Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий нафтенат

    Риформинг позволяет получать высокооктановый бензин из низкооктановой бензино-лигроиновой фракции за счет превращения большей части нафтенов и некоторого количества парафинов в ароматические соединения, а также удаления определенной части парафинов путем их газификации. В установках с кипящим слоем и непрерывной регенерацией катализатором служит окись молибдена, осажденная на глиноземе. В установках с движущимся слоем катализаторы—окись хрома и окись алюминия. В установках с неподвижным слоем катализатором является платина на носителе—окиси алюминия или алюмосиликате. [c.338]


    Кислотной функцией обладает носитель катализатора — окись алюминия. Кислотными свойствами катализатора определяется его крекирующая и изомеризующая активность. Эти свойства особенно важны при переработке сырья с большим содержанием парафиновых углеводородов (инициировании реакций гидрокрекинга и изомеризации парафинов, а также гидроизомеризации пятичленных нафтенов в шестичленные, что при последующем их дегидрировании приводит к образованию ароматических углеводородов). Для усиления кислотной функции катализатора в его состав вводят галоген. В последнее время с этой целью чаще применяют хлор, раньше и изредка сейчас —фтор, который также стабилизирует высокую дисперсность платины, образуя комплексы с ней и окисью алюминия. Преимущества хлора в том, что он в меньшей мере способствует реакциям крекинга это особенно важно в условиях жесткого режима. [c.139]

    В литературе опубликованы также данные о конверсии н-гептана в толуол [18]. Процесс проводили при 490° и атмосферном давлении с объемной скоростью около 0,3 час. . Катализатор состоял из окиси хрома, нанесенной в количестве 10% на окись алюминия, и содержал промоторы — небольшие примеси двуокиси церия и едкого кали [19]. Конверсия в толуол могла за некоторый промежуток времени достигать 80%. Однако в среднем количество превращенного н-гептана за один проход равнялось 40%. Выход толуола составлял 80—90%, считая на прореагировавший н-гептан. Из продуктов реакции толуол мог быть выделен любым из физических методов, описанных выше в этой главе. В результате образования углеродистых отложений катализатор медленно терял свою активность и требовал периодической регенерации. На большую легкость ароматизации нафтенов по сравнению с парафинами указывают два обстоятельства. Во-первых, следы сульфат-иона отравляют реакцию ароматизации парафинов, но не влияют на ароматизацию нафтенов. Во-вторых, отношение рабочего времени ко времени, затраченному на регенерацию, при ароматизации нафтенов равно 20 1, а в случае парафинов — только 6 1. [c.252]

    Кислотной функцией обладает носитель катализатора - окись алюминия. Кислотными свойствами катализатора определяется его крекирующая и изомеризующая активность. Кислотность особенно важна при переработке сырья с высоким содержанием парафиновых углеводородов для инициирования реакций гидрокрекинга и изомеризации парафинов, а также гидроизомеризации пятичленных нафтенов в шестичленные, при последующем дегидрировании которых образуются ароматические углеводороды. Для усиления кислотной функции катализатора в его состав вводят галоген. [c.25]


    В отечественной промышленности первоначально применяли алюмоплатиновый катализатор АП-56, изготовленный на основе фторированного оксида алюминия и содержащий 0,55 масс. % платины. Катализатор эксплуатировали без предварительной гидроочистки сырья и получали катализат с октановым числом до 75 по моторному методу (ММ). В указанных условиях основной реакцией, приводящей к образованию ароматических углеводородов, была реакция дегидрирования нафтенов. [c.831]

    Различные типы изомеризации нафтенов, изучавшиеся до настоящего времени, являются каталитическими процессами, происходящими, главным образом, в присутствии хлористого алюминия. Возможная степень протекания этих реакций в условиях некаталитического термического крекинга совершенно неизвестна. [c.76]

    В первую очередь изомеризация нафтенов с пяти- и шестичленными кольцами в отличие от изомеризации парафинов с тем же числом атомов углерода протекает практически без побочных реакций лишь следы (менее 1 %) побочных продуктов были обнаружены масс-спектрометрически в продуктах изомеризации метилциклопентана с влажным хлористым или бромистым алюминием оти 27—100° [266]. [c.146]

    Катализаторами являются окись молибдена, хрома или вольфрама на окиси алюминия при 470—550° С. В промышленности в качестве сырья применяют не чистые нафтеновые углеводороды, а узкие фракции бензина, содержащие 30—60% нафтенов остальное составляют ароматические и парафиновые углеводороды. При этих условиях процесса в присутствии катализаторов одновременно с реакцией дегидрогенизации нафтеновых углеводородов протекает реакция дегидроциклизации парафиновых углеводородов. Так, при [c.130]

    В процессах обессеривания лигроинов и газойлей при давлении 18— 30 ат и температуре 260—427° [4, 13] в качестве катализатора широкое применение нашел молибдат кобальта на активированной окиси алюминия. При этих условиях происходит гидрогенизация олефиновых углеводородов, но практически не идет гидрогенизация присутствующих в сырье ароматических углеводородов. Добавление солей щелочных металлов к этому катализатору подавляет гидрогенизацию олефиновых углеводородов, ие тормозя, однако, гидрогенизации сернистых соединений 5]. При более высокой температуре или при более низком давлении становится заметной реакция дегидрогенизации присутствующих в лигроине нафтенов до ароматических углеводородов и водорода (как в гидроформинге). При регулировании рабочих условий процесса можно обеспечить образование небольшого избытка водорода сверх того количества его, которое необходимо для обеспечения гидрогенизации олефинов и обессеривания [2] процесс становится независимым от внешнего поступления водорода. При этих условиях управление тепловым режимом реактора осуществляется легче, так как теплота, выделяющаяся при экзотермической реакции гидрогенизации олефинов и сернистых соединений, почти компенсируется теплотой, поглощаемой при эндотермической реакции дегидрогенизации. Однако при таких, более жестких условиях работы скорость гидрогеиизации олефинов [5] может снижаться, приближаясь к равновесию олефин — парафин, и появляется тенденция к отложению угля на катализаторе. Необходимость чередования процесса с регенерацией путем продувки воздухом для удаления с катализатора углеродистого осадка ограничивает процесс, сокращая продолжительность рабочих периодов по сравнению с процессом типичной обычной гидрогенизации. [c.279]

    Алкилирование нафтенов. Циклопарафины, особенно содержащие третичные углеродные атомы, алкилируются с олефинами по способу, подобному алкилированию изопарафинов. Реакция не является такой узко фракционной, п выходы низкие, так как имеют место различные побочные реакции. Метилциклопентан и пропилен в присутствии бромида алюминия дают 1-метил-2-этил-циклогексан [561] с 1-бутенол1 (при помощи Н2304) образуются [c.132]

    Галогенирование нафтенов ирйЕюдит к образованию моно- и поли-замещенных нафтенов. При высоких температурах или в присутствии некоторых катализаторов, как например бромистого алюминия, это галогеннровашге щ>иводит к дегидрогенизации и изомвризацшг. [c.78]

    Первые промышленные катализаторы — оксид хрома, несколько позднее — окспд молибдена, нанесенные на оксид алюминия. На использовании оксидномолибденового катализатора был основан промышленный процесс гидроформинга, существовавший до бО-х гг. Оксидномолибденовый катализатор, способствуя достаточно глубокому превращению нафтенов, был малоактивен в реакциях дегидроциклизации парафиновых углеводородов. Из-за недостаточно высокой активности катализатора приходилось повышать температуру процесса, которая достигала 520—540 °С. При высоких же температурах протекали нежелательные реакции гидрокрекинга, сопровождающиеся избыточным газообразованием. [c.40]


    При платформинге интенсивно протекают реакции изомеризации парафинов и нафтенов и гидроизомеризации олефинов. Это вызвано тем, что катализаторы нлатформинга относятся к числу так называемых нолифункциопальных (бифункциональных) катализаторов они катализируют одновременно реакции, протекающие по катионному механизму, свойственные кислым катализаторам, и реакции гидрирования-дегидрирования, характерные для металлических и окиснометаллических катализаторов. Бифункциональный катализатор состоит из алюмосиликата (нлн активированной кислотами окиси алюминия), содержащего небольшое количество одного из металлов VIII группы (Р1, Р(1, N1 г( др.). При умеренных темнературах порядка 300—350° С среди реакций, происходящих над бифункциональными катали-зато])ами нод давлением водорода, преобладают реакции изомеризации. [c.493]

    Каталитический риформинг протекает на активных центрах двоякого рода металлических и кислотных. Металлические центры (платина или ш. 1тина, промотированная добавками хЛора и металлов, например рения, иридия, олова, редкоземельных элементов), ускоря ют реакции дегидрирования парафинов в олефины, нафтенов в арома тические, диссоциацию молекулярного водорода, подаваемого извне гидрирование и содействуют дегидроциклизации и изомеризации Кислотные центры, расположенные на носителе - хлорированном оксиде алюминия, способствуют реакциям изомеризации олефинов циклизации и гидрокрекинга по карбоний-ионному механизму. [c.139]

    На первом этапе развития процесса риформинга применялись алюмоплати-новые катализаторы, приготовленные на основе фторированной окиси алюминия. Катализаторы предназначались для работы при давлении 3,9—4,5 МПа с получением компонента бензина, имеющего октановое число 75 (м. м.). Содержание серы в перерабатываемом сырье достигало 0,1—0,15% (масс.). В указанных условиях основной реакцией, приводящей к образованию ароматических углеводородов, была реакция дегидрирования нафтенов. [c.158]

    Для исследования строения легкокипящих цикланов состава Сд — j2 можно использовать реакции расширения цикла и дегидрирования, протекающие сразу на одном катализаторе [12,13 . Соответствующий метод был назван се лективной дегидроизомеризацией . Сущность его заключена в том, что при контакте пятичленных нафтенов с бифункциональным катализатором рнформинга (например, платине, нанесенной на фторированную окись алюминия) происходит расширение цикла и образовавшиеся гексаметиленовые углеводороды быстро дегидрируются в ароматические  [c.320]

    Описан также катализатор [215], содержащий в качестве активного вещества Pt, Pd, Ir или Ge, галогены и галогениды металлов на термически стойком неорганическом носителе. Указанный катализатор обеспечивает изомеризацию многих углеводородов н-парафинов С4—С20 и слабо разветвленного строения нафтенов пятичленных и выше смесей парафинов и (или) их смесей с наф-тенами, выделяемых из прямогонных бензинов олефинов до С20 алкилароматических углеводородов (предпочтительней алкилбензолов Са). Содержание 1г и Ge в катализаторе должно отвечать соотношению атомных масс Ir/Pt (Pd) и Ge/Pt (Pd) соответственно 0,1—2 1 (лучше 0,25—1,5 1 и 0,3—10 1). В качестве пористого носителя с большой поверхностью и термической стойкостью применены неорганические окислы А1,. Сг, Zn, Mg, Al—Si, Ti и др. (лучше — этаокись алюминия насыпной массой 0,5—0,6 г/см , удельной поверхностью 175 м /г и удельным объемом пор 0,4 см /г). Рекомендуется Pt, Pd и Ir применять в виде металлов, а Ge — в виде окисла. [c.319]

    Химию нефти в значительной степени обогатили глубокие ис-следоваия Зелинского и его учеников. В 1911 г. Зелинский открыл явление, названное им избирательным катализом, заключающееся в обратимом гидрировании-дегидрировании шестичленных нафтенов на металлических катализаторах. Позднее он исследовал процесс разложения нефтяных фракций в присутствии флоридина (1915 г.), а затем хлорида алюминия (1918 г.). Работы Гудри по каталитическому крекингу нефтяных фракций, выполненные в двадцатые годы, фактически были продолжением исследований Летнего, Лермонтовой и Зелинского в области катализа. Важное практическое значение имела реакция дегидроциклизации алканов на металлических и оксидных катализаторах, открытая в 1935—1936 гг. Зелинским, Казанским, Молдавским, Каржевым и их сотрудниками [5, 6], которая дала возможность получать ароматические углеводороды из парафинового сырья. [c.5]

    Алюмоплатиновый катализатор представляет собой окись алюминия, на которую нанесено не более 0,6% платины. Этот катализатор является бифункциональным. С точки зрения теории катализа в бифункциональных катализаторах существуют активные центры веществ, содержащие как неспаренные, так и спаренные электроны. Первые способствуют активации окислительно-восстановительных реакций. В данном случае это платина, являющаяся (так же, как и другие металлы VIII группы) типичным гидриру-ющим-дегидрирующим катализатором. Поэтому на алюмоплатиновом катализаторе развиваются реакции дегидрирования шестичленных нафтенов и дегидроциклизации алканов. Окись алюминия— вещество со спаренными электронами имеет кислотный характер. Поэтому на алюмоплатиновом катализаторе активируются реакции изомеризации, протекающие по карбоний-ионному механизму. Для усиления этой функции катализатор промотируется хлором или фтором. Б качестве промоторов, увеличивающих [c.243]

    Взаимные переходы циклопентановых и циклогексановых углеводородов можно использовать для синтеза нафтенов. Неницеску и Кантуниари [3 нашли, что и циклогексан и метилциклопентан при кипячении с хлористым алюминием образуют равновесную смесь одинакового состава, в которой содержится приблизительно 23% метилциклопентана. Более подробно это равновесие изучили Глейзбрук и Ловелл [4]. В табл. 48 приведены результаты их исследований. [c.233]

    Н. Д. Зелинского — платине. В процессе платформинга катализатором служит платина, нанесенная на активную окись алюминия, активированную фтором. Этот носитель действует как активный катализатор изомеризации в-нафтенов в Сс-нафтены, а также изомеризации парафинов нормального строения в парафины изостроения. Первоначально эти новые платформинг-процессы предназначались для пронзводствя высокооктанового бензина и авиационных топлив. [c.243]

    Разработанный в тридцатых годах процесс был основан на хлорировании фракции керосина в продукт, называвшийся керилхлоридом , которым затем алкилировали бензол и получали керилбензол . Фракцию керосина, кипящую при 220—245° и содержащую н-парафины с 12—13 атомами углерода, очищали от ароматических углеводородов обработкой растворителями и кислотой. Хлорирование проводили при 60°, стараясь получить 50%-ную конверсию в монохлорпроизводное (гл. 5, стр. 86). Последним алкилировали бензол при 50° в присутствии хлористого алюминия [52]. При этом в реакцию вступают парафины как нормального, так и изостроения, но что происходит с нафтенами остается неизвестным. Продукты разгоняли, выделяя керилбензол и возвращая непрореагировавшие бензол и керосин обратно в процесс. [c.266]

    Крекинг с. хлористым алюминием осуществлен в производственном масштабе. Крекируемое сырье нагревают с 5—10% А1С1з ири 260—280°, в результате чего образуется до 70%1 бензина при этом до 20 ]ц сырья превращается в кокс, 10%—в газ, что является недостатком процесса. Характерная особенность такого бензина—полное отсутствие в нем олефинов. Он состоит лишь из парафинов, наф-генов и ароматических углеводородов. Например, из еураханской нефти при крекинге с А1С1 было получено 78% бензина с содерл<а-нием главным образом нафтенов и парафинов с примесью ароматических углеводородов. Такой бензин перегоняется полностью до 170°, имеет октановое число 77—80 и выше и хорошо восприимчив к ТЭС. Однако ряд неудобств и трудностей, связанных с примене- [c.333]

    Процесс гидрирования легких фракций масла коксовальных иечей был разработан фирмой BASF в 1931 г. и теперь применяется в промышленном масштабе [31]. Он дает бензол, толуол и другие продукты реакции с очень низким содержанием серы, менее 0,005%. Продукт не содержит смолообразующих соединений. На одном предприятии применяется водород под давлением 60 07 ж, а на другом — коксовый газ при давлении 35 атм. Для катализаторов, нанесенных на окись алюминия, рабочая температура равна 350° С. В одном германском патенте [32] описан катализатор, содержащий 10% молибденовой кислоты на окиси алюми1Н1я, осажденной из нитрата алюминия нри 95° С и pH, равном 7. Состав г[1дрированного легкого масла был подробно описан Гроте [33]. Анализ показал, что олефины в сыром легком масле гидрируются до парафинов и нафтенов, но такие ароматические кольца, как бензол и толуол, не затрагиваются, поскольку содержание циклогексана и метилциклогексана составляет соответственно 0,11 и 0,14%. [c.295]

    Михаил Иванович Коновалов (1858—1906) окончил в 1884 г. Москов ский университет. В 1896—1899 гг.—профессор Московского сельскохозяйственного института, с 1899 г.—профессор Киевского Политехнического инсти-гута. Первые работы М. И. Коновалова были посвящены изучению природы кавказской нефти. Он разработал методы выделения, очистки и получения различных производных нафтенов (стр. 545), изучал действие брома и бромистого алюминия на нафтены. В 1888 г, Коновалов открыл нитрующее действие разбавленной азотной кислоты при нагревании ее с предельными углеводородами (стр. 358). Исследования в этой области он обобщил в докторской диссер гации Нитрующее действие азогной кислоты на углеводороды предельного ха рактера (1893). Предложенный им метод позволил получить и исследовать многочисленные новые нитросоединения. М. И. Коновалов разработал способ получения из нитросоединений оксимов (стр. 194), спиртов, альдегидов и кетонов, Он использовал также реакцию нитрования для определения строения углеводородов, создал метод разделения нитросоединений и их очистки [c.56]

    Следует упомянуть об отсутствии в верхнем слое заметных количеств высококипящих парафинов, а также нафтенов и ароматики. При более жестких температурных условиях, кроме низкомолекулярных парафинов, образуются высокомолекулярные парафины и наф-тенй. Согласно Ненитцеску [90] первоначально происходит активация водорода хлористым алюминием, в результате чего протекает реакция дегидрогенизации с образованием водорода и олефина. Водород in statu nas endi атакует парафины и вызывает образование парафинов низшего молекулярного веса, например  [c.24]

    Хлористый алюминий легко полимеризует низкомолекулярные и высокомолекулярные олефины. Полимеризация является только первой стадией процесса, за ней следуют вторичные реакции образования нафтенов, парафинов и ароматики. Образование высококипящих фракций выражено гораздо резче, чем при применении кислот. В присутствии небольшого количества катализатора и при подходящих температурных условиях, в результате полимеризации газообразных и жидких олефинов, в присутствии хлористого алюминия могут быть получены смазочные масла. Полимеризация олефинов в присутствии хлористого алюминия сопровождается циклизацией даже при таких низких температурах как —35° или — 78 С [138а1, Однако высокомолекулярный гексадецилен, полимеризованный при комнатной температуре в присутствии хлористого алюминия или фтористого бора, дает только настоящие полимеры, без циклизации. [c.44]

    Таким образом, изомеризация гексена в циклогексан дает отрицательные значения изменения свободной энергии до 540° С и очень малые положительные значения при более высоких температурах (до 700° С). Реакция термодинамически возможна при всех температурах промышленного крекинга. Однако не имеется прямых доказательств изомеризации олефинов с циклизацией в соответствующие нафтены ни в некаталитических процессах при высоких температурах, ни в каталитических процессах при умеренных и низких температурах. Образования Сд-или С -нафтенов из изомерных олефинов не наблюдалось ни при каких условиях. С другой стороны, имеется много косвенных доказательств возможности такой изомеризации. При крекинге высокомолекулярных олефинов преобладают рассмотренные выше реакции полимеризации и разложения. Однако жидкие продукты крекинга, особенно высококипящие фракции, содержат различные циклические углеводороды, включая нафтены и ароматику. В присутствии хлористого алюминия олефины легко дают циклические углеводороды, особенно в высококипящих фракциях. Возможно, что обра- [c.54]

    Другой достаточно активный катализатор для дегидрогенизации нафтенов—это никель. Однако процесс в присутствии этого катализатора сопровождается реакциями разложения, активируемьши никелем и ведущими к образованию метана, углерода и водорода. Зелинский и Комаревский [145] показали, что эти нежелательные реакции могут быть в значительной степени ослаблены применением никеля на окиси алюминия или активированном угле. Согласно указанию Гавердовской [42] дегидрогенизующее, действие никеля на окиси алюминия или кизельгуре будет преобладать, если концентрация никеля не будет превышать 25—30%. При более высоких концентрациях расщепляющее действие никеля будет все усиливаться. [c.71]

    Перед окислением парафин очищают от механических примесей, обезвоживают и освобождают от олефинов, изопарафинов, нафтенов и ароматических углеводородов, обрабатывая его 96%-ной серной кислотой. Все эти углеводороды растворяются в серной кислоте, образуя частично сульфокислоты, которые удаляются раствором щелочи. Очищенный парафин перегоняют и отбирают для окисления фракцию, выкипающую при 320— 450° С. Парафин окисляется воздухом в присутствии 0,15% катализатора (KMnOi, Мп02, соли щелочных металлов). Водный 10—157о-ный раствор катализатора смешивается с расплавленным парафином и нагревается до 130° С. При этом вода испаряется, а катализатор равномерно распределяется в парафине. Окисление ведут при 100—120° С в реакторе из хромоникелевой стали или алюминия, вмещающем до 30 г парафина. [c.262]

    Алкилирование парафинов и нафтенов олефинами в присутствии хлористого алюминия рассматривалось как процесс, идущий с промежуточным обра- зованием комплексного соединения между хлористым алюминием и соответствующим углеводородом и дальнейшего действия этилена на комплексное соединение с образованием алкилзамещенного парафина или нафтена. Этот механизм алкилирования относится к типу, охватывающему и реакции каталитического хлорирования с хлористым алюминием как катализатором, при котором между бензолом и хлористым алюминием образуется комплекс Густавсона AI I2 (СбН,) НС1. [c.625]

    Алкилирование нафтенов метилциклогексана и метилизопропилцик-логексана Хлористый алюминий 1910 [c.413]

    При алкилировании циклогексаиа этиленом [25] с применением хлористого алюминия и хлористого водорода димеризация нафтенов и неренос водорода происходили в меньшей степени и сильнее протекало прямое алкилирование. Алкилат представлял главным образом диметилциклогексаны и тетраметилциклогек-саны. Образование этих продуктов лучше всего может быть объяснено допущением, что циклогексан сперва изомеризуется в метилциклопентан. Последний реагирует с комплексом хлористый этил — хлористый алюминий следующим образом  [c.43]

    Метилциклогексан алкилировали пропиленом с применением хлористого алюминия нри —25° и при 50° [36]. Алкилат не был полностью расшифрован, но, несомненно, представлял собой замещенные циклогексаны. Димеризации нафтенов не было или она происходила незначительно и касалась только цнклонентильных колец. По-видимому, в этом случае метилциклогексан алкили-ровапся прежде, чем он мог изомеризоваться в этилцикло-нентан. [c.44]


Смотреть страницы где упоминается термин Алюминий нафтенат: [c.93]    [c.10]    [c.79]    [c.305]    [c.85]    [c.141]    [c.415]    [c.238]    [c.25]    [c.68]    [c.71]    [c.512]    [c.512]    [c.292]    [c.149]   
Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.29 ]




ПОИСК





Смотрите так же термины и статьи:

Наконечная М. Б., С а м о й л е н к о Н. В., М а н ь к о в с к а я Н. К. Влияние добавок нафтената алюминия па свойства комплексных кальциевых смазок типа УНИОЛ

Нафтены

Нафтены из с хлористым алюминием

Нафтены, абсорбция хлористого алюминия

Нафтены, получение с хлористым алюминием

свинец нафтенат титан алкоголяты смазки термостойкие алюминий глицерат



© 2024 chem21.info Реклама на сайте