Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализ гетерогенный металлов

    При окислении топлива в присутствии металлов наблюдается гетерогенный катализ, и металл, оказывающий каталитическое [c.57]

    Подвижность поверхностного кислорода в окислах надежно установлена опытами по изотопному обмену с водой или кислородом. Такие опыты указывают, по-видимому, на то, что обратимое изменение координационного числа для катионов, находящихся вблизи поверхности, осуществляется гораздо легче, чем можно было бы думать. Это обстоятельство согласуется лучше с первой моделью центра, чем со второй. Более того, подобное обратимое изменение координационного числа металлического атома характерно не толь со для рассматриваемого в этом параграфе гетерогенного катализа, но и для гомогенного катализа комплексами металлов в растворе. [c.163]


    Окисление алкильных, главным образом метильных, групп кислородом воздуха — на1][более распространенный метод получения ароматических карбоновых кислот в промышленности. Окисление проводят в жидкой фазе при катализе солями металлов переменной валентности (Со +, МпЗ+) или в газовой фазе на гетерогенных катализаторах. [c.579]

    Очень велика роль П. я. в кинетике гетерогенных физико-химич. и химич. процессов с участием обеих граничащих фаз и в кинетике химич. реакций (см. Кинетика хи.ническая). Таковы процессы катализа гетерогенного, а также адсорбционного замедления гетерогенных процессов, иапр. замедления (практич. прекращения) коррозии под действием адсорбционных слоев ингибиторов — веществ, растворенных в окружающей среде, или под действием пассивирующих (защитных) пленок — тонких прочных и сплошных пленок окислов и др. поверхностных химич. соединений на новерхности металла. Таковы же явления адсорбционного отравления катализаторов. [c.52]

    Известно около 35 реакций, основанных на гомогенном катализе карбонилами металлов или их производными, В настоящей статье авторы пытаются выяснить механизмы этих реакций, в ней указаны также некоторые приложения к гетерогенному катализу. [c.670]

    Несмотря на определенную ограниченность и приближенность предлагаемого подхода к трактовке начальных теплот хемосорбции на металлах, нам все же кажется, что он может представить некоторый интерес и при выяснении эффекта промотирования в гетерогенном катализе на металлах. [c.103]

    Вещества, подавляющие активность катализатора, называются каталитическими ядами. Так, даже очень малые количества сероводорода, ацетилена или кислорода могут резко понизить активность платины в реакции окисления сернистого газа. Тот факт, что яд, взятый даже в очень малом количестве, может прекратить работу большой массы катализатора, указывает на то, что далеко не вся поверхность гетерогенного катализатора фактически участвует в катализе. Имеются и другие опытные данные, свидетельствующие о большой степени неоднородности поверхности обычных катализаторов. Поэтому предполагают, что каталитический процесс развертывается в основном на небольшом числе активных участков поверхности, так называемых активных центрах. Понятие активного центра в дальнейшем будем относить к твердым катализаторам, так как поверхность жидкости однородна и жидкие катализаторы не обнаруживают столь высокой чувствительности к ядам. Ряд специфических особенностей отличает катализ на металлах и полупроводниках от катализа на алюмосиликатах и других веществах этого типа, являющихся практически изоляторами. [c.357]


    Осн. исследования относятся к гетерогенному катализу. Установил (1940—1948), что различные кристаллические грани ТВ. катализаторов одного и того же состава обладают разной каталитической активностью. Открыл (1948—1954) явление перестройки поверхности катализатора, при котором базисная р-ция как бы подготавливает для себя его поверхность. Нашел (1954—1957), что при орг. катализе на металлах отложение углерода происходит только на одной из граней монокристалла. Установил (1958) зависимость скорости адсорбции этилена на никеле от геометрии и дефектов его кристаллической решетки. [c.138]

    Исследования относятся к каталитической химии. Установил (середина 1920-х) связь между скоростями каталитических р-ций, их тепловыми эффектами и тепло-тами адсорбции. Экспериментально подтвердил вывод X. С. Тэйлора о величине энергии активации как осн. критерии типа адсорбции. Участвовал в создании статистической теории активной поверхности. Показал, что катализ происходит за счет снижения энергетического барьера р-ции, а эффект селективности обусловлен разными типами хемосорбции. В обоснование идей Н. Д. Зелинского и А. А. Баландина пришел к выводу (1928) об увеличении длин исходных связей в промежуточной хемосорбции. Установил (1930—1933) относительную активность 10 оксидов металлов в р-циях разложения оксида азота (П1), ставшую затем основанием для изучения электронного механизма р-ций. Выявил (1952) роль свободных электронов в каталитической активности оксидов. В дальнейшем развивал электронную теорию катализа на металлах и оксидах на основе изучения кинетики гетерогенных р-ций и факторов, изменяющих электронное состояние ТВ. катализаторов. [c.497]

    Г.К. Боресковым установлено исключительно важное для теории и практики гетерогенного катализа явление изменения энергии активации реакции, а также энергии связи кислорода окисла в зависимости от степени окисления катализатора. Было обнаружено, что по мере удаления кислорода из окислов металлов энергия активации реакций их восстановления непрерывно возрастает. Это указывает на то, чт) поверхность катализатора неоднородна в отношении хемосорбции окислителя, [c.160]

    Многие исследователи предполагают, что катализ осуществляется не чистыми металлами, а главным образом их оксидами и солями. Этим можно объяснить гетерогенное ускорение окисления углеводородов при их контактировании с кристаллическими горными породами, что характерно для хранения топлив в подземных емкостях, создаваемых в отложениях каменной соли, в граните, гипсе, доломите, известняке, ангидрите, сланце и др. [c.59]

    Многочисленные результаты многолетних исследований гидро-карбоксилирования олефинов в присутствии окислов металла, а также свойства соединений олефинов с солями некоторых тяжелых металлов (Н , Р(1, Р1) недавно приобрели особое значение для процессов гетерогенного катализа. [c.162]

    В условиях хранения и эксплуатации углеводородное топливо С растворенным в нем кислородом находится в контакте с металлической поверхностью стенками баков для хранения, трубопроводов, насосов. Известно, что металлы, их оксиды и соли катализируют окисление углеводородов. В связи с этим необходимо определить влияние поверхности конструкционных материалов на окисление топлива в условиях хранения соотношение между процессами окисления топлива в объеме и на стенке стадии окисления, на которые воздействует металлическая стенка ингибиторы, которые следует применять для стабилизации топлива в присутствии металлической поверхности и др. Наряду с гетерогенным катализом в топливе. может протекать и гомогенный окислительный катализ, вызываемый растворенными в нем солями металлов. Роль металлов в окислении углеводородов неоднократно исследовалась. Достаточно подробные данные имеются о механизме гомогенного катализа окисления углеводородов растворенными солями жирных кислот. [c.192]

    Гетерогенный катализ в жидкофазном окислении. Введенные в окисляющийся углеводород металлы и оксиды часто ускоряют [c.204]

    Фундаментом прогнозирования активности, селективности и других специфических свойств катализатора должна стать детальная микроскопическая теория гетерогенного катализа, опирающаяся на современные представления квантовой химии и теории твердого тела. Описывая элементарные акты реакций и превращений вещества на поверхности реального катализатора, такая теория в принципе дает возможность не только в полной мере понять механизм, кинетику и термодинамику катализа, но и предсказать каталитическую способность того или иного металла, полупроводника, диэлектрика в конкретной химической реакции. Однако незавершенность теорий катализа не позволяет однозначно предсказывать оптимальный состав промышленных катализаторов и другие их характеристики для действующих и проектируемых производств. До сих пор решение проблемы подбора катализаторов опирается в значительной мере на эмпирические подходы, сопряженные с большими затратами рутинных форм труда. Так, в поисках первого катализатора для синтеза аммиака было исследовано около 20 тыс. различных веществ [1, 2]. В 1973 г. число известных органических соединений оценивалось в 6 млн. Ежегодно только в нашей стране синтезируется более 40 тыс. новых химических соединений. Таким образом, разработка научно обоснованных целенаправленных стратегий поиска катализаторов представляет актуальную проблему современного катализа. Актуальность проблемы подтверждается еще и тем, что коло 90% промышленных химических и нефтехимических производств ведется с применением катализаторов. [c.56]


    Общий механизм каталитического действия координационных комплексов сводится к облегчению электронных переходов в общей системе электронов и ядер внутри комплекса по сравнению с переходами между отдельными молекулами. С этих позиций естественно считать, что стадия образования координационных комплексов может ускорять как реакции окисления—восстановления, так и реакции перераспределения валентных связей (ин-тра- и интермолекулярные), поскольку между различными молекулами, входящими в координационную сферу комплекса в качестве лигандов, взаимодействие облегчается 5, 61. В случае гетерогенного катализа через координационные комплексы можно рассматривать активный центр как металл (его ион) с незаполненной сферой лигандов и применять к нему уже известные общие и частные принципы связи между строением комплексообразующего иона или ненасыщенного комплекса с его каталитической активностью. Существенную роль в определении активности катализатора в координационном катализе играют стабильность первоначально образующегося комплекса в реакциях, протекающих по механизму замещения лигандов. В этом случае, как следует из общей теории катализа и принципа энергетического соответствия Баландина, должна наблюдаться экстремальная зависимость между активностью катализатора и стабильностью комплекса. [c.59]

    Средняя глубина, с которой уходят электроны из твердого вещества, зависит от кинетической энергии фотоэлектронов. Изучение [35] металлов показало, что при кинетической энергии 1000 эВ средняя глубина может достигать 100 А, тогда как при энергии 10 эВ она должна быть 10 А. Большое значение для РФС имеет чистота поверхности образца. С помощью этого метода можно исследовать химию поверхностей, как, например, в гетерогенном катализе. [c.336]

    Автор книги, ранее принимавший активное участие в разработке так называемой электронной теории катализа, теперь, как он сам пишет, пытается объединить химический и физический аспекты катализа . Экстраполируя от гомогенного к гетерогенному катализу , он интерпретирует механизм гетерогенного катализа с позиций теории комплексообразования, поскольку работы последних лет показали, что между гетерогенным и гомогенным катализом нельзя провести четкую границу, как это считалось ранее в обоих случаях найдены сходные элементарные механизмы и активные формы. Убедительным примером может служить сопоставление окислительно-восстановитель-ного катализа на переходных металлах и их твердых неорганических соединениях с катализом неорганическими комплексными соединениями переходных металлов в растворах. [c.5]

    Гомогенный катализ может быть использован во всех случаях, когда необходимо осуществить миграцию двойной связи в молекуле олефина. Хотя в настоящее время на практике для этой цели по чисто технологическим соображениям применяют гетерогенные катализаторы (см. гл. 6), их замена комплексами металлов может оказаться более выгодной она позволяет отказаться от подогрева реагентов вследствие высокой активности катализаторов упрощает выделение продуктов из-за высокой селективности катализаторов облегчает регенерацию — ее проводят при низких температурах и с малыми количествами катализатора. [c.137]

    В работах [72-76,92-99] приведены различные видоизменённые варианты механизма катализа реакции фталоцианинами металлов переменной валентности, в т.ч. в гетерогенных условиях, когда фталоцианин находится (адсорбирован) на поверхности носителя. В работах [80,147] сделано предположение, что окисление тяжелых меркаптанов, в труднорастворимых в водных щелочных растворах происходит также по вышеописанному механизму на границе раздела фаз, однако доказательства отсутствуют. [c.25]

    А. А. Баландин выдвинул мулыиплетную теорию гетерогенного катализа на металлах. [c.344]

    В пособии последовательно излагаются отдельные теоретические воззрения мультиплетная теория А. А. Баландина, теория Н. И. Кобозева, химическая теория активной поверхности С. 3. Рогинского. Рассматривается влияние электронных факторов в процессе адсорбции и при катализе на металлах и полупроводниках. Излагаются вопросы об удельной активности катализаторов по Г. К. Борескому. Сопоставлена роль коллективных локальных взаимодействий в катализе. На основе координационных представлений освещены общие закономерности гетерогенного, гомогенного и ферментативного катализов. Первое издание вышло в 1968 г. в КазССР (изд-во Наука ), [c.336]

    Многие переходные Переходные металлы. Во многих случаях гетероген-мета.плы с[)аботают ный катализ протекает с помощью переходных как гетерогенные металлов. Свободные /-орбитали этих металлов кага.1нзатг)]1 з1. . облегчают связывание их со многими веществами, и при этом образуются реакционноспособные интермедиаты. В производстве аммиака по Габеру катализатором служит смесь железа и ванадия  [c.346]

    Гетерогенно-каталитическая изомеризация алканов в газовой фазе при катализе галогенидами металлов, промотированных водородными кислотами, соответствует опытам Ола по генерированию карбониевых ионов в жидкой фазе. Придерживаясь классических представлений о действии кислотных катализаторов и учи-тывая данные Ола, можно предположить, что среди неравноценных по кислотности активных центров на поверхности катализатора встречаются такие, в которых активация протонов достигает уровня сверхкислот Ола. Эти протоны способны отрывать гидридные ионы от углеводородов, а координационно насыщенные противо-ионы типа А1Х4 обеспечивают стабилизацию карбониевых ионов, необходимую для реализации скелетной перегруппировки. Образование алкилкарбониевых ионов, например, на хлористом алюминии в таком случае можно представить схемой [c.33]

    Определенная ясность достигнута в области гомогенного катализа окисления в присутствии ообдинетшй металлов переменной валентности, и в работе дается простая обобщенная схема этого явления. Специальное внимание уделено роли гетерогенно-каталитических стадий в механизме жидкофазного окисления. Приводятся некоторые итоги исследования ингибированного окисления, окисления многокомпонентных систем и изучения сопряженных процессов окисления. Статьи в сборнике располагаются по разделам сначала рассматриваются работы по механизму окисления углеводородов разных классов, затем сопряженнгде реакции окисления, гомогенный катализ, гетерогенный катализ, ингибирование и, наконец, воздействие разлхганых окислителей на органические вещества. [c.4]

    Катализ комплексами металлов, закрепленными на поверхности носителей, является в настоящее время одним из быстро развивающихся налравлений в каталитической химии. Оно возникло около 10 лет назад на стыке гомогенного и гетерогенного катализа, реализовав в закрепленных комплексах основные идеи и того й другого.  [c.170]

    Важным звеном в нахождении связи между неорганическими комплексами и гетерогенным катализом на металлах является гомогенный катализ. В настоящем докладе сообщается об открытии метода осуществления гомогенной каталитической реакции изотопного обмена между ароматическими соединениями и тяжелой водой в присутствии растворимых соединений переходных металлов VIII группы. [c.62]

    Нами показано, что восстановление окисью углерода неорганических ионов и хицонов в присутствии. ацидокомплексов металлов платиновой группы осуществляется череа стадию образования нестойких карбонильных соединений. При взаимодействии окиси углерода с солями Pt (II) образуются галоидкарбонилы линейного и мостикового строения, причем только первые ответственны за катализ. Твердые металлы платиновой группы также способны осуществлять достаточно интенсивное окисление СО в Oj за счет кислорода воды. Из предложенных моделей адсорбционной связи наиболее вероятными пред- ставляются мостиковая и линейная . Как следует из доклада 2, первая форма устойчивее второй. Оказалось, что степень конверсии окиси углерода пропорциональна концентрации линейных структур. Напротив, концентрация мостиковой формы не влияет на глубину превращения и, следовательно, она является нереакционноспособной. Исходя из обнаруженных закономерностей, легко объяснить крайне малую каталитическую активность металлического палладия, отличающегося тем, что почти вся адсорбированная на нем окись углерода находится в инертной мостиковой форме. Эта же причина определяет больший выход углекислоты на родии по сравнению с выходом на платине. Оптимальными каталитическими свойствами должны, таким образом, обладать сплавы с наибольшей концентрацией линейных ст]>уктур. Сравнение констант комплексообразования окиси углерода и родия (II) с аналогичными данными для этилена и родия показывает, что первые на два порядка выше вторых. Это подтверждает правильность вывода доклада 2 о большей устойчивости поверхностных карбонилов. Таким образом, в механизме гомогенной и гетерогенной активации СО имеется много общего. Можно считать, что в обоих случаях элементарный акт протекает через образование линейной связи М — СО. [c.92]

    Дж. Л. Гарнетт (Кенсингтон, Австралия). В связи с промежуточными частицами, постулированными авторами доклада 25 для объяснения гетерогенного множественного обмена в метильной группе алкилбензолов, приведу данные, полученные нами по гомогенному обмену в алкилбензолах в присутствии Р1 (см. доклад 1). Мы нашли для метильной группы толуола аналогичные высокие значения М, для объяснения которых из данных по обмену и по предварительной гомогенной кинетике, не представляется необходимым постулировать соединение IV. Это существенно, поскольку таким образом выявляются преимущества сопоставления результатов, полученных при гомогенном и гетерогенном катализе на металлах. [c.302]

    Работы последних десятилетий показали, что граница между гетерогенным и гомогенным катализом, казавшаяся долгое время принципиальной и непроходимой, в действительности расплывчата и часто условна. Это справедливо даже для газовых реакций благодаря существованию гомогенно-гетерогенных процессов и особенно характерно для каталитических реакций в жидкой фазе. В гомогенном и гетерогенном катализе встречаются сходные элементарные механизмы, сходные активные формы и сходные закономерности подбора. Особенно поучительно в этом отношении выявившееся в последнее время далеко идущее сходство между окислительно-восстановительным катализом переходными металлами и их твердыми неорганическими соединениями, с одной стороны, и катализом комплексными растворенными соединениями, с другой. Еще раньше такие корреляции были установлены между гомогенным и гетерогенным кислотным катализом. В обоих случаях причиной сходства является близость природы химических связей катализатора с реагентами, нашедшая квантовохимическое объяснение в сходстве кристаллического поля с полем лигандов и в образовании на поверхности л-комплексов, карбониевых и карба-ниевых комплексов и других неклассических образований. Далеко идущее сближение наблюдается и благодаря открытию роли нейтральных и заряженных радикальных активных центров и промежуточных форм в гетерогенном катализе. Конечно, своя специфика у гетерогенного и гомогенного катализа имеется, ее надо учитывать и использовать, но значение этой специфики явно переоценивалось. Исходя из этого, мы уделили в сборнике определенное место гомогенному катализу (статьи И. И. Моисеева, [c.5]

    В гетерогенном катализе катализаторы — металлы, окислы, сульфиды и другие соединения обычно представляют собой кристаллические тела. Атомы или ионы в кристаллической решетке связаны очень прочно и расстояния между ними постоянны. Таким образом поверхность катализатора может быть охарактеризована определенныдп геометрическими параметрами, известными для многих металлов и их соединений. А. А. Баландин плодотворно развивал цдею о геометрическом соответствии между расположением атомов в решетке катализатора и расположением атомов в той части превращаемой молекулы, которая перестраивается, приходя в соприкосновение с активным участком катализатора (мульти-плетная теория). Позже Баландин указал на важность энергетического соответствия, суть которого в том, что величины энергии связи вещества и катализатора должны иметь оптимальные значения. Если это достигнуто, то катализ совершается после наложения определенного участка молекулы на группу атомов катализатора, причем атомы молекулы, притягивающиеся к общей точке катализатора соединяются друг с другом. Обычно активный центр катализатора состоит из двух атомов (дублет), реже встречаются более сложные сочетания (например, как предполагают при дегидрировании циклогексана активен секстет (шестерка) [c.283]

    К числу поверхностных явлений относятся поглощение жидкостей и газов пористыми телами, каталитические превращения в гетерогенном катализе, коррозия металлов, флотация, большое число явлении в" йоло гич1Й кйх системах и т. п. Когда химик или инженер встречается с новым веществом, его первое впечатление чаще всего связано со свойствами поверхности. Поэтому важно выяснить, каковы те общие законы, которым подчиняются все вообще фазовые границы и в какой мере их использование требует знания индивидуальных свойств данного вещества. [c.278]

    В химии твердых тел, металлов и растворов, а также в гетерогенном катализе всо большую популярность в последнее время начинает завоевывать концепция Н.С, Курнакова о соединениях постоянного и переменного (стехио— и нестехиометри— ческого) состава, названных им соответственно дальтонидами и бертоллидами. По его представлениям, бертоллиды — это своеобразные химические соединения перемен— ного состава, формой существования которых является не молекула, а фаза, то есть химически связанный огромный агрегат атомов. Классическая теория валентности не применима для соединений бертоллидного типа, поскольку они характеризуются переменной валентностью, изменяющейся непрерывно, а не дискретно, Перечисле — [c.160]

    Обычно в гетерогенном катализе каталитическую активность характеризуют относительным увеличением скорости реакции в расчете на единицу поверхности катализатора. Спецификой окисления является его автоускоренный характер. Поэтому кинетику автоокисления удобнее характеризовать не скоростью, которая меняется во времени, а ускорением, т. е. коэффициентом Ь в уравнении А[02] 2 = Ь . При гетерогенном катализе или ингибировании окисления количественной характеристикой удельной активности материалов служат отношения Ъ—bo)lboS — для материалов, обладающих каталитическим действием, и (Ьо—b) boS — для материалов, обладающих ингибирующим действием, где Ьо — коэффициент для топлива без металлов S — поверхность металла, см /л топлива. Значения (6—ba)fboS и (Ьо—b)/boS для различных материалов в топливе Т-6 при 125 °С представлены в табл. 6.3. [c.207]

    Деактиваторы металлов, взаимодействуя с ионами металлов и образуя с ними растворимые комплексные соединения, выводят из сферы действия основную часть катализатора. При этом гетерогенный катализ окисления ювенильными поверхностями металлов не подавляется деактиваторами металлов. К де= активаторам металлов относятся салицилидены, аминофенолы и др. С антиокислительными присадками они ооразуют ШнёрпГ-ческие пары [206]. Эффективность деактиваторов металла при окислении в присутствии медной пластинки при 100 °С приведена в табл. 6.7. За рубежом для реактивных топлив разрешен к применению К,Ы -дисалицилиден-1,2-пропилендиамин (см. табл. 6.4), но добавление его не является обязательным. [c.197]

    Первоначальное понятие о комплексных соединениях, образованных центральным атомом или ионом металла и совокупностью ( luster) ионов или молекул, именуемых лигандами (число которых называют координационным числом), в последнее время было расширено, и теперь оно охватывает большую часть неорганических соединений в молекулярном (растворы) или кристаллическом (твердые тела) состоянии. Нихолм [4] указывает, что химию комплексных соединений следует рассматривать как некоторый подход к неорганической химии, а не просто как один из ее разделов и что в связи с этим она должна быть полезной для понимания как гомогенного, так и гетерогенного катализа. Нас интересует динамика обратимых изменений координационного числа и степени окисления центрального атома, и мы [c.15]

    Приготовление катализаторов нанесением координационных соединений металлов на органические и неорганические носители привлекло внимание ряда исследователей [77, 78]. Оно позволяет сочетать положительные стороны гомогенного (активность и селективность в мягких условиях) и гетерогенного (непрерывность и простота выделения продуктов) катализа. В работах [79, 80] такой метод использован для приготовления активных гетерогенных катализаторов на основе я-комплексов Pd b. [c.138]


Смотреть страницы где упоминается термин Катализ гетерогенный металлов: [c.2]    [c.262]    [c.337]    [c.352]    [c.565]    [c.175]    [c.497]    [c.294]    [c.207]   
Инженерная химия гетерогенного катализа (1965) -- [ c.28 , c.30 , c.37 , c.38 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция на поверхности металлов и ее связь с катализом ДЖ- А. БЕКЕР Важность исследования адсорбции для разработки теории гетерогенного катализа

Гетерогенный катализ Катализ

Гетерогенный катализ Катализ гетерогенный

Гомогенные реакции карбонилов металлов и их отношение к гетерогенному катализу (И. Вендер, Г. Стернберг)

Катализ гетерогенно-гомогенный на металлах

Катализ гетерогенный

Общие замечания о связи между гетерогенным и гомогенным катализом с участием переходных металлов



© 2025 chem21.info Реклама на сайте