Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Обменные катионы

    Величина и состав обменных катионов и ионообменные процессы имеют исключительно важное значение, поскольку они определяют многие физико-химические свойства дисперсных систем, такие, как поверхностные свойства, процессы структурообразования и др. [63]. Обычно указывают на три основны группы причин, обусловливающих емкость катионного обмена глин. [c.9]


    Алюмосиликатные катализаторы приготавливаются из природных газов или синтетическим путем. Синтетические алюмосиликатные катализаторы по своей структуре делятся на аморфные и кристаллические (цеолитсодержащие). Цеолиты имеют ряд преимуществ по сравнению с аморфными алюмосиликатами более активны, селективны, устойчивы при высоких температурах (табл. 7.22). Они отличаются также способностью к легкому обмену катионов, что позволяет без особых сложностей получать их в виде наиболее активных форм (кальциевая, магниевая, редкоземельная и др.). Однако на практике цеолиты в чистом виде как катализаторы крекинга не используются. Цеолитсодержащие катализаторы представляют собой аморфные (природные или синтетические) алюмосиликаты, в которые введено 10—25% цеолита. [c.405]

    В табл. 2.1 приведены значения чистых интегральных теп-лот адсорбции воды в межслоевых промежутках монтмориллонита и вермикулита. Их анализ позволяет сделать вывод о необходимости учета тепла, выделяющегося при связывании не только первого, но и последующих двух-трех слоев воды. Теплоты адсорбции зависят от типа минерала и рода обменны> катионов. При завершении формирования первого слоя адсорбированной воды выделяется 55—70% тепла от суммарной интегральной теплоты смачивания. [c.32]

    Правило А. В. Думанского (Р/Л й 6050 Дж/моль) применимо лишь для тех веществ, с которыми молекулы воды взаимодействуют с помощью водородных связей (целлюлоза, крахмал, дегидратированный при 110°С палыгорскит). Если основными центрами адсорбции воды являются не гидроксильные группы или атомы кислорода, а обменные катионы (как в случае цеолитов, вермикулита и др.) или координационно ненасыщенные ионы (как в случае палыгорскита, дегидратированного при 180—250°С), то правило А. В. Думанского становится неприменимым [66]. [c.32]

    Исследованиями Ф. Д. Овчаренко и Э. Г. Агабальянца уста-повлено, что количество связываемой глиной извести в несколько раз больше ее обменной емкости. Этот процесс зависит от природы минералов. В водных суспензиях при комнатной температуре палыгорскит реагирует с большим количеством извести, образуя больше гидросиликата кальция, чем монтмориллонит и особенно каолинит [18]. Несмотря на большое поглощение глиной извести в присутствии щелочи, часть обменных катионов натрия удерживается глиной. [c.181]

    Очень сильное влияние на упорядочивающее воздействие поверхности глинистых минералов на воду оказывает состав обменных катионов. Это объясняется прежде всего прочностью связи катионов с поверхностью глинистой частицы, т. е. способностью их к диссоциации и участию в катионообменных реакциях. Степень поверхностной диссоциации (т. е. поверхностного растворения) глинистых минералов, замещенных одновалентными катионами, на один-два порядка выше степени диссоциации глин, обменный комплекс которых насыщен двухвалентными катионами. При прочих равных обстоятельствах степень поверхностной диссоциации зависит не только от плотности заряда обменного катиона, но и от взаимного влияния силовых полей поверхности частицы и катиона друг на друга при взаимодействии с водой. По мере увлажнения поверхности глин вокруг обменных катионов развиваются области с упорядоченными молекулами воды. Часть слабо связанных с поверхностью катионов удаляется от нее и может участвовать в трансляционном движении вместе с молекулами воды и растворенными в ней органическими и неорганическими веществами. Если в дисперсионной среде находятся крупные гидратированные катионы (Ма+, Mg2+), то они, вытеснив с поверхности глинистого минерала менее гидратированные катионы (К+, Са ), могут привести к увеличению гидратной оболочки глинистых частиц. В натриевом бентоните по мере возрастания содержания воды и уменьшения концентрацни суспензии отдельные слои глинистых частичек полностью диссоциируют. В бентоните, обменный комплекс которого насыщен магнием или кальцием, этого не произойдет, хотя ионный радиус этих катионов в гидратированном состоянии почти в два раза превышает радиус гидратированного натрия. Это, видимо, является следствием как изменения структуры воды и размеров гидратированных катионов вблизи поверхности в зависимости от их химического сродства, так и сжатия диффузной части двойного электрического слоя. [c.70]


    Обменный катион 1-й слой 2-й слой 3- и 4-й слои Обменный катион 1-й слой 2-й слой 3- и 4-й слои [c.33]

    Присущие цеолитам высокая активность, селективность, способность противостоять обработке паром при высоких температурах позволили использовать их для приготовления катализаторов крекинга. Этому способствовала также их способность к легкому обмену катионов [9, 10, 18—20], что позволяет применять цеолиты в виде наиболее активных катионных форм. [c.18]

    Как уже отмечалось в гл. I, цеолитсодержащие катализаторы крекинга наиболее активны и стабильны при их промотировании редкоземельными элементами [224, 225]. В связи с этим они содержатся в современных промышленных катализаторах наибольший эффект достигается при обмене катионов более 40—60%. [c.162]

    При ионном обмене катионов Na+ в цеолите на другие катионы возможно изменение расположения последних в структуре, некоторое сужение или расширение окон, ведущих в полости, и образование кислотных центров. В зависимости от типа катиона [c.28]

    Для цеолита типа X при нормальной температуре ионы На+ практически полностью обмениваются на катионы кальция и стронция. При ионном обмене с катионами бария, магния, лантана, иттрия и аммония глубокого замещения катионов На+ нет. Незамещенными остаются катионы Ыа+, расположенные в местах 5[. В последнем случае обмен лимитируется отще плением молекул воды от гидратированных обменных катионов, так как в гидратированном состоянии их размеры больще входных окон. Повышение температуры ионного обмена до 82 °С обычно обеспечивает глубокое, хотя и медленное замещение катионов Ма+ на ка-, тионы Ьа +. .  [c.29]

    Влияние низкомолекулярных электролитов (неорганических реагентов) на показатели набухания, АУи Р , одной и той же глины или системы глина — жидкость различно. Общая качественная зависимость сохраняется для большинства глин независимо от состава их обменного комплекса (кроме палыгорскита в нейтральных солях). Количественные различия могут быть весьма существенны и могут зависеть от состава обменных катионов. Особенно наглядно это проявляется в водных растворах водорастворимых силикатов (табл. 24). [c.58]

    Рнс. 97 иллюстрирует обмен катионов на П+-форме катионита 1 обмен анионов [(а ОН -форме анноннта. [c.325]

    Ири переходе к рубидиевой форме цеолита, т. е. о увеличением радиуса обменного катиона, активность и селективность катализатора возрастают. Так, па KNaX (при 425 °С, объемной скорости ч и до.[ярном соотношении метанол углеводород, равном 20) степень нревраше[ ия а-метилнафталина составляет 48,3, а на RbNaX в этих же условиях — 94 %. В продуктах реакции увеличивается содержание а-винилнафтадипа и селективность процесса на углеводород достигает 94—97 %. Возрастает также целевая конверсия [c.330]

    Прочно связанная со слоистыми силикатами вода энергетически неоднородна. Это объясняется наличием как минимум пяти типов активных центров на их поверхности, с которыми взаимодействуют молекулы воды [91] обменные катионы гидроксильные группы кислого (510Н) и основного (АЮН, МдОН) характера координационно ненасыщенные катионы А1 +, Ре +, Mg + поверхностные атомы кислорода. Если учесть, что по своему происхождению обменные катионы, в свою очередь, разделяются на три типа (обусловленные нестехиомет-рическим изоморфизмом в тетраэдрических и октаэдрических сетках, разорванными связями на боковых гранях частиц), а поверхностные атомы кислорода различаются по величине отрицательного заряда, то становится понятным многообразие форм связи, а следовательно, и энергетическая неоднородность адсорбированной воды. [c.36]

    Правда, доказано, что доминирующими центрами адсорбции воды в монтмориллоните и вермикулите являютск поверхностные атомы кислорода и обменные катионы — компенсаторы отрицательного заряда, а саму адсорбцию воды предложено рассматривать как образование аквакомплексов [Ме(Н20) ]+0 , где Ме+ — обменные катионы, 0 — поверхностные атомы кислорода [66]. Тем не менее метод ИК-спектроскопии позволяет выделить в минералах монтмориллонитовой группы четыре вида молекул прочно связанной воды [66, 92, 93]  [c.36]

    Выводы термодинамического анализа подтверждаются данными ЯМР. Например, коэффициент самодиффузии адсорбированной воды в двухслойном гидрате Ма-вермикулита (0 я=10 м / ) [86] почти на порядок ниже, чем в жидкой воде см /с). Тем не менее время жизни протонов (т) в гидратационной оболочке обменных катионов короче, чем в жидкой воде. Это указывает на более высокую степень диссоциации (более выраженную кислотность) молекул воды, адсорбированной слоистыми силикатами, по сравнению с объемной водой. К сожалению, из-за неточностей в интерпретации спектров ЯМР первые оценки кислотных характеристик межслоевой воды монтмориллонита в работах [99, 100] оказались сильно завышенными. По данным [99], степень диссоциации воды в однослойном гидрате На- и двухслойном Са-монтморил-лонита в 10 раз выше, чем в жидкой воде. Согласно [100], в однослойном гидрате На-фтормонтмориллонита около 60% межслоевой воды существует в виде ионов НаО+ и ОН . [c.38]


    Такие катализаторы, состоящие из чистого цеолита, не находят применения на действующих установках из-за высокой стоимости и чрезмерной активности. Однако введение сравнительно небольщих количеств цеолита в 5102, АЬОз или аморфный катализатор позволяет получать высокоактивные, селективные и стабильные катализаторы. Установлено, что цеолит V более активен, селективен и стабилен, чем цеолит X. Содержание цеолита V в цеолитсодержащем катализаторе можно снизить до 3—10%. Предпочтительно применять цеолитсодержащие катализаторы с высоким силикатным модулем (отношением 5102 к АЬОз) — не менее 5. Многие промышленные катализаторы на базе цеолитов ХиУ производят после введения ионным обменом катионов редкоземельных металлов и на алюмосиликатной основе. [c.56]

    Наличие внутренней и внешней частей граничного слоя может быть объяснено резкими различиями в структурах адсорбционно (внутренней части граничного слоя) и осмотически связанной воды. Первая подчинена геометрии подложки и гид-ратационным характеристикам ее активных центров. Вторая, если учесть, что в диффузную часть двойного электрического слоя глинистых частиц переходит менее 2% обменных катионов [124], может быть в первом приближении описана структурой очень разбавленного раствора электролита. Переход от слоя адсорбционно связанной к слою осмотически связанной воды осуществляется через промежуточный (внешняя часть граничного слоя) переходный слой конечной толщины [125]. [c.42]

    Для цеолита, в редкоземельной обменной форме RENY (рис. 5.4) на кривой кислотных центров имеются два максимума, которые соответствуют диссоциации первой и второй молекул воды, гидратирующих обменный катион (РЗЭ). Причем, чем больше число атомов алюминия, тем меньше сила кислотных центров. При термической и, особенно, термопаровой обработке число кислотных центров заметно уменьшается и введение поливалентных катионов стабилизирует кислотные ОН-группы. [c.104]

    Каталитическую активность цеолитов oбъя няюf как результат увеличения бренстедовской кислотности групп ОН за счет частичного перераспределения электронной плотности, в частности, при введении многозарядных обменных катионов [142]. На основании анализа спектров сверхтонкой структуры ЭПР, полученных при адсорбции олефинов на образцах активированных РЗЭ-У цеолита, высказано предположение об образовании алкил-радикалов, связанных с поверхностью цеолита таким образом, что спиновая плотность на формально трехзарядном атоме углерода меньще единицы. [c.69]

    Ионный обмен [215, 229, 230]. Обмен катионов N8+ на ионы других элементов или Н+. Таким методом можно ввести в цеолит-ную структуру металлы, например N1 и Р1. Никель — обменный цеолит (или цеолит, содержащий комплексные катионы) может быть восстановлен водородом при ж500°С в металлический никель [230]. При этом, наряду с атомами никеля образуются протоны, которые компенсируют вместо ионов N1 + отрицательные заряды алюмосиликатного скелета  [c.173]

    Синтетические цеолиты типа X и по своей кристаллической структуре являются аналогами природного минерала фожазита. Последовательное замещение обменных катионов этих цеолитов ионами аммония и редкоземельными ионами дает возможность получить при последующем дезамминировании и дегидратации очень активный катализатор крекинга /9, 14, 15/. [c.51]

    Для цеолита типа V при нормальной температуре даже кальций и стронций не приводят к полному замещению катионов Ка+. Во всех случаях остаются незамещенными труднодоступные катионы N3+ в местах Глубокий обмен катионов N3+в цеблйтй х типа X и У обеспечивается при ионном обмене с промежуточным прокаливанием [7] или под давлением при повышенных температурах [8]. [c.29]

    Для цеолитов типа Y с трехвалентными катионами, например редкоземельными, наблюдаются закономерности, несколько отличные от изложенных [14, 15]. На рис. 3.8 показано изменение числа кислотных ОН-групп в а-полостях образцов цеолитов NH4Y, HY и REHY в зависимости от температуры предварительной термической обработки. Для цеолита типа Y в редкоземельной обменной форме наблюдается два максимума на кривой, которые соответствуют диссоциации первой и второй молекул воды, гидратирующих обменный катион [14]. [c.32]

    Суммарное число кислотных центров цеолитов типа X и Y, найти которое можно различными методами [5], зависит от многих факторов и в первую очередь от обменного катиона, степени обмена, отнощения Si/Al в образце, услО Вий термической и термопаровой обработок. Например, для кальциевой обменной формы цеолита типа Y заметная концентрация протонных кислотных центров обнаруживается после достижения 50—60%-ной степени замещения катионов натрия [4]. Это связано с локализацией катионов Са + в начале обмена в местах 5ь где они не контактируют с молекулами воды. После их заполнения катионы Са + начинают занимать места в больших полостях цеолита, образуя за счет гидролиза гидратной воды ОН-группы. Наиболее высокую концентрацию кислотных центров имеют катион-декатиони-рованные цеолиты типа X и Y, содержащие двух- и трехвалентные обменные катионы [5]. [c.32]

    Связь между кислотными каталитическими свойствами. Для обменных форм цеолитов типа X и во многих исследованиях обнаружена качественная корреляция между кислотными и каталитическими свойствами, а в ряде случаев установлены и количе ственные зависимости. Большинство результатов указывает на определяющую роль протонных кислотных центров в обеспечении высокой каталитической активности цеолитов. Отмечено и заметное влияние апротонных центров и обменных катионов на каталитические свойства цеолитов в ряде реакций, однако природа этого в лияния неизвестна. Предполагается, что апротонные центры могут усиливать кислотность протонных центров или непосредственно участвовать в реакции при двухцентровом механизме ее протекания [2, 4—6]. Обменные катионы также могут усиливать кислотность протонных центров и оказывать вместе со структурой цеолита поляризующее влияние на реагирующие молекулы [2]. По данным [19], доступные катионы Са2+ в 5ц местм и заряд решетки цеолита создают сильное алектростатн-ческое поле (40 эВ/нм), способное оказывать заметное поляризующее действие на адсорбированные молекулы. ------ -------------- [c.35]

    Вермикулит — отличается высоким содержанием магния и за-кисного железа. Присутствующий в его составе Mg является характерным обменным катионом. В отличиэ от других минерало этой группы кристаллическая решетка в(фмикулита слабо подвижна. [c.5]

    Активность катализатора зависит также от содержания оксида алюминия и ионообменной формы аморфной алюмо иликат-ной матрицы [30]. При изменении содержания оксида алюминия в матрице от О до 100% (масс.) наибольшая конверсия сырья, выход газа и кокса наблюдались при 60—80% (масс.) АЬОз. Выход бензина возрастает при повышении содержания АЬОз в матрице до 30% (масс.) и в дальнейшем меняется незначительно. Введение в аморфную алюмосиликатную матрицу обменных катионов редкоземельных элементов обеспечивает получение более активного катализатора по сравнению с введением катионов Са2+ и NH+4. [c.47]

    С повышением конверсип изооктана отношение парафины олефины для цеолитов возрастает в большей степени (см. рис. 3.25) вследствие их способности ускорять скорость реакции переноса во вторичных реакциях превращения продуктов [27]. В этой области отношение парафины олефины в продуктах крекинга зависит также от обменного катиона в-цеолите. [c.52]

    Необходимость глубокой очистки и выделения компонентов нефтяных фракций заставила обратить особое внимание на синтетические адсорбенты — алюмосиликаты и особенно на цеолиты, обладающие высокой избирательностью. При помощи цеолитов можло разделять продукты по размерам их молекул поэтому их называют молекулярными ситами. Имеются и природные цеолиты—шабазит, модернит и др. Однако их природные запасы не могут обеспечить потребность в адсорбентах с высокой избирательностью. Цеолиты способны к катионному обмену и прочно удерживают воду, которая в ыделяется при нагревании без разрушения кристаллической структуры адсорбента. При обмене катионов свойства-деолита изменяются. [c.240]

    Для приготовления бентонитовых смазок используют амини-рованные бентонитовые глины — кристаллические продукты минерального происхоадения, у которых атомы кремния, кислорода, гидроксильные группы и катионы металлов (А1, Ре, Мп и др.) составляют кристалличёскую решетку. Ее строением обусловлены важнейшие свойства бентонитовой глины как загустителя — на-бухаемость, катионообменная способность, дисперсность и т. п. Процесс гидрофобизации бентонитовых глин заключается в обмене катионов поверхностного слоч на органические аминные радикалы. Наиболее эффективными модификаторами являются производные четвертичных аммониевых оснований, в частности хлорид диметилбензилалкиламмония. Производство бентонитовых смазок, подобно силикагелевым, основано на интенсивном механическом диспергировании загустителя в масле. [c.378]

    Обобщая вышеизложенные сведения о трансформащ1и буровых реагентов, нефтешламов, нефти и нефтепродуктов в почве и воде, следует еще раз подчеркнуть, что это сложный процесс, на который оказывают влияние особенности гранулометрического состава почв, содержание органического вещества и обменных катионов, а также химический состав нефти и ее свойства. Большое значение также имеет характер их распространения в среде, включая процессы испарения и конденсации, диффузии, адсорбции и десорбции, биодеградации под воздействием микроорганизмов и различные реакции абиотического расщепления. При этом важно также учитывать физико-химические характеристики растворимость углеводородов, точку кипения, давление паров и др., а также условия, при когорых протекает биологическое окисление загрязнителей, адсорбированных частичками почвы, роль органических и неорганических почвенных коллоидов и т. д. Необходимо принимать во внимание и характер миграционных процессов, которые, с одной стороны, приводят к широкому распространению загрязнения за пределы исходного района за счет горизонтальной миграции низко- и среднемолекулярных углеводородов, а с другой - приводят к концентрации в зоне загрязнения высокомолекулярных компонентов нефти и буровых реагентов в верхних слоях почвы. [c.190]

    В глинистых минералах степень поверхностной диссоциации зависит от типа обменного катиона. Так, для На-глин она на два по-порядка выше чем для Са-глин, причем степень поверхностной диссоциации возрастает с уменьшением концентрации глины в суспензии до определенного предела. После достижения этого предела, составляющего для фракции менее 1 мкм Ыа-каолина и Ма-монт-мориллонита соответственно около 0,11 и 0,04%, поверхностная диссоциация остается постоянной и ДЭС получает полное развитие. [c.52]

    Связь воды с глинистыми минералами при межмолекулярных взаимодействиях возникает в результате гидратации обменных катионов, насыщающих свободные валентности в местах сколов на поверхности кристаллов при изоморфных замещениях, Нескомпен-сированность электростатических сил в сколах кристаллов зависит от места сечений, по которым происходит разрушение рсп1етки. Иногда разрушение решетки может привести к нарушению связей, которые обусловливают гидратацию глинистых минералов не только через обменный катион, но и непосредственно через поляризующее действие электростатических сил. [c.58]

    С другой стороны, энергетическая неоднородность поверхности, присутствие обменных катионов приводят к различию в свойствах связанной воды. Свойства молекул воды, связанных обменными ионами поверхности твердой частицы, отличаются от свойств воды в объеме тем больше, чем выше плотность заряда нона.В глинистых минералах количество воды, связанной наиболее прочно, больше при наличии поливалентных катионов в обменном комплексе. Кривые обезвоживания мо-ноионных форм бентонитов при нагревании (рис, 11.16) свидетельствуют о различном энерге-т-нческом состоянии связанной воды в зависимости от обменного катиона, его способности влиять яа трансляционное движение молекул воды. Чем выше упорядочивающее воздействие катионов (А1 +, Mg +), тем слабее трансляционное движение молекул воды и тем при более высоких температурах в пей разрываются водородные связн и она удаляется с [c.61]

    Гидратированность поверхности глинистых частиц (см. 5 гл. II) зависит от раскрытости гидроксидных поверхностей октаэдрических слоев, дефектности кристаллической структуры минералов, емкости и состава обменных катионов. Раскрытость гнд-роксидных поверхностей, несовершенство кристаллов н емкость обменного комплекса максимальны у монтмориллонитов. Это обеспечивает высокую агрегативную и кинетическую устойчивости водных суспензий бентонитов (7—10 % суспензии некоторых бентонитов без видимых изменений свойств могут храниться многие годы). [c.70]

    На различных участках структуры сложных молекул глинистых минералов находятся катионы, способные аамещаться катионами раствора, называемые поэтому обменными катионами. Суммарное число этих катионов составляет комплекс поглощения или катионообменный комплекс, величина которого обычно выражается в мг-экв на 100 г сухой глины. В состав катионообменного комплекса природных глин в основном входят катионы одно-, двух- и реже трехвалентных металлов. [c.9]

    Водород наруж2Юго гидроксила может замещаться обменными катионами. Это в наибольшей мере свойственно каолиниту и галлуазиту. [c.10]


Смотреть страницы где упоминается термин Обменные катионы: [c.132]    [c.36]    [c.36]    [c.36]    [c.44]    [c.54]    [c.279]    [c.25]    [c.224]    [c.37]    [c.59]    [c.14]   
Физика растворов (1984) -- [ c.3 ]

Геохимия природных вод (1982) -- [ c.51 , c.53 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция цеолитами с щелочными обменными катионами. Ш Адсорбция кальциевым цеолитом

Аэросил емкость катионного обмена

Бентонит обмен катионами

Влияние концентрации водородных ионов на катионный обмен III

Влияние на характер термограммы обменного катиона вермикулита

Влияние па адсорбцию цеолитом степени обмена ионов натрия на двухзарядные катионы

Внутримолекулярный обмен катиона

Вытеснение обменных катионов

Вытеснение обменных катионов хлоридом натрия и хлоридом аммония

Герасимов, Л. Ф. Яхонтова, Б. П. Брунс. Распределение красителей внутри зерен карбоксильных катионитов при различных условиях ионного обмена

Гидратированные катионы, комплексные соединения, ионный обмен

Диметилсульфоксид, диэлектрическая проницаемость межмолекулярный обмен катионов

Емкость обмена, состав обменных катионов

Изучение свойств адсорбированных веществ и состояния обменных катионов в различных катионзамещенных формах цеолитов методом Исследование состояния адсорбированных молекул методом ПМР

Ионный обмен диффузия катионов

Ионный обмен разделение анионов катионов молекул

Ионообменники катионный обмен

Калия роданид, катионный обмен

Каолинит емкость катионного обмена

Каолинит обмен катионами

Катиониты обменная емкость

Катиониты сильнокислотные обменная емкость

Катионная и анионная обменная поглотительная способность корней

Катионного обмена емкость ЕКО

Катионный обмен в микропористых силикатах

Катионный обмен в неводных растворителях

Катионный обмен в присутствии комплексообразующих реагентов

Катионный обмен на цеолитах

Катионный обмен. Анионный обмен. Вымывание с помощью комплексообразователей. Влияние технологических параметров на эффективность разделения катионов (редких земель). Литература Электрохимические методы выделения

Катионообменная полноту вытеснения обменных катионов

Катионы в цеолитах обмен

Комплексные катионы. Обмен лигандов

Ксерогель, емкость катионного обмена

Монтмориллонит емкость катионного обмена

Нитрат калия методом катионного обмен

Нитрат натрия методом катионного обмен

Обмен ионов меди пермутита на щелочноземельные катионы

Обмен катиона в соединениях типа

Обмен катиона на протон

Обмен катионный

Обмен катионов неравных зарядов

Обмен катионов равного заряда

Обмен одновалентных катионов пермутита на серебро

Обмен одновалентных катионов пермутита на серебро из азотнокислых растворов фиг

Обменная емкость некоторых катионитов и анионитов

Определение зависимости обменной емкости катионита от pH раствора

Определение обменной емкости Н-форм катионитов

Определение обменных катионов в ацетатно-аммонийной вытяжке

Определение полной динамически. обменной емкости катионита

Определение полной динамической обменной емкости катионита

Определение содержания обменных катионов в почве

Определение состава и констант устойчивости комплексов методом катионного обмена

Определение статической обменной емкости катионитов

Опыт 105. Ионный обмен на катионитах

Основные закономерности физико-химического или обменного поглощения катионов

Позиции обменных катионов в кристаллических решетках цеолитов

Получение нитрата натрия методом катионного обмена

Посторонние ионы, противоионный и анионный эффекты при катионном обмене

Производство калиевой селитры методом катионного обмена

Прохоров. Динамика катионного обмена и распределение катионов в слое катионита

Равновесие ионного обмена катионов

Равновесие ионного обмена на сильнокислотных катионитах

Равновесие ионного обмена на слабокислотных катионитах

Равновесие катионного обмена

Равновесие катионного обмена в растворах комплексных солей

Разделение некоторых катионов методом ионного обмена

Распределение обменных катионов в сосуществующих высококремнистых цеолитах

Реакции на цеолитах, содержащих обменные катионы переходных элементов

Савицкая, Л. Ф. Яхонтова и Б. П. Брунс. Ионный обмен между стрептомицином и натрием на карбоксильных катионитах

Савицкая, Л. Ф. Яхонтова, Б. П. Брунс. Ионный обмен на карбоксильных катионитах, идущий с участием катионов антибиотиков

Синтетические цеолиты Ж д а н о в. Катионный обмен на цеолитах и его специфические особенности

Сочетание анионного и катионного обмена

Спектры ЭПР поверхностных ионов и обменных катионов переходных металлов в цеолитах

Строение координационной сферы обменных катионов переходных металлов и их фиксация в структуре цеолитов

Термограммы вермикулита с различными обменными катионами Маккензи

Умягчение воды метод катионного обмена

Установка для автоматического вытеснения обменных катионов

Факторы, влияющие на процесс катионного обмена при деионизации

Хлопок катионный обмен

Хроматографические методы отделения рения катионным обменом

Цеолиты с редкоземельными обменными катионами

Цеолиты со щелочноземельными и редкоземельными обменными катионами

Цеолиты со щелочноземельными обменными катионами и катионами меди

Цеолиты со щелочными обменными катионами

Ш у б а е в а, С.П. I д а н о в. Некоторые данные по катионному обмену на цеолитах в растворах с комплексными ионами кобальта

Шуберт. Применение ионного обмена для разделения неорганических катионов

Экстракция катионного обмена

Эффекты термические природы обменного катион

грег-бутилнафталин, анион-радикал, быстрый обмен межмолекулярный обмен катионов

температуры фиг обменных катионов фиг



© 2025 chem21.info Реклама на сайте