Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергии в поверхностных соединениях

    В разделе 5.4 указывалось на важность сочетания разных методов исследования поверхностных соединений. Количественное определение углерода и других элементов в модифицирующих поверхность соединениях производится элементным анализом, а ИК спектры помогают установить, какие именно группы и в каком количестве содержатся в поверхностном соединении. Содержание элементов в поверхностных соединениях можно определить с помощью зондирующего воздействия различных пучков на поверхность твердого тела, служащего рассеивающей мишенью для такого воздействия. Для зондирования используются направленные пучки фотонов, электронов, ионов илц атомов, вызывающие эмиссию вторичных частиц (также фотонов, электронов, ионов или атомов), лзучение которой и позволяет судить о свойствах мишени. Помимо элементного анализа, с помощью зондирующего воздействия на поверхность в благоприятных случаях можно получить сведения о структуре поверхности и адсорбции на ней. В табл. 5.4 представлены некоторые из этих методов. Перечисленные в таблице методы. анализа поверхности, за исключением рентгеновской эмиссионной спектроскопии, позволяют исследовать поверхностные слои на глубину менее 10 нм. В этих методах зондирование поверхности и ана--лиз рассеиваемых или эмиттируемых частиц проводится в очень высоком вакууме. Для дополнительной очистки поверхность часто подвергается предварительной бомбардировке частицами высокой энергии, обычно аргонной бомбардировке. С этим связаны ограничения в применении некоторых из этих методов для исследования поверхности недостаточно стойких адсорбентов. Преимуществом этих методов является возможность локального исследования не- [c.109]


    Избыточную свободную энергию поверхностного соединения 6А0 можно рассматривать, как складывающуюся из двух частей  [c.463]

    Как видно также из табл. 4, изменение природы металлических катализаторов не очень сильно сказывается на величинах соответствующих энергий связи. Больше всего меняются Со-[К] I что, возможно, обусловлено величинами Q для объемных окислов, при малых значениях избыточной свободной энергии поверхностных соединений. [c.349]

    Поверхностные соединения образуются только в том случае, когда энергия возникающей химической связи недостаточна, чтобы оторвать поверхностные атомы твердого тела от кристаллической решетки при условии, что и сообщаемая извне энергия тоже недостаточна. При изменении условий, например при повышении температуры, вместо поверхностного соединения могут образоваться обычные объемные продукты реакции. [c.52]

    Метод рентгеновского микроанализа (фотоэлектронной спектроскопии) основан на том же принципе, что и метод Оже-спектроскопии, только для этого метода выбивание электронов с нижних уровней достигается облучением поверхности не электронами, а жестким рентгеновским излучением. Этот метод обладает большей разрешающей способностью по энергиям вторичных электронов, и благодаря этому при помощи рентгеновского микроанализатора можно установить валентное состояние одного и того же элемента в различных поверхностных соединениях. Однако из-за глубокого проникновения рентгеновских лучей в глубь вещества даже при малых углах облучения анализ захватывает относительно толстый поверхностный слой ( 5 нм). [c.85]

    Скорость образования поверхностных соединений не слишком велика и зависит от температуры. Это указывает на то, что процесс требует определенной энергии активации. [c.52]

    С. 3. Рогинский отметил, что сохранение исходного кристаллического строения продуктами реакции возможно только в том случае, когда реакция идет с выделением лишь незначительного количества энергии или с поглощением энергии. К подобному лее выводу пришла Л. К. Лепинь, рассматривая условия образования поверхностных соединений. [c.62]

    Б. Ф. Ормонт связал ширину запрещенной зоны АЕ для веществ типа А , А В и A B с энергией атомизации соединения АВ в основное состояние О и удельной поверхностной энергией ш  [c.107]

    Катализатор направляет реакцию по другому пути, требующему меньшей затраты энергии, через образование поверхностных соединений с катализатором. Энергия активации при этом снижается. [c.114]


    Другие рассмотренные ниже виды адсорбции относят к физической адсорбции, которая протекает под действием сил Ван-дер-Ваальса адгезионного характера. Физическая адсорбция является обратимым экзотермическим процессом при повышении температуры адсорбция уменьшается, а десорбция усиливается. Теплоты физической адсорбции невелики и обычно составляют 8— 20 кДж/моль. Физическая адсорбция не носит специфического избирательного характера. Хемосорбция, напротив, специфична. Она зависит как от природы адсорбента, так и от природы адсорбата. Энергия связи адсорбент — адсорбат достаточно велика и примерно равна теплоте образования химических соединений (80—800 кДж/моль). С повышением температуры хемосорбция возрастает, подчиняясь законам химической кинетики и равновесия гетерогенных реакций. Хемосорбция часто необратима и приводит к образованию прочных поверхностных соединений между адсорбентом и адсорбатом. [c.328]

    Межмолекулярное взаимодействие отличается от химического небольшими энергиями (от долей кДж/моль до 15—20 кДж/моль, тогда как энергии химических связей, например ковалентной связи, 150—400 кДж/моль), отсутствием специфичности и насыщаемости, проявляется на сравнительно больших расстояниях (порядка 0,4—0,7 нм). Силы Ван-дер-Ваальса действуют при сжижении газов, их кристаллизации, физической адсорбции (поглощение газов и жидкостей поверхностями раздела без образования химических поверхностных соединений) и т. д. [c.125]

    Однако причину влияния добавочных реагентов на электрокристаллизацию нельзя усматривать только в изменении поверхностной энергии. Необходимо учитывать также глубокое хими- ческое взаимодействие молекул, атомов и ионов добавки с иона-. ми и атомами металла, вследствие чего образующееся новое поверхностное соединение может не только изменить форму. кристалла, но в некоторых случаях полностью прекратить его развитие (пассивировать). На возможность образования поверхностных химических (или хемосорбционных) соединений указала. Л. К. Лепинь, отметившая, что прочность подобных соединений должна возрастать с уменьшением радиуса атомов металла и увеличением его плотности. [c.347]

    Поверхность таких катализаторов составляет сотни квадратных метров на 1 г вещества. Они обладают поэтому повышенным запасом энергии (см. след, гл.) и вследствие этого повышенной химической активностью. Компоненты реакционной системы адсорбируются на поверхности катализатора, образуя непрочные поверхностные соединения в этих соединениях происходит ослабление химических связей внутри адсорбированных частиц, следовательно, они легче вступают в химические реакции, так как энергия активации (свободная энергия образования активированного комплекса) понижается, и скорость реакции увеличивается. [c.220]

    Энергия возникающей адсорбционной связи должна обеспечивать достаточную прочность поверхностных соединений и максимум скорости адсорбции, чтобы образование и разложение поверхностных соединений не тормозили скорость суммарного процесса. [c.68]

    Энергии связей промежуточных поверхностных соединений с металлическими катализаторами [c.95]

    Образующиеся при химической адсорбции мономолекулярные слои новых соединений — поверхностные соединения, как их назвал И. А. Шилов, нельзя рассматривать как новую фазу, новое вещество. В самом деле, между адсорбированными молекулами адсорбтива и атомами (молекулами) адсорбента возникает химическая связь, но в то же время поверхностные атомы адсорбента сохраняют связь с остальными его атомами. Энергия образования химической связи между молекулами адсорбтива и адсорбента, очевидно, недостаточна для отрыва поверхностных атомов адсорбента от кристаллической решетки. При подводе энергии извне, например при повышении температуры, такой отрыв может наступить, в результате чего поверхностная реакция превращается в обычную гетерогенную реакцию и образуется новая фаза. [c.105]

    Итак, можно сделать вывод, что в системе кислород — серебро при сравнительно низких температурах кислород может обратимо сорбироваться на серебре, образуя супероксид серебра. Взаимодействие кислорода с серебром не всегда ограничивается поверхностью, поскольку кислород может проникать и в глубь металла. Кислород на поверхности серебра сохраняет высокую подвиж-ность, а поверхностные катионы самого серебра могут мигрировать и способствовать тем самым уменьшению поверхностной энергии. Кислород при адсорбции на серебре из многочисленных возможных форм сохраняет форму молекулярного иона Ог, образуя с серебром поверхностное соединение (супероксид серебра) в соответствии с перекисной теорией окисления Баха — Энглера. [c.279]


    В отличие от низкотемпературной физической адсорбции, протекающей с небольщим тепловыделением и практически безактивационно, хемосорбцию — образование поверхностного соединения — характеризует энергия активации. Знак же для хемосорбции может быть и положительным, и отрицательным.) [c.180]

    Нами высказано предположение об образовании двумерных поверхностных химических соединений, устойчивых благодаря избыточной поверхностной энергии (снижение уровня поверхностной энергии в результате образования поверхностных соединений) и неустойчивых (в виде объемных фаз) на диаграмме состояний. Термодинамический анализ на основе термодинамики необратимых процессов показал правомерность такого подхода [59]. Формирование двумерных фаз на поверхности фиксируется экспериментально (в частности, формирование двумерных оксидных фаз) [60]. [c.39]

    Поверхностные соединения образуются тогда, когда энергия возникающей химической связи недостаточна, чтобы вырвать атомы твердого тела из кристаллической решетки. Если же подвести больше энергии, например, путем нагревания, то идет обычная реакция с образованием объемных продуктов. [c.53]

    Специфическое молекулярное взаимодействие связано с особенностями структуры молекулярных орбит — с локальным сосредоточением отрицательного и положительного зарядов на периферии отдельных связей или звеньев взаимодействующих партнеров. При небольших энергиях и достаточно больших расстояниях оно сводится к классическим электростатическим взаимодействиям. При больших энергиях и коротких расстояниях необходим более детальный учет распределения электронной плотности во взаимодействующих партнерах и его изменения при взаимодействии. Водородная связь представляет собой частный случай таких взаимодействий. Еще более тесные химические взаимодействия приводят к потере химической индивидуальности взаимодействующих партнеров в результате образования новых поверхностных соединений разной устой- [c.132]

    А. В. Киселев (Московский государственный университет им. М. В. Ломоносова, химический факультет Институт физической химии АН СССР, Москва). Начатые А. Н. Терениным в 1940 г. спектроскопические исследования химии поверхности и адсорбции ведутся во многих лабораториях. Получаемая информация особо важна в случае специфической молекулярной адсорбции, для которой теория еще недостаточно разработана. Необходимо сопоставление информации о составе и состоянии поверхности (изотопный обмен, спектры, электрофизические методы), об энергии адсорбции и вкладах в нее специфических взаимодействий и об изменениях в спектрах поверхностных соединений и адсорбированных молекул. Имеется постепенный переход от слабых специфических взаимодействий, вызывающих, однако, значительное перераспределение электронной плотности в молекулах и изменение их симметрии, до взаимодействий с полным переносом заряда. [c.204]

    В упомянутой выше работе [928] фактически предполагается, что в промежуточных стадиях реакции участвуют не только поверхность, но и объемная фаза катализатора. Эти промежуточные стадии постулируются для каждого процесса, причем указывается, что в случае оптимального катализатора такие стадии должны протекать легко, с возможно более близкими тепловыми эффектами. При этом не учитывается действительный механизм рассматриваемых ими продессов (например синтеза аммиака). Отождествление свойств поверхностных и объемных соединений в некоторых случаях возможно в первом приближении, если избыточная свободная энергия поверхностных соединений невелика однако в общем случае такое предположение не может быть оправданным. Г. И. Голодец и В. А. Ройтер [1243], хотя и расценивают расчеты с использованием термодинамических величин для объемных (а не поверхностных) соединений как грубое приближение, но считают такой прием возможным. Они проанализировали данные для ряда реакций с точки зрения выполнения условия (ХП.26) и отмечают согласие расчетов с опытом. [c.469]

    Эти выводы теории А. А. Баландина ( принцип энергетического соответствия ) в общем виде подтверждаются многими примерами, однако применение теории для расчета энергий активации весьма ограничено отсутствием в большинстве случаев данных о прочности связей с катализатором. Во всяком случае слишком слабое (ЕСкх < С АВ + ( св) или слишком сильное (X Ркх > Сав + + Q D) взаимодействие с катализатором ведет к высокому значению энергии активации, и катализ не осуществляется. В нервом случае реагенты активируются катализатором в малой степени, а во втором происходит по существу реатоия с поверхностью катализатора с образованием прочных поверхностных соединений. [c.150]

    Первый катализатор (кривая /) не будет достаточно активен, так как энергия связей в мультиплетиом комплексе М слишком мала, а энергия активации Ез II стадии реакции велика. Поэтому скорость всей реакции на первом катализаторе будет мала. Третий катализатор (кривая <3) также будет малоактивен, так как энергия связей атомов А, В, С и D с атомами К мультиплета слишком велика. Поэтому будет велика энергия активации Еа распада мультиплетного комплекса, а скорость III стадии реакции — мала. Третий катализатор дает слишком прочное поверхностное соединение с реагирующими молекулами. Поэтому почти все атомы мультиплетов оказываются связанными в мультиплетные комплексы, и катализатор неактивен. [c.442]

    При формировании адсорбционно-сольватного слоя из жидкой фазы необходимо, чтобы энергия ММВ соединений, переходящих в слой, значительно превосходила энергию ММВ среды. Согласно правилу выравнивания полярностей Ребиндера, в слое концентрируется вещество, обладающее полярностью, промежуточной между полярностями веществ в ядре и дисперсионной среде раздела фаз. Так, на границе фаз асфальтены — парафины ароматические углеводороды хорошо взаимодействуют с поверхностью ядер ССЕ. Па следующих стадиях происходит рост размеров ССЕ. При достижении необходимой разности плотностей между исходной фазой и ССЕ, последние начинают перемещаться ио системе и формируют межфазный слой — поверхность разрыва — границы разделяющей фазы (подсистемы) со схожими свойствами. Поверхность разрыва представляет собой переходный слой— реальный объект, обладающий объемом. Внутри межфазного слоя в результате его разрушения происходит непрерывное изменение свойств от характерных для дисперсной системы до свойств новой фазы. В зависимости от степени искривления иоверхности ядер ССЕ различают макрогете-рогенные (плоская поверхность) и микрогетерогенные (искривленная поверхность) системы. По мере перехода от макро-гетерогенных систем к микрогетерогенным существенно увеличивается поверхность раздела и роль поверхностных явлений. При увеличении размеров коллоидных частиц происходит уменьшение их межфазной поверхности, в результате часть со- [c.123]

    Рн-к заменяется на эквивалентное выражение ( /гРн н —7з 1)]. Таким способом удается рассчитать не только значение Qн-к, но и значение Рс-к, что позволяет в дальнейшем при вычислении энергий связей других атомов использовать не только реакции гидрирования и гидрогенолиза, но и реакции дейтеро-обмена разных классов органических соединений. Последнее возможно при предположении, что величины рн-к и (Зв-к сохраняют свое значение и в других реакциях, поскольку при образовании промежуточных поверхностных соединений, содержащих Наде и Вадс, происходит отрыв этих атомов от исходных соединений. [c.94]

    Часто при адсорбции металлами таких реакционноспособных газов, как водород, кислород, окись углерода и другие, происходит как физическая адсорбция, так и хемосорбция, которая приводит к образованию новых поверхностных соединений. В этом случае адсорбированная молекула или продукты ее превращения локализуются на поверхности с большой энергией связи с поверхностными атомами металла [270], так что значительно более слабыми межмолекулярными взаимодействиями хемосорбированных молекул друг с другом можно пренебречь. Однако в случае благородных газов, особенно таких, как криптон и ксенон, и некоторых других химически инертных молекул, таких, например, как перфторметан, наблюдается только молекулярная (физическая) адсорбция на поверхности металла. Исследование молекулярной адсорбции на чистой поверхности металла представляет значительный интерес для развития молекулярной теории адсорбции. Большинство металлов обладает простой кристаллической решеткой, например, медь и же- [c.56]

    Значительно сложнее вопрос о поведении различных органических соединений на поверхности катализатора. Схемы мультиплетной теории и основанные на них методы расчета энергий связи развиты исходя из предположения об образовании ковалентных связей. Между тем в практику катализа все шире внедряются представления о поверхностных соединениях координационного или кластерного типов. Величины энергий связи реагирующих атомов при этом будут определяться природой химической связи. Поэтому требуются широкие исследования для уточнения энергий связей различных реагирующих атомов с поверхностью катализатора. Тем не менее совместное влияние двух факторов — геометрического и энергетического, с лежащим в их основе электронным строением твердых тел и реагирующих молекул, сохранит свое значение. Возможно только их истолкование на новой основе..  [c.99]

    При гетерогенном катализе, так же как и при гомогенном, реакция ускоряется в результате открытия нового реакционного пути, требуюшего меньшей энергии активации. Изменение реакционного пути происходит благодаря промежуточному химическому взаимодействию реагирующих веществ с катализатором. При гетерогенном катализе промежуточные соединения возникают на поверхности катализатора, не образуют отдельных фаз и не обнаруживаются химическим анализом. Свойства этих поверхностных соединений отличаются от аналогичных объемных. Так, энергия связи в каталитических поверхностных соединениях меньше, чем в объемных молекулах, что обусловливает непрочность этих соединений. Возможны молекулярные, атомные и ионные поверхностные соединения с различными типами связи. Для цепных реакций катализ имеет"гетерогенно-гомогенный характер, т. е. на поверхности катализатора возникает радикал (гетерогенный акт), который и возбуждает цепную реакцию в объеме газа или жидкости (гомогенный акт). [c.224]

    Краткие выводы и обзоры. Известны некоторые общие обзоры ио ионообменным свойствам кремнеземной поверхности и силикагелей, опубликованные за последние 25 лет, но лишь в немногих рассматриваются все аспекты этой темы. Бентон и Элтон [238] подсчитали энергию адсорбции ионов, находящихся в слое Штерна. Душина и др. [239] показали взаимосвязь между величиной pH и адсорбцией ионов металлов, которую они описали на основе растворимости, поверхностных соединений [240]. [c.931]

    Селективность сложного электрохимического процесса и изменение его в зависимости от потенциала обусловлены изменением природы поверхностных соединений в связи с появлением на электроде частиц, неодинаковых по химическому составу и обладающих различной энергией адсорбции 11501. При проведении процесса электролиза крепкой серной кислоты с платиновыми, родиевыми или иридиевыми анодами при высоких анодных потенциалах наблюдается совместное образование 0 , НгВаОз и Од. [c.173]

    Во-первых, должен быть установлен механизм образования связей С—С на таких обычных катализаторах, как восстановленное железо или кобальт. Трактовка механизма, как включающего полимеризацию поверхностных соединений и конкуренцию между полимеризацией и реакцией обрыва, регулирующей длину углеводородной цепочки, в какой-то мере является спекулятивной, поскольку она основана на косвенном Доказательстве. Как при метанировании, так и в синтезе Фищера — Тропша было постулировано образование частично гидрогенизиро-ванного на поверхности энола в форме радикала НСОН , а его реакции с образованием метана или конденсация с образованием углеводородной связи С—С были приняты в качестве медленной стадии. Недавние данные, однако, показывают, что наиболее медленной стадией может быть разрыв связи С—О в адсорбированном оксиде углерода. Ряд последних экспериментальных результатов подтверждает правильность этого частного механизма. Измерение кинетического изотопного эффекта показало, что на нанесенных N1, Ки и Р1 реакции Н2 + СО—>- и Оа+СО—>- протекают при идентичных скоростях, откуда следует, что водород не участвует в стадии, определяющей скорость [51]. Исследования на N1 и на N1—Си-сплавах показали, что необходимый для катализа ансамбль из смежных активных мест вызывает диссоциацию СО перед реакцией с водородом [52]. В соответствии с последними измерениями на никеле, проведенными методами ДМЭ и УФЭС, совместная адсорбция Нг и СО не приводит к образованию поверхностного энольного комплекса, поэтому может потребоваться предварительный распад СО, чтобы могло произойти гидрирование СО [53]. Эти данные согласуются с данными, полученными методом инфракрасной спектроскопии при изучении активных мест на Ки-, КЬ- и Pt-катализаторах, нанесенных на оксид алюминия, которые указывают на то, что в течение реакции Нг и СО поверхность покрыта преимущественно адсорбированным СО без каких-либо признаков существования поверхностного комплекса формила НСО— [54]. Должны быть выяснены такие важные свойства поверхности, как энергия связи СО, возможность одновременной адсорбции СО и Нг, а также необходимость придания катализаторам других структурных или электронных свойств. Они должны помочь в понимании вариаций селективности, наблюдаемых при сравнении действия различных металлов, а также вызываемых такими промоторами, как калий. [c.275]

    Энергия активации сорбции кислорода на серебре и платине изменяется по мере заполнения, что указывает на неоднородность поверхности этих металлов и на различие в энергиях связи адсорбированного кислорода с металлами. Работы Чэпмена и Холла [98], а также электрохимические исследования [102 и 103] показали, что наряду с относительно непрочными соединениями кислорода с серебром нри адсорбции образуются и более прочные соединения. На основании измерений равновесия реакции Ме + НгО (газ) Нг (газ) + Ме 0 Гонзальц и Парравано [104] рассчитали теплоту хемосорбции кислорода на никеле, платине и серебре. В результате взаимодействия металла с водяным паром возникают поверхностные соединения типа №0, РЮ и Ag20. [c.33]


Смотреть страницы где упоминается термин Энергии в поверхностных соединениях: [c.117]    [c.105]    [c.84]    [c.84]    [c.299]    [c.305]    [c.128]    [c.146]    [c.84]    [c.419]    [c.166]    [c.419]   
Введение в кинетику гетерогенных каталитических реакций (1964) -- [ c.466 ]




ПОИСК





Смотрите так же термины и статьи:

Поверхностна соединения

Поверхностная энергия

Поверхностные соединения свободная энергия

Энергия соединения



© 2025 chem21.info Реклама на сайте