трех релаксационных состояний в аморфных полимерах и судить о влиянии кристалличности на релаксационные переходы в кристалли-. зующихся полимерах. (Некоторые дополнительные сведения по этому поводу см. в работах Борисовой [21, с. 34 24, т. 2, с. 740— 754].) В то же время следует учитывать, что электрический отклик полимерной системы на воздействие электрического поля определенной частоты отнюдь не эквивалентен механическому отклику Поэтому-то хотй метод диэлектрических потерь может быть применен для выявления области стеклования или размягчения, температура соответствующего максимума потерь может достаточно существенно отличаться от температуры структурного стеклования, так же как частота (при заданной температуре соответствующая максимуму) может отличаться от частоты механического стеклования. [c.264]

    Выше мы говорили об аморфных полимерах. Если полимер состоит из макромолекул с регулярной структурой, то ближний порядок в расположении сегментов может при определенной температуре (температура кристаллизации) и за определенный период времени перейти в дальний порядок. Возникнет кристаллическая структура. В дальнейшем мы более подробно познакомимся с особенностями кристаллизации полимеров. Отметим, что полимер не может закристаллизоваться на 100%, как это происходит с низкомолекулярными веществами. Вследствие значительной перепутанности макромолекуляриых клубков часть сегментов не может участвовать в построении кристалла по чисто стерическим причинам (рис. 7.7). Степень кристалличности полимеров колеблется поэтому в широких пределах от 30 до 80%. В очень регулярных полимерах содержание кристаллической части может достигать 90—95%. [c.103]

    Сополимеризация. Введение в молекулу полимера второго мономера является важным способом регулирования степени кристалличности или даже аморфизации полимера. Нескольких процентов второго мономера достаточно, чтобы предотвратить кристаллизацию. Можно сказать, что статистические сополимеры всегда являются аморфными полимерами. Так, при сополимеризации этилена н пропилена получают аморфный сополимер — этиленпропиленовый каучук, являющийся сейчас крупнотоннажным каучуком, применяемым в резиновой промышленности. Введение в молекулу полимера долей процента или немногих процентов второго мономера может снизить степень кристалличности до желаемого уровня. Если в результате сополимеризации возникает блок-сополимер, то при достаточной длине блоков может возникнуть кристаллическая структура, образованная теми блоками, которые количественно преобладают. Второй блок либо не образует кристаллическую решетку, либо образует ее высокодефектиой. Такие блок-сополимеры применяются как добавки для улучшения свойств полимеров или их смесей. Так, блок-сополимер этилена и пропилена может применяться для повышения стойкости к удару или морозостойкости полипропилена, а также для улучшения деформируемости сплавов полиэтилена и полипропилена. [c.183]

    Процесс полимеризации пропилена фирмы Монтекатини во многих отношениях сходен с мюльгеймским процессом полимеризации этилена. В обоих в качестве катализатора применяется сочетание галогенид титана — алкилалюминий. Однако в процессе Монтекатини исиользуется предварительно обработанный катализатор, обеспечивающий получение твердого полипро-лилепа с высокой степенью кристалличности, в то время как в мюльгеймском процессе применяется осажденный катализатор, дающий но.лиэтилен с более высоким содержанием аморфного полимера. В обоих процессах полимеризацию проводят в области температур, при которых полимер не растворим в реакционной среде. [c.302]

    Методически задача рентгенографического определения степени кристалличности сводится к измерению интенсивности дифракционного спектра неориентированного образца и его делению на составные части, соответствующие аморфной и кристаллической фракциям полимера. Самым ответственным моментом в рентгенографическом анализе является правильное и для всех образцов одинаковое определение площади, соответствующей кристаллической и некристаллической (аморфной) частям полимера на микро-фотометрической кривой. Выполнение этой операции в случае полиморфных веществ сопряжено с большими трудностями, так как не удается получить при нормальных условиях чисто аморфный полимер. В случае полипропилена подобных затруднений не возникает, поскольку для некристаллической фракции можно точно определить максимум интенсивности почернения на микрофотоме-трической кривой, равно как и изменение интенсивности почернения, если степень кристалличности изменяется в зависимости от диапазона измеряемых углов [7, 41]. [c.72]

    К. аморфной твердой фазы н рекристаллизацию осуществляют, как правило, при т-рах, близких к т-рам плавления кристаллизуемых в-в. При этом в результате термодиффу-зиоииых процессов изменяется первичная кристаллич. структура в-ва либо происходят зарождение и рост кристаллов из аморфной фазы. Такую К. применяют для получения в-в и материалов с заданными кристаллич. структурой либо степенью кристалличности (термопластичные полимеры, стекло и др.). [c.531]

    Как видно из кривых на рис. 10.1, области температурных переходов полиэфира кодел и полиэтилентерефталата очень близки [3]. Для кодела 7-переход отмечается примерно на 10 °С выше на такую же величину выше и р-нереход, соответствующий расстекловыванию аморфного полимера. а-Переход, обусловленный началом кристаллизации, лежит в тех же границах, что и у полиэтилентерефталата. Кристалличность кодела ниже, чем кристалличность полиэтилентерефталата. [c.264]

    Характер кривой определяется исходной степенью кристалличности и условиями процесса. Чем ниже степень кристалличности, тем M [iee выражена / стадия, н при отсутствии достаточно сформировавшихся кристаллов (возможны только зародыши, кристаллические кластеры) кривая вырождается в кривую, характерную для аморфных полимеров, кристаллизующихся в процессе растяжения (см рнс. 5.9) Поскольку процесс перестройки структуры имеет временной характер, то еформация кристаллического полимера ззписит от релаксационных свойств полимера, т е. от соотношения времени перестройки i и временн действия силы /д Предел текучести повышается с ростом скорости V и при снижении температуры Прн ни,чкой [c.315]

    Обычно для полимеров одинакового или близкого химического строения, переходящих в высокоэластическое или расплавленное состояние при разной температуре, наибольшей термической устойчивостью обладает более высокоплавкий образец, что объясняется диффузионным торможением деструктивных процессов в твердой фазе полимера. Для рассматриваемого карборансодержащего полиарилата наблюдается обратная картина наименьшее уменьшение массы в условиях как динамической (в интервале 400—450 °С), так и изотермической (400 °С, 3 ч) термогравиметрии показывает аморфизированный образец. С повышением степени кристалличности полимера во всех случаях увеличиваются потери массы. Например, масса аморфизированного образца не изменяется до 650 °С, кристаллические же образцы обнаруживают уменьшение в массе при 400 °С. Высказано предположение, что неодинаковое поведение при нагревании кристаллического и аморфизированного образцов данного полиарилата может быть обусловлено различием их молекулярной подвижности в области 280-380 °С [119]. Повышенная термическая устойчивость аморфного полимера с относительно низкой температурой размягчения обусловлена или повышением стабилизирующего влияния карборановых групп в расплаве полимера, или образованием более термически устойчивых вторичных структур за счет взаимодействия по карборановым группам, протекание которых в расплаве или в высокоэластическом состоянии облегчается. В высококристаллических полимерах с высокими температурами плавления проявление этих эффектов, очевидно, затруднено [118]. [c.266]

    Для определения степени кристалличности полиамидов может использоваться дилатометрический метод при условии, что плотность полностью кристаллического и полностью аморфного полимеров заранее оценена рентгеноскопическим или ИК-спектроскопи-ческим методами. В предположении, что уменьшение удельного объема пропорционально степени кристалличности полимера, объемная доля кристаллической [c.241]

    Таким образом, используя смеси изомеров 2,2,4,4-тет-раметилциклобутандиола-1,3 различного состава, можно регулировать структуру и свойства образующегося полимера [16]. Например, при соотношении цис- и транс-, равном или превышающем 1,3, получаются полностью аморфные полимеры. При соотношении, равном примерно 1, степень кристалличности увеличивается, что приводит к ухудшению оптических свойств при формовании или экструзии полимера. [c.239]

    Суперпозиция фазово-агрегатных и релаксационных состояний тоже приводит к появлению ряда сугубо полимерных физических и механических свойств. Наиболее характерный пример — кристаллизующиеся каучуки. Поскольку обычно температуры стеклования и размягчения лежат ниже температуры плавления, кристалло-аморфный полимер может существовать в виде взвеси кристаллитов, связанных в паракристаллическую сетку Хоземанна (в примере с взвесью кристаллитов простого вещества в стеклообразной матрице сетка отсутствовала) в стеклообразной или высокоэластической матрице. Поскольку температура текучести зависит от молекулярной массы и простого соответствия между ней и Тал нет, возможны ситуации, когда после размягчения аморфной матрицы полимер будет сохранять твердоподобие из-за высокой степени кристалличности типичный пример — линейный полиэтилен. [c.322]

    ОТ —180 до —100°С третий вид релаксационных потерь, уменьшающихся при понижении степени кристалличности. Энергия активации низкотемпературных потерь 12,6 кДж/моль (3 ккал/моль) характерна для дипольно-радикальных потерь аморфных полимеров. Максимумы tg6 в интервале температур от —50 до 50 °С обусловлены тепловым движением макромолекул в аморфных областях сополимеров. Максимумы и е в диапазоне 100—200°С связаны с плавлением кристаллитов сополимеров. Перед плавлением кристаллитов сополимеров, а также ПВДФ, при низких частотах е достигает значений 30—50 и резко уменьшается при плавлении, что может быть обусловлено ориентационными процессами в кристаллических областях сополимеров [52]. Ориентация образцов сополимера приводит к возрастанию удельного электрического сопротивле- [c.130]


Смотреть страницы где упоминается термин Кристалличность и аморфность полимеров: [c.185]    [c.184]    [c.208]    [c.296]    [c.111]    [c.40]    [c.241]    [c.142]    [c.145]    [c.159]    [c.430]    [c.82]   
Смотреть главы в:

Химия высокомолекулярных соединений -> Кристалличность и аморфность полимеров




ПОИСК





Смотрите так же термины и статьи:

Аморфные полимеры

Кристалличности

Кристалличность и аморфность



© 2024 chem21.info Реклама на сайте