Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбоновые кислоты ароматические, получение

    Общие методы получения. — Одним из способов получения ароматических карбоновых кислот является окисление углеродсодержащих боковых цепей или циклов. Так, толуол образует бензойную кислоту, м- и п-ксилолы дают изофталевую и терефталевую кислоты, а мезитилен и дурол превращаются в соответствующие многоосновные кислоты. В лабораторных условиях полиалкильные соединения обычно лучше всего окислять разбавленным раствором перманганата калия при температуре кипения или же разбавленной азотной кислотой при повышенной температуре в запаянных трубках или в автоклаве. В технике обычно самым выгодным методом является хлорирование с последующим гидролизом до бензойной кислоты (см. 24.4)  [c.343]


    Цианиды (нитрилы) легко гидролизуются до карбоновых кислот в кислой среде. Отсюда следует удобный метод получения ароматических карбоновых кислот, исходя из бензола. Полож-им, необходимо синтезировать пара-толуиловую кислоту  [c.164]

    Глубокое окисление ароматических соединений приводит к окислительной деструкции ароматических колец с образованием карбоновых кислот. Эти процессы используются в очень больших масштабах для получения малеинового ангидрида из бензола и фталевого ангидрида из нафталина. Предполагается, что промежуточными продуктами при этих реакциях являются 1,4-бензохинон и [c.329]

    Марганцевокислый калий применяют для окисления боковых цепей в ароматических и гетероциклических соединениях до карбоксильной группы. В большинстве случаев карбоновые кислоты менее растворимы в воде, чем их щелочные соли. Поэтому их можно выделить, подкисляя щелочной раствор, образующийся после окисления. В лаборатории реакции окисления используются главным образом для получения альдегидов, кетонов и кислот из соответствующих спиртов. [c.132]

    Исследуя кислоты, полученные при окислении парафиновых углеводородов изостроения, можно составить представление о пунктах окислительной атаки кислорода. Последний действует преимущественно на точку разветвления, иначе говоря, на третичный атом водорода, В результате отщепления боковых цепей образуются в основном кислоты с прямой цепью. Тем не менее парафины с сильно разветвленным угле- родным скелетом продолжают оставаться непонгодными для промышленных целей сырьем [42], При их окислении получают главным обраэом низкомолекулярные и более глубоко окисленные карбоновые кислоты с числом атомов углерода меньше 12, не говоря уже о значительных количествах кислот с разветвленным скелетом. Эти кислоты обладают неприятным запахом и неудовлетворительным моющим действием. Технические нефтяные дистилляты, хотя и обогащенные парафинами, непригодны для получения жирных кислот, предназначенных для мыловарения, так как содержат нафтеновые и ароматические углеводороды, а также другие циклические соединения. [c.445]

    Гидрирование фталевых кислот и их эфиров. Гидрирование трех изомерных фталевых кислот в циклические спирты осуществляется с большим трудом. Ароматическое кольцо гидрируется значительно хуже, чем в бензоле или феноле. При прямом гидрировании фталевых кислот существенное развитие имеют побочные реакции. Так, при использовании металлических катализаторов на основе меди, хрома, никеля, кобальта и платины происходит не только насыщение кольца, но и декарбоксилирование. Полученный продукт содержит циклогексан и моно-карбоновую кислоту. [c.49]


    Для этой цели могут быть использованы алифатические жирноароматические и ароматические кетоны. Значительно реже для получения третичных спиртов проводят реакции магнийорганических соединений с эфирами, ангидридами или галогеноангидридами карбоновых кислот  [c.214]

    Такая дисмутация в особенности характерна для ароматических альдегидов и часто протекает настолько гладко, что может быть использована для препаративного получения некоторых ароматических спиртов и кислот. Из альдегидов жирного ряда такое превращение претерпевают, например, формальдегид и ацетальдегид. Возможно, что эта реакция играет значительную роль при некоторых биологических процессах (например, при спиртовом брожении, стр. 119). Одновременное образование спирта и карбоновой кислоты из альдегидов открыто Канниццаро и поэтому носит название реакции Канниццаро [в применении к алифатическим альдегидам ее обычно называют реакцией Тищенко]. [c.207]

    Эта реакция является одной из важнейших для получения карбоновых кислот ароматического ряда и позволяет почти во всех случаях заместить аминогруппу, непосредственно связанную с ароматическим ядром, на группу циана. [c.374]

    Охлажденную щелочную смесь, полученную после гидролиза, прежде всего экстрагируют эфиром. Эфирный экстракт может содержать амины (главным образом нелетучие), спирты и непрореагировавшее исходное вещество. Если в эфирном растворе не удается обнаружить указанных соединений, то из щелочного раствора после гидролиза следует отогнать 4—5 мл жидкости и попробовать обнаружить в дистилляте спирты (низшие спирты очень плохо извлекаются эфиром). Затем щелочной раствор подкисляют и снова экстрагируют эфиром. При этом получают свободные карбоновые кислоты. Ароматические карбоновые кислоты часто выпадают в осадок уже при подкислении. [c.576]

    Способы получения. Одноосновные карбоновые кислоты ароматического ряда могут быть получены всеми общими способами получения, известными для кислот жирного ряда. Здесь будут рассмотрены только специфические наиболее часто применяемые способы. [c.499]

    Для получения аналогичным путем карбоновых кислот ароматического ряда часто исходят из сульфокислот, превращая их в нитрилы сплавлением солей сульфокислот с цианистым калием. Так, например, -нафталинкарбоновую кислоту можно получить из 8-сульфокислоты нафталина по схеме [c.333]

    Основным сырьем для получения полиэфиров являются поли-функциональные спирты и карбоновые кислоты. Для получения полиэфиров определенного строения широко используются также высыхающие масла и их жирные одноосновные кислоты, алифатические и ароматические монокарбоновые кислоты и другие соединения (табл. 3.1). [c.45]

    Процесс получения СПД, разработанный во ВНИИНЕФТЕХИМе, основан на каталитическом окислении деароматизированного керосина (содержание ароматических углеводородов не должно быть более 1% по массе), выкипающего в пределах 220—300 °С и содержащего не менее 50% (масс.) нафтеновых и изопарафиновых углеводородов. При окислении указанной выше фракции в определенных условиях образуется сложная смесь кислородсодержащих соединений в виде низших и высших карбоновых кислот, спиртов, кетонов, лактонов и сложных эфиров. В качестве примеси в продуктах окисления могут содержаться и дикарбоновые кислоты. [c.180]

    Из 2,3-дизамещенных нафталинов. Первая попытка нарастить линейно кольцо пиридина к производным р-нафтиламина с соответствующим заместителем в положении 3 основывалась на синтезе 3-нитрохинолинов при конДенса-ции о-аминопроизводных ароматических альдегидов с метазоновой кислотой Н0Ы=СНСН=Ы02Н [51]. о-Амнноарилкарбоновые кислоты конденсируются аналогичным образом и образуют Р-нитроэтилиденариламино-о-карбоновые кислоты, которые также замыкают цикл, превращаясь при. действии уксусного ангидрида и ацетата натрия в 3-нитрохинолины [52]. Из 2-аминонафта-лин-3-карбоновой кислоты был получен 4-окси-3-нитробензо[ ]хинолин (XI) (выход 50%) [13]. [c.482]

    Бензойная кислота — простейшая карбоновая кислота ароматического ряда. Она применяется для синтеза красителей, для получения перекиси бензоила — важного химиката для производства пластмасс, а также в медицине и нишевой промышленности. Получают ее в промышленности окислением толуола или омылением бензотрихлорида. Одним из способов очистки технической бензойной кислоты является перекристаллизация. На примере бензойной кислоты учащиеся должны освоить этот важнейший прием очистки твердых органических веществ. В 100 лл воды растворяют при нагревании до кипения 2 г технической бензойной кислоты и быстро фильтруют горячий раствор. Горячую фильтрацию ведут через специальные воронки с обогревом (электрической спиралью или газовой горелкой). Фильтрат делят на две части. Половину быстро охлаждают, например, поместив колбочку в холодную воду из раствора выпадают мелкие кристаллы бензойной кислоты. Вторую половину фильтрата оставляют медленно охлаждаться и наблюдают постепенное выпадение крупных кристаллов бензойной кислоты, цмеющих форму пластинок. Кристаллы отфильтровывают, высушивают и взвешивают. По разности весов взятой и полученной бензойной кислоты определяют потери при перекристаллизации. [c.104]


    Попытка обобщить данный материал сделана в настоящей книге, которая представляет собой логическое продолжение первой части, опубликованной ранее отдельным томом и посвященной анализу специфичности и кинетических аспектов действия ферментов на относительно простые субстраты, такие как алифатические и ароматические спирты и альдегиды, производные карбоновых кислот, замещенные аминокислоты и их производные (не выше ди- или три-пептидов). Главное внимание в первой части книги уделялось характеру фермент-субстрат ных взаимодействий на достаточно ограниченных участках активного центра и кинетическим проявлениям этих взаимодействий. В основе первой части книги лежит экспериментальный материал, полученный при изучении специфичности, кинетики и механизмов действия цинк- и кобальткарбоксипеп-тидазы, химотрипсина и трипсина из поджелудочной железы быка, алкогольде-гидрогепаз нз печени человека и лошади и пенициллинамидазы бактериального происхождения. Итогом первой части книги явились обобщение и формулировка кинетико-термодинамических принципов субстратной специфичности ферментативного катализа. [c.4]

    Полученные нитрилы путем гидролиза могут быть превращены в ароматические карбоновые кислоты (стр. 379). [c.396]

    Во МПУГИХ случаях можно проводить амидирование дихлорангидридов как одной, так и по двум функциям. Хлорангидриды карбаминсвои кислоты, образу щпеся из фосгена и аммиака или аминов в строго определенных условиях [559], цр менялись для синтеза амидов ароматических карбоновых кислот по реакции Фр деля — Крафтса и для получения Бесишдатрично замещенных мочевин. [c.435]

    Гидролиз нитрилов является одним из важнейших методов получения алифатических, ароматических и гетероциклических карбоновых кислот. Реакция идет в две стадии  [c.542]

    Разложение по Курциусу успешно осуществляют для алифатических, алициклических, ароматических и гетероциклических кислот. Дает ли такой способ получения аминов преимущества по сравнению с разложением по Гофману, зависит от обстоятельств. Если имеется сложный эфир карбоновой кислоты, вероятно, следует предпочесть реакцию Курциуса, поскольку из сложного эфира легко получить гидразид. Если исходить из кислоты, надо, очевидно, отдать предпочтение реакции Гофмана, поскольку она позволяет объединить несколько стадий. Если присутствуют другие функциональные группы, выбор метода иной. Так, например, чтобы разложить обе [c.564]

    Далее следует познакомить учащихся с бензойной кислотой—простейшей карбоновой кислотой ароматического ряда. Она применяется для синтеза красителей, для получения пероксида бензола - важного химиката в производстве пластмасс, а также в медищ1не и пищевой промышленности. Получают ее в промышленности окислением толуола или омылением бензотрихлорида. [c.158]

    В зависимости от способа получения ароматических дикарбоновых кислот и метода очистки последние могут содержать следующие основные примеси одноосновные и трехосновные карбоновые кислоты ароматические альдегидо-кислоты соединения металлов, Со, N1, Ре омолообразные окрашенные вещества. [c.26]

    Линднер предложил этерифицировать насыщенные карбоновые кислоты ароматическими гидроксилсодержащими соединениями (фенолом, крезолом) и затем полученный эфир сульфировать олеумом или хлорсульфоновой кислотой [c.80]

    При окислении различных альдегидов в среде ангидридов карбоновых кислот был получен ряд несимметричных диацилперекисей и показано, таким образом, что этот метод является достаточно общим. Однако в ряде случаев были получены отрицательные результаты. Реакцию не удалось распространить на гетероциклические альдегиды окисление фурфурола и а-формилпиррола в среде уксусного ангидрида не дало соответствующих перекисей. Окисление 6-метил-2-формилпиридина приводит к образованию перекиси, но реакционная смесь сильно темнеет и содержание активного кислорода постепенно уменьшается. Отрицательный результат был также получен с некоторыми ароматическими альдегидами. Так, 3,4-диметоксибензальдегид при окислении в уксусном ангидриде образует перекись, однако она быстро разлагается, и выделить ее не удается. Окисление а-нафтальдегида при 20° С в среде уксусного ангидрида привело к образованию перекиси с 40%-ным выходом, но выделить продукт в чистом виде не удалось. Не были получены перекиси и при попытке окисления коричного альдегида и -диметиламинобензальдегида в уксусном ангидриде. При окислении салицилового альдегида в среде уксусного ангидрида образуется ацетил-о-ацетоксибензоилперекись, т. е. происходит ацилирование ОН-группы альдегида. Интересно отметить, что при попытке окислить салициловый альдегид в присутствии бензойного ангидрида в растворе ацетона поглощения кислорода не происходит и перекись не образуется. По-видимому, ОН-группа не ацилируется бензойным ангидридом и ингибирует окисление. Попытка окисления бензальдегида в среде трифторуксусного ангидрида также не привела к образованию бензоилтрифторацетилпере-киси. Вначале происходило быстрое поглощение кислорода, но спустя несколько минут реакционная смесь слегка темнела и поглощение кислорода прекращалось. [c.86]

    Ароматические кадмийорганические соединения также успешно применяют в реакциях хлорангидридов эфиров двухосновных карбоновых кислот для получения кетокислот. Так, дифенилкадмий использовали в реакциях с алифатическими кислотами [152] и с кислотами ряда фенантрена [153] по методикам, ранее разработанным Кейзоном [17, 29, 68]. Доубен с сотр. [154, 155] применили кадмийдиарилы для получения ароматических кетокислот. Результаты приведены в табл. 30. [c.197]

    Неокотоны представляют собой растворимые натриевые соли сложных эфиров нерастворимых азокрасителей — производных азотолов. Для получения их в качестве этерифицирующих агентов применяют сульфо-карбоновые кислоты ароматических, жирных и гетероциклических соединений, а также ароматические ди- и трисульфокислоты и аналогичные соединения, у которых после образования сложного эфира остается по крайней мере одна свободная солеобразующая группа. Ацилирование оксигруппы нерастворимого азокрасителя осуществляют нагреванием с хлорангидридами этих кислот в присутствии третичных оснований (чаще всего пиридина) или взаимодействием красителя с многоосновной кислотой в пиридиновом растворе в присутствии хлоридов фосфора. [c.343]

    Как видно из этих данных, тепловой эффект возрастает с повышением глубины окисления, особенно при образовании карбоновых кпслот из углеводородов (реакция 4), при деструктивном окислении парафинов (реакция 6) н ароматических систем (реакция 7). Л1енее экзотермичны процессы образования карбонильных соединений из углеводородов (реакции 2, 3 и 8) и карбоновых кислот пз альдегидов (реакция 5). Тепловой эффект еще заметнее снижается при получении спиртов из углеводородов (реакция 1) и а-оксидов из олефинов (реакция 9), но остается довольно высоким. [c.356]

    Однако прямой синтез ди- и полика,рбоновых кислот этим методом невозможен. Первая карбоксильная группа тормозит окисление в среде углеводорода, а продукты дальнейшего окисления метилбензойных кислот (кислотоспирты, альдегидокислоты) связывают в комплексы незначительные количества катализатора (1—3-10 моль/моль углеводорода) и прекращают процесс. Не удается использовать окисление в среде углеводорода также при получении карбоновых кислот из ароматических полициклических углеводородов и их гомологов. [c.43]

    Полученные при пиролизе асфальтенов алкильные радикалы с С16—Са4 [359, 362], по-видимому, следует рассматривать как продукты разложения циклоалкановых фрагментов асфальтенов. Уместно вспомнить представления Добрянского [364] о том, что смолы и асфальтены являются промежуточными продуктами превращения исходных веществ флоры и фауны в углеводороды нефти. Последними работами [365] эта мысль была подтверждена экспериментально — при пиролизе асфальтенов получаются жидкие продукты, аналогичные сырой нефти. Из них выделены алканы, алкилциклогексаны, алкилзамещенные декалины, пер-гидрофенантрены, ароматические и тиофеновые аналоги этих соединений, а также циклические и алициклические карбоновые кислоты. Обнаружены также ациклические изопропеноиды, стероиды и другие соединения, указывающие на генетическую связь пиролизного масла с природным битумом. Авторами высказана интересная мысль о том, что карбоновые кислоты обеспечивают защиту нефти от биоразрушения и природной диагенетической активности, [c.169]

    Методы получения. 1. Кетоны получаются, часто с хорошими выходами, при взаимодействии хлорангидридов ароматических карбоновых кислот с алкилцинковыми или алкилмагниерыми солями  [c.631]

    Углеводороды нефти, содержащие от 8 до 20 и более атомов углерода, являются очень важным сырьем для получения гидрофобных радикалов. Обычно для этих целей используют фракции керосина, светлых нефтепродуктов и парафина, которые можно обработать различными методами а) хлорированием, а затем конденсацией с ароматическими кольцами или дегидрогалогеиизацией с образованием олефинов б) превращением непосредственно в сульфохлориды в результате реакции с диоксидом серы и хлором (реакция Рида) в) окислением в карбоновые кислоты, которые, в свою очередь, могут быть использованы аналогично природным жирным кислотам. [c.65]

    Следующая вертикальная колонка показывает процесс хлорирования этана. При гидролизе полученных хлорпроизводных образуются кислородные соединения (спйрты, альдегиды, карбоновые кислоты), которые в свою очередь связаны друг с другом окислительно-восстановительными переходами. В нижней части схемы показаны некоторые превращения, ведущие к ароматическим соединениям. [c.213]

    Из электрохимических производств, основанных на использовании электролиза для проведения окислительных или восстановительных реакций, можно назвать электрохимическое окисление Na l в Na lOa производство перхлоратов окислением хлоратов электрохимическое получение хлорной кислоты при обессоливании морской и минерализованных вод электролизным методом получение диоксида хлора и т. д. В органической химии процессы электролиза используются в реакциях катодного восстановления нитросоединений, иминов, имидоэфиров, альдегидов и кетонов, карбоновых кислот, сложных эфиров, а также в реакциях анодного окисления жирных кислот и их солей, ненасыщенных кислот ароматического ряда, ацетилирова-ния, алкилирования и др. [c.357]

    Сульфамиды используются также для характеристики сульфокислот и ароматических углеводородов. Свободные сульфокислоты или их соли со щелочными металлами, которые получаются, например, при гидролизе производных сульфокислот, прежде всего превращаются в сульфохлориды. Наилучшим образом это превращение удается осуществить с помощью пентахлорида фосфора или тионилхлорида в присутствии диметилформамида. Диметилформамид значительно повышает реакционную способность тионилхло-рида. Сам по себе тионилхлорид, как и др тие используемые при получении хлорангидридов карбоновых кислот реагенты, дает в прим енении к сульфокислотам плохие результаты. [c.260]

    Обзор по реакции Кольбе см. в работе [62]. Состав продуктов реакции зависит от условий эксперимента. Для получения алкана в водном растворе необходим платиновый (или иридиевый) анод, высокие анодные плотности тока, кислая среда, низкая температура и высокая концентрация соли карбоновой кислоты. Если в качестве растворителя применять метанол с добавкой или без добавки воды, то в этом случае природа анода, изменения плотности тока, концентрации и температуры уже не столь важны. В результате побочных реакций образуются алкены, спирты и сложные эфиры. Наилучшие выходы, алканов получаются из карбоновых кислот с нормальной цепью, содержащих шесть или большее число атомов углерода. Из смесей двух карбоновых кислот получают один ожидаемый несимметричный и два симметричных алкана. а-Разветвлепные, а,р-иенасыщенные и ароматические карбоновые кислоты, реагируют с трудом или совсем не вступают в реакцию. Двухосновные карбоновые кислоты от малоновой до себациновой не дают алканов однако из их моноэфиров с успехом можно получать диэфиры. [c.80]


Смотреть страницы где упоминается термин Карбоновые кислоты ароматические, получение: [c.482]    [c.86]    [c.30]    [c.99]    [c.81]    [c.471]    [c.250]    [c.259]    [c.506]    [c.227]    [c.569]   
Общая химическая технология органических веществ (1955) -- [ c.254 ]




ПОИСК





Смотрите так же термины и статьи:

Ароматические кислоты

Канниццаро реакция получения ароматических карбоновых кислот

Карбоновые кислоты ароматические

Карбоновые кислоты ароматические, получение окислением алкилированных ароматических углеводородов, общая методика

Карбоновые получение

Получение хлорангидридов ароматических карбоновых кислот



© 2025 chem21.info Реклама на сайте