Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Строение типичных металлов

    Атомы элементов первой группы на валентной оболочке имеют по одному электрону. Это и определяет их общие свойства. В соединениях эти элементы образуют только положительно заряженные ионы и являются типичными металлами. Наряду с одинаковым строением внешнего электронного слоя предпоследний слой у атомов отдельных элементов построен различно у одной группы элементов в нем находится по 8, у другой — по 18 электронов. Такое различие в строении предпоследнего электронного слоя оказывает большое влияние на свойства элементов и лежит в основе деления их на две подгруппы. К главной подгруппе I группы периодической системы относятся литий, натрий, калий, рубидий, цезий и франций. В предпоследнем слое у них находится по [c.387]


    Руководствуясь строением атомов, охарактеризуйте общие и отличительные физические свойства типичных металлов. Приведите примеры. [c.120]

    Строение типичных металлов [c.183]

    Остановимся на некоторых особенностях строения и роста фазовых оксидных слоев. По структуре и свойствам эти слои делят на сплошные (плотные) и пористые. Примером сплошных слоев могут служить пассивирующие слои на тантале, цирконии, алюминии, ниобии. Сплошные слои имеют стеклообразную или аморфную структуру, обладают достаточно большим электрическим сопротивлением и иногда проявляют выпрямляющее действие, проводя ток лишь тогда, когда металл является катодом. Типичным примером пористых слоев могут служить оксидные и гидроксидные слои на кадмии, цинке, магнии. Эти слои имеют кристаллическую структуру и низкое электрическое сопротивление (порядка нескольких омов). Возможно также образование слоев смешанного типа. Так, на алюминии в сернокислых растворах можно наблюдать сплошной слой со стороны металла и пористый со стороны раствора. Кроме того, при поляризации электрода или во времени могут происходить переход одного типа слоя в другой, кристаллизация аморфных слоев, изменение их состава и структуры. [c.368]

    Периодический закон. Основной закон химии-Периодический закон был открыт Д. И. Менделеевым в то время, когда атом считался неделимым и о ехо внутреннем строении ничего не было известно. В основу Периодического закона Д. И. Менделеев положил атомные массы (ранее - атомные веса) и химические свойства элементов. Расположив 63 известных в то время элемента в порядке возрастания их атомных масс, Д. И. Менделеев получил естественный ряд химических элементов, в котором он обнаружил периодическую повторяемость химических свойств. Например, свойства типичного металла литий 1л повторялись у элементов натрий Ка и калий К, свойства типичного неметалла фтор Р-у элементов хлор С1, бром Вг, иод I и т.д. [c.33]

    Что же касается общетеоретических вопросов, то при описании многих тем школьного курса химии учение о периодичности позволяет глубже раскрыть их содержание. Так, при изучении водных растворов следует обратить внимание на свойства растворителя (вода) и свойства растворяемых веществ (типы связи, строение молекулы, степени окисления), которые определяют такое свойство веществ, как их растворимость, поведение в воде (электролитическая диссоциация, гидролиз, окисление—восстановление). При описании состава химических соединений следует обратить внимание на взаимосвязь классификации соединений по составу с положением элементов в системе (совокупность свободных атомов, номер группы и периода). Это дает возможность устанавливать связи между разными классами соединений (оксиды, фториды, хлориды, гидриды, интерметаллиды) и видеть особенности каждого из них по составу (насыщенные или ненасыщенные молекулы), по агрегатному состоянию и строению (водородные соединения неметаллов, как правило, газообразны при обычных условиях, гидриды типичных металлов — ионные кристаллы) и т. п. [c.71]


    Несмотря иа то что у атома кремния строеипе внешней электронной оболочки такое же, как у атома углерода, в химии этих двух элементов мало сходства. Действительно, хотя структура элементного кремния такая же, как одной из модификаций углерода— алмаза, а также соблюдается соответствие формул некоторых простейших соединений кремния и углерода, однако в химических и физических свойствах соединений этих элементов редко наблюдается большое сходство. Поскольку кремний бо-. (ее электроположителен, чем углерод, со многими металлами он образует соединения, которые имеют строение, типичное длл сплавов (разд. 23.4), и некоторые из них имеют ту же структуру, что и соответствующие бориды. Фактически кремний во-многом больше напоминает бор, чем углерод, хотя формулы соединений кремния и бора обычно совершенно различны. Некоторые из таких параллелей в химии кремния и бора рассмотрены в начале следующей главы. Силициды ио своему строению мало ио.хожи па карбиды, по весьма сходны с боридами например, -)то проявляется в образовании каркасов из атомов 51 (В), хотя немногие силициды н бориды действительно пзоструктурны. [c.88]

    Строение простых веществ этой группы описано в предыдущих главах. Особняком стоит структура графита для более тяжелых элементов подгрупп УБ—У1Б характерно усиление металлических свойств. В подгруппе ГУБ у олова имеется также белая модификация с более выраженными. металлическими свойствами, а свинец — типичный металл. В подгруппе УБ [c.442]

    Исследование строения расплавленных солей, помимо чисто познавательного, имеет и практическое значение, поскольку знание структуры в принципе позволяет вычислять свойства солевых расплавов статистическими методами . В этой главе рассматриваются исследования строения типичных солей, например галогенидов щелочных металлов, методом дифракции рентгеновских лучей и нейтронов. Как и в любой другой, сравнительно новой, области, по вопросу о строении расплавленных солей существует множество гипотез, часто относящихся к некоторым специфическим классам солей, например к хлористому кадмию. Выделение подобных солей в особый класс основано на необычности их поведения в твердом состоянии. Однако проблемы такого рода здесь не рассматриваются. Помимо рентгеноструктурных методов, для изучения строения расплавленных солей применяются методы, основанные на получении колебательных и электронных спектров, которые излагаются в пятой и шестой главах настоящей книги. [c.301]

    Для характеристики места алюминия в подразделении элементов на металлы и неметаллы интересны свойства его хлорида. Хлориды типичных металлов имеют ионную решетку и представляют собой твердые тугоплавкие и нелетучие вещества, тогда как хлориды неметаллов имеют молекулярную решетку и представляют собой летучие жидкости или газы. Хлорид алюминия Рис 234. Строение молекулы занимает промежуточное положение хлористого алюминия, [c.663]

    При сравнении металлов главной и побочной подгруппы III группы с алюминием как типичным металлом этой группы возникает вопрос чему отдать предпочтение — сходству ли в строении атомов или сходству в строении ионов Сравним строение атома и иона алюминия со строением атома и иона, с одной стороны, скандия, а с другой — галлия. [c.664]

    Некоторые свойства этих элементов даны в табл. 2. Из таблицы видно, что особенно отличаются свойства высокотемпературного бора от свойств легкоплавких, типичных металлов — алюминия, галлия, индия и таллия. У бора величина первого ионизационного потенциала, характеризующая энергию связи внешних / -электронов, наибольшая (строение внешних орбит у элементов III Б группы s p). У остальных элементов-аналогов величина первого ионизационного потенциала значительно меньше, чем у бора, и почти одинакова. Бор обладает наибольшей величиной электроотрицательности и малыми размерами кристаллохимических радиусов. [c.8]

    Другая характерная особенность неметаллов — стремление их атомов образовывать ковалентные химические связи с атомами других неметаллов и амфотерных элементов, что предопределяется высокими значениями их энергии ионизации (см. раздел 2.3). В этом проявляется ковалентная природа строения простых неметаллических веществ и соединений неметаллов (в отличие от преимущественно ионной природы строения соединений типичных металлов, см. разделы 3.1—3.3). [c.150]

    В соответствии со строением атома к металлам относят элементы 5- (кроме Н и Не), <1- и /-типов, а из элементов р-типа — алюминий, галлий, индий и таллий. В химическом отношении металлы являются только восстановителями и не образуют с водородом при нормальных условиях газообразных соединений. Общеизвестно также, что металлы обладают относительно высокой тепло- л электропроводностью. По этим свойствам к металлам относят такие элементарные вещества, как олово, свинец и висмут, отличающиеся от типичных металлов своей способностью образовывать с водородом газообразные. соединения, а в реакциях наряду с восстановительными свойствами проявлять и окислительные. Таким образом, металлами можно считать более 4/5 всех элементов. [c.114]


    Соединения с водородной связью по своему строению занимают промежуточное положение между низкомолекулярными и полимерными соединениями. Представление о полимерных соединениях в дальнейшем используется лишь для соединений с ковалентным типом связи, хотя кристалл соли или решетку металла можно было бы рассматривать тоже как полимерное образование. Кроме того, термин полимерные не отражает механизма образования соединения. Ведь для описания типичных свойств таких соединений совершенно несущественно, происходило ли его образование из мономерных единиц путем конденсации или полимеризации (разд. 33.7). [c.356]

    Десять / -элементов, начиная со скандия и кончая цинком, принадлежат к переходным элементам. Особенность построения электронных оболочек этих элементов по сравнению с предшествующими (з- и р-элементами) заключается в том, что при переходе к каждому последующему -элементу новый электрон появляется не на внешней (п = 4), а на второй снаружи (тг = 3) электронной оболочке. У атомов всех переходных элементов внешняя электронная оболочка образована двумя з-электронами. Существуют -элементы (например, хром, молибден, элементы подгруппы меди), у атомов которых во внешнем электронном слое имеется только один 5-электрон. Причины этих отклонений от типичного порядка заполнения электронных энергетических подуровней рассмотрены в конце раздела. В связи с этим важно отметить, что химические свойства элементов в первую очередь определяются структурой внешней электронной оболочки их атомов и лишь в меньшей степени зависят от строения предшествующих (внутренних) электронных оболочек. Поэтому химические свойства -элементов с увеличением атомного номера изменяются не так резко, как свойства в- и р-элементов. Все -элементы принадлежат к металлам, тогда как заполнение внешнего р-подуровня приводит к переходу от металла к типичному неметаллу [c.68]

    Строение простых жидкостей. Моноатомные жидкости и расплавленные металлы часто объединяются под названием простые жидкости, поскольку для них истолкование рентгенографических и нейтронографических данных менее затруднено, чем для других классов жидкостей. Атомы сжиженных благородных газов и некоторых жидких металлов имеют сферическую симметрию. К простым жидкостям относятся также и некоторые молекулярные жидкости, состоящие из неполярных молекул со сферической симмет-Рис. 111.46. Радиальная функция распре- рией И характеризующиеся неделания направленными и ненасыщенными силами взаимодействия. Для количественного описания структуры жидкостей в настоящее время широко применяется так называемая радиальная функция распределения (г). Ее типичный вид для одноатомных жидкостей изображен на рис. П1.46, Радиальная функция распределения представляет собой вероятность обнаружения частицы на расстоянии г от некоторой другой частицы, выбранной в качестве объекта наблюдения. Из рис. И1.46 видно, что для области г от г = О до г = Гх величина g (г) = 0 равно эффективному диаметру частиц. Эта величина также называется радиусом первой координационной сферы. В области г, превышающих молекулярный диаметр, радиальная функция испытывает несколько затухающих колебаний относительно единицы за единицу условно принимается значение g (г) при г- оо. Максимуму радиальной функции отвечают расстояния (г , г , Гд), где наблюдается наиболее высокая вероятность встретить частицу, а минимуму — расстояние с наиболее малой вероятностью нахождения частицы. В минимумах величина g (г) не равна нулю, что служит указанием на передвижения молекул от одной координационной сферы к другой, т. е. на наличие трансляционного движения. [c.228]

    Возможны два подхода к предвидению состава и строения продуктов взаимодействия катиона металла с лигандами. Первый из них — это непосредственный расчет относительной устойчивости всех мыслимых конфигураций для конкретного случая, например методами квантовой механики. Второй — это использование предшествующего опыта, сформулированного в виде описания типичных координационных чисел катиона, типичных способов координации лигандов, полуэмпирических правил, связывающих термодинамические характеристики связей и стереохимические требования катиона и лиганда с их структурой и т. д. Оба подхода имеют свои достоинства и недостатки. Эффективность обоих подходов мала в тех (нередких в химии координационных соединений) случаях, когда энергетическая выгодность различных продуктов реакции близка. [c.19]

    Таким образом, хром, будучи типичным металлом в свободном виде, в шестивалентном состоянии образует соединение хромовую кислоту Н2СГО4, аналогичную по строению и подобную по некоторым свойствам на серную кислоту,— со единение, образуемое типичным неметаллом. Такие же особеН ности характерны и для многих других элементов побочных подгрупп. Например, металл марганец в семивалентном состоянии образует марганцевую кислоту НМ.ПО4, по составу и некоторым свойствам напоминающую хлорную кислоту H IO4. Из сказанного можно сделать вывод, что и металлы, и неметаллы в одинаковых валентных состояниях, соответствующих номерам групп, в которых они находятся, могут образовывать сходные по составу и отдельным свойствам соединения. Причина этого заключается в подобии строения внешних электронных обдлочек атомов элементов главных и побочных подгрупп в валентных состояниях, равных номерам групп. В данном случае речь идет о тех внешних электронных оболочках, которые остаются за вычетом электронов, принявших участие в образовании химической связи. Поясним сказанное примерами  [c.274]

    В основе строения атомов Fe, Со и Ni лежит электронная конфигурация аргона 2 8 8. Во внешнем же слое атомы семейства содержат по 2 валентных электрона. Отсюда типичная для этих элементов валентность +2. Это — низшая положительная валентность, которой соответствуют низшие окислы состава ЭО (закиси металлов, например FeO — закись железа). Им отвечают гидраты закиси общей формулы Э (ОН)г, например Fe(0H)2 — гидрат закиси железа. Эти гидраты имеют ясно выраженный основной характер. В образовании высших окислов участвуют электроны второго снаружи слоя. По мере повышения положительной валентности элемента характер окислов и их гидратов изменяется, что особенно ясно выражено у железа Ре(ОН)з— гидроокись, имеющая основной, отчасти амфотерный характер РеОз—кислотный окисел (железный ангидрид). [c.545]

    Чрезвычайно высокие по сравнению с другими типами кристаллов значения электрической проводимости и теплопроводности металлов указывают на высокую подвижность и большую свободу электронов в их пространственной структуре. С точки зрения строения атомов типичные металлические свойства проявляют элементы, обладающие небольшим числом валентных электронов, и, напротив, большим количеством незаполненных орбиталей на внешнем квантовом слое. За счет перечисленных особенностей при кристаллизации атомы вещества будут упаковываться с максимально возможной плотностью так, чтобы их незаполненные орбитали оказались как можно более полно заселены небольшим числом имеющихся валентных электронов соседних атомов. [c.70]

    По строению атома скандий разнится от алюминия, в то время как у галлия есть сходство с ним. Ион же скандия, подобно иону алюминияр (И нонам ранее рассмотренных металлов), имеет октетный. внешний электронный слой, т. е. электронное строение атома инертного газа, ион галлия— нет. Таким образом, по строению ода с типичным металлом III группы — алюминием наиболее сходны элементы, непосредствен но следующие в периодической таблице за щелочноземельными металлами скандий, иттрий, лантан и актиний. Они относятся к алюминик> так же, как щелочноземельные металлы к магнию. [c.476]

    Общность ряда существенных физических свойств металлов, их резкое отличие от свойств типичных неметаллов в значительной мере обусловлены своеобразием внутреннего строения образуемых металлами кристаллических структур. В свою очередь поскольку силы, связывающие атомы металлов в кристаллическую решетку, определяются состоянием валентьых электронов свободных атомов, причины своеобразия физических свойств металлов следует искать в особенностях строения электронных оболочек и в природе металлической связи. Так как химические свойства свободных металлов и их соединений неразрывно связаны с физическими свойствами и также определяются строением электронных оболочек атомов и кристаллической структурой их соединений, следует кратко остановиться на этих важнейших характеристиках, определяющих совокупность физико-химических свойств металлов. [c.107]

    У всех -элементов независимо от группы на внешней электронной оболочке содержатся только два электрона (электронная конфигурация где п — номер периода), так как у них заселяются -орбитали предвнешнего слоя. Следовательно, характер изменения свойств в периоде у этих элементов будет определяться изменением строения предвнеш-ней электронной оболочки. Поэтому у -элементов в периоде свойства изменяются не так резко, как у я- или р-элементов. Если у элементов главных подгрупп свойства в периоде изменяются от типичного металла к типичному неметаллу, то все -элементы являются металлами. [c.62]

    Элементы ПА-подгруппы — типичные металлы с высокой химической активностью, несколько уступающей активности элементам 1А-подгруппы в форме нейтральных атомов или элементарных веществ они энергичные восстановители. Преднаружный уровень атома бериллия в отличие от остальных элементов состоит всего из двух электронов. Такая особенность в строении атома бериллия обусловливает некоторые отличительные признаки в его свойствах. Элементы ПА-подгруппы образуют с неметаллическими элементами соединения, в которых они проявляют степень окисления +2. [c.181]

    Элементы ПА подгруппы — типичные металлы с высокой химической активностью, несколько уступающей активности щелочных металлов в форме нейтральных атомов или элементарных веществ они энергичные восстановители. Преднаружный уровень атома бериллия в отличие от остальных элементов состоит всего из двух электронов. Такая особенность в строении атома бериллия, несомненно, определяет за ним некоторые отличительные особенности в [c.226]

    Атомы всех элементов, находящихся в первой группе, на внешнем энергетическом уровне имеют по одному электрону. Это и определяет их общие свойства. В соединениях эти элементы образуют только положительно заряженные ионы, так как они не обладают способностью ирисоединять электроны, а могут только их отдавать. Следовательно, все эти элементы являют( я типичными металлами. Наряду с одинаковым строением внешнего электронного слоя предпоследний слой у атомов отдельных элементов построен различно у одной группы элементов в нем находится по 8 электронов, у другой — по 18. Такое различие в строении предпоследнего электронного слоя оказывает большое влияние на свойства элементов и лежит в оспове деления их на две подгруппы. К главной подгруппе первой группы периодической систем],i относятся литий, натрий, калии, рубидий, цезий и франций. В предпоследнем слое у них находится по 8 электронов (у лития два). [c.242]

    Так иногда называют натрий. Это не совсем справедливо в менделеевско таблице нарастание металлических свойств происходит по мере продвижения справа налево и сверху вниз. Так что у аналогов натрия по группе — франция, рубидия, цезия, калия — металлические свойства выражены сильнее, чем у натрия. (Конечно, имеются в виду только химические свойства.) Но и у натрия есть полный комплекс металлических химических свойств. Он легко отдает свои валентные электроны (по одному на ато.м), всегда проявляет валситность 1-Ь, обладает ярко выраженными восстановптелъными свойствами. Гидроокиси типичных металлов должны быть основаниями. Гвдроокись натрия NaOH — сильная щелочь. Все это объясняется строением атома натрия, на внешней оболочке которого только один электрон, и с ним атом легко расстается. [c.182]

    Вопросы и задачи. 1. Дать характеристику алюминию, исходя из строения его атома и места, занимаемого им в периодической системе. 2. Рассказать об алюминии в) распространение в природе, б) физические свойства, в) химические свойства. 3. Как называют явление, которым объясняются различные физические свойства алюминия при а) 100 —150° С б) выше 500° С 4. Описать промышленный способ получения алюминия. 5. Почему при получении алюминия электролитическим путем из глинозема приходится часто вводить в производство новый угольный анод 6. Чем вызывается необходимость введения криолита в электролизер при выплавке алюминия из окиси алюминия 7. Почему алюминий нельзя считать типичным металлом Сопровождать ответ уравнениями реакций. 7. В каких областях техники и в каком виде применяется а 1юминий 8. Что называют а) алюминотермией, б) термитом  [c.209]

    Весьма вероятно, что такое строение типично вообще для пероксокомплексов переходных металлов в высших степенях окисления. Аналогичный способ образования связей М—(02) был уже обнаружен в КНШ(02)г02 2Н2О [309]. Работа Ванненберга по структуре [(ЫНзЬСо02Со(ЫНз)5](ЫОз)5 [250] показывает, что пероксидные ионы могут также играть роль мостиков, связывающих два атома металла со связью О—О перпендикулярно линии, соединяющей атом кобальта. [c.77]

    Оксокислота. Белое вещество, гигроскопичное. Молекула имеет строение искаженного тетраэдра [Р(0)(0Н)з] (хр -гибри-дизация), содержит ковалентные а-связи Р—ОН и а-, л-связь Р = 0. Плавится без разложения, при дальнейшем нагревании разлагается. Хорошо растворяется в воде. Слабая кислота в растворе, нейтрализуется щелочами, не полностью — гидратом аммиака. Реагирует с типичными металлами. Вступает в реакции двойного обмена. Качественная реакция — см. 90 . Применяется в производстве минеральных удобрений, для осветления сахарозы, как катализатор в органическом синтезе, компонент антикоррозионных покрытий на чугуне и стали. [c.178]

    Элементы, которые характеризуются ( юрмулой внешнего н пред-внешнего уровня вида [п— )d ns , называются переходными элементами. Одинаковое строение внешнего уровня, а также близость энергии П8- и (п—1)й(-уровпей обусловливает общность очень многих свойств переходных элементов, В свободном состоянии это типичные металлы, их плотно упакованные решетки имеют, как правило, большие удельные веса (малые атомные объемы) они плавятся при высокой температуре и характеризуются высокими значениями теплот испарения. Атомы переходных элементов способны к переменной степени окисления. Наиболее характерные свойства переходных элементов приведены в табл. 22 и 23. [c.251]

    Наиболее интересные результаты дает применение принципа геометрического соответствия к дегидрированию циклопарафинов. Типичными дегидрирующими катализаторами являются металлы, кристаллизующиеся в гранецентрированных и гексагональных рещетках, так как только на октаэдрических гра тГйх первой и на базоПинакондах второй встречается соответствующее строению шестичленных циклов расположение атомов решетки. Однако катализаторами являются только те металлы, в которых расстояние между центрами атомов в решёТКЕ ТГе-жит в пределах от 2,77 Ю" см (Р1) до 2,48- 10 см (N1). Так, каталитически активны гранецентрированные решетки Рс1 (2,74-10-8 см), 1г (2,70-10- см), КЬ (2,68-10- см), Си (2,56х Х10- см), а кристаллографически аналогично построенные решетки ТЬ (3,60-10- см), РЬ (3,50-10- см), Аи и А (2,88) X ХЮ- см) при дегидрировании шестичленных колец каталитически неактивны. [c.344]

    Эти различия в строении обусловливают и различия в сворктиах элементов, находящихся в разных 1юдгруппах одной группы. Так, атомы элементов подгруппы галогенов содержат на внешнем урозие по семь электронов, а подгруппы марганца — по два электрона. Первые — типичные [[еметаллы, а вторые — металлы. Но есть у элементов этих подгрупп и общие свойства вступая в химические реакции, все они (за исключением фтора) могут использовать гю 7 электронов на образование химических связей. При этом атомы подгруппы марганца используют 2 электрона с внешнего и 5 электронов второго снаружи уровня. Таким образом, у элементов побочных подгрупп валентными являются электроны не только внешних, но и предпоследних (вторых снаружи) уровней, в чем состоит основное различие в свойствах элементов главных и побочных подгрупп. [c.32]

    При обычных условиях простое вещество бор - твердое вещество ( = 2075 °С). Кристс1ллическое строение бора особенное. Оно не является характерным ни для Me uraTOB, ни для неметаллов. В нем реализуется большее число связей (>4), природа которых не является ни типично металлической, ни обычной ковалентно L Кристалл бора состоит из икосаэдров - правильных двадцати-вершинами. При обычных температурах бор весьма инертен, мпературах он становится аюгивным, взаимодействует с кисло-ми, серой, азотом, углеродом, водородом и многими металлами, нно реагирует с такими сильными окислителями, как фтор, го-фованная азотная кислота и царская водка. Аморфный бор по-ряется при кипячении в концентрированной щелочи  [c.59]

    Все металлоподобные гидриды обладают собственным кристаллохимическим строением (в отличие от твердых растворов водорода в металлах) и свойствами, типичными для металлов металлическим блеском, значительной твердостью. Многие из них являются жаропрочными и коррозионностойкими веществами. По механическим свойствам металлоподобные гидриды уступают металлам, так как они более хрупки. Плотность этих гидридов меньше плотности исходных металлов, а энтальпии образования больше, чем у солеобразных гидридов, например для 2гН АН", oos = =—169,6 кДж/моль. В металлоподобных гидридах часть атомов водорода отдает электроны в зону проводимости металла, а электроны остальных атомов образуют с неспаренными электронами металла ковалентные связи. Последние и являются причиной увеличения твердости при образовании металлоподобных гидридов по сравнению с исходными металлами. Эти представления хорошо согласуются с фактом миграции водорода к катоду при длительном пропускании постоянного электрического тока, а также с уменьшением магнитной восприимчивости гидридиых фаз из парамагнитных металлов. [c.104]

    Не менее интересно рассмотреть переходную облас гь между /- и /-металлами. Лютеций и лоуренсий, завершающие ряд лантаноидов и актиноидов, имеют валентно-электронную конфигурацию (п—2)/ (п—1)с1 п5 . Предыдущие элементы иттербий у элемент 102 также имеют завершенную /-электронную оболочку (п — —2)/ я5 а электроны на п—1)с(-уровне отсутствуют. В соответствии с электронным строением отмеченные 4 элемента в основном состоянии, строго говоря, не могут быть отнесены к /-элементам, поскольку сформированный / -электронный слой обладает повышенной стабильностью и во взаимодействии может не участвовать. Действительно, для иттербия, например, весьма характерны производные со степенью окисления +2, а для лютеция и лоур( нсия, как и следовало ожидать, 4-3. В то же время иттербий в стегени окисления + 3 выступает как типичный /-элемент. Таким образом, на границе между /- и /-элементами наблюдается такая же двойственность в поведении, как и у элементов подгруппы мед и цинка при переходе от /- к 5р-металлам. [c.368]


Смотреть страницы где упоминается термин Строение типичных металлов: [c.53]    [c.456]    [c.227]   
Смотреть главы в:

Структура и симметрия кристаллов -> Строение типичных металлов




ПОИСК





Смотрите так же термины и статьи:

Металлы типичные

Строение металлов



© 2025 chem21.info Реклама на сайте