Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энтальпии теплота гидратации

    Удельную теплоемкость стекла (С1) и раствора (Сз) см. в работе П. Определив теплоты растворения, найдите теплоту гидратации безводного карбоната натрия, руководствуясь примером 2. Напишите термохимическое уравнение гидратации данной соли, нарисуйте треугольник Гесса. Какова величина энтальпии гидратации  [c.57]

    Экспериментальные данные по теплотам и энергиям гидратации целесообразно помещать в таблицы в виде относительных ионных теплот. Ниже приведена одна из таблиц такого рода, основанная на допущении равенства теплоты гидратации иона водорода нулю и включающая достаточно надежные термохимические данные. Значения ионных энтропий гидратации Д5,. (реальных) энергий гидратации ДСг(р) получены расчетным путем, они менее надежны, чем значения энтальпии ЛЯ,-, найденные из экспериментальных термохимических данных. [c.52]


    Энтальпия (теплота) гидратации ионов. Интенсивность взаимодействия ионов растворенного вещества с молекулами воды можно охарактеризовать величиной энтальпии (теплоты) гидратации ДЯ идр [c.187]

    Энтальпия (теплота) гидратации иона зависит от его заряда и радиуса. Тенденция металлов переходить в раствор выражена тем сильнее, чем меньше потенциал ионизации и чем больше теплота гидратации. Так, наибольшим стандартным потенциалом характеризуется литий — металл с малым потенциалом ионизации. Кроме того, ввиду незначительности радиуса иона лития он имеет сильное электрическое поле и поэтому энергично притягивает дипольные молекулы воды, что сопровождается значительным выделением тепла (гидратации). Литий, таким образом, наименее благородный металл. Наиболее благородные металлы располагаются в конце ряда напряжений. [c.238]

    Пример 5. Определить теплоту гидратации Na l, используя цикл Габера — Борна, если для Na l известны энтальпия растворения Na iA//i. = 4 кДж-моль константа /г = 7,50 константа Маделунга. /(м = 1,748 радиусы ионов по Полингу г =0,950-10 и л = [c.14]

    Энтальпия (теплота) гидратации ионов оценивается количеством теплоты, которая выделяется при переходе 1 моль ионов из вакуума в водный раствор. [c.123]

    Поскольку растворы, содержащие ионы только одного заряда, практически получить невозможно, энтальпия образования протона может быть рассчитана на основе какой-либо гипотезы или модели. Часто используется, например, допущение Ланге и Мищенко о примерном равенстве химических теплот гидратации однозарядных ионов s+ и I . Обосновывается это допущение обычно асимметрией диполя молекулы воды, которая оценивается приблизительно 0,25 10 м (0,25 A), что почти в точности компенсирует разницу в радиусах ионов. [c.452]

    Я — теплосодержание или энтальпия, теплота гидратации. [c.6]

    С — энергия межионного взаимодействия д — земное ускорение, внутренний потенциал, константа в некоторых уравнениях — гальвани-потенциал между фазами а и Р g — парциальная энергия межионного взаимодействия Н — теплосодержание (энтальпия), теплота гидратации [c.5]

    Метод Бернала и Фаулера. Поскольку энергия сольватации небольших ионов, как следует из логики, определяется главным образом кулоновскими силами и может быть принята обратно пропорциональной ионному радиусу, тогда для такой соли как KF (г и rj в кристалле), индивидуальные теплоты гидратации ионов могут быть найдены делением пополам значений теплоты гидратации соли. Для К+ и F" этот метод дает 95,5 ккал/моль. Учитывая поправки, связанные с несимметричным пространственным расположением воды вокруг ионов, были внесены поправки, изменившие теплоту гидратации до величины —94,0 для К+ и —97,0 для F". На основе этих данных можно определить энтальпии гидратации других ионов. [c.143]


    Наряду с изменением энтальпии, имеющим место для реакции ь газовой фазе, необходимо учитывать теплоты гидратации обои.ч комплексов и лигандов и теплоту ассоциации воды. [c.286]

    Теплоту, энтропию и энергию гидратации исследовали, основываясь на экспериментально определяемых теплотах растворения и энергиях решеток солей. Для случая бесконечного разведения раствора кристаллического электролита первая интегральная теплота растворения АЯо равна сумме энергии решетки и общей теплоты гидратации (сольватации) катионов и анионов. Энергия решетки определяется как изменение энтальпии, отвечающее взаимному удалению ионов решетки на бесконечно большое расстояние  [c.254]

    Ионы, имеющие большие заряды [железо (III), алюминий], характеризуются и значительными величинами энтальпии и энтропии. Теоретическое вычисление теплот гидратации связано с учетом целого ряда слагаемых. После первых, грубо приближенных расчетов по Борну было сделано много попыток так или иначе улучшить теоретический метод. К. П. Мищенко и А. М. Сухотин, исходя из предположения, что эффективный радиус молекулы воды в гидратной оболочке равен 0,193 нм, предложили метод расчета, в котором были приняты во внимание экзоэффекты взаимодействия иона с жесткими диполями воды, а также ориентационной и деформационной поляризации диполей воды, дисперсионные силы между ионом и молекулами воды, взаимное отталкивание диполей в гидратной сфере, отталкивание иона и диполей при перекрытии их электронных оболочек, поляризация растворителя гидратным комплексом и взаимодействие между водой и гидратным комплексом, отвечающее экзоэффекту. Большое число факторов, принятых во внимание в этих расчетах, делает их результаты наиболее надежными. Между прочим указанные авторы пришли к выводу, что тепловое движение не может существенно влиять на координационные числа гидратации вероятность того, что данная молекула в гидратном слое покинет его и оставит свободное место в гидратной оболочке иона, колеблется по порядку величины от 10 (ион лития) до 10 (ион цезия), т. е. ничтожно мала. [c.255]

    Так, например, реакция переноса электрона от иона ОН к иону железа (И ) в водном растворе, ведущая к образованию радикала ОН" и двухзарядного иона Ре2+, казалось бы, должна быть энергетически выгодной. Однако частичная дегидратация ионов железа и гидроксила, обусловленная понижением зарядов этих частиц, требует затраты работы. Энергия переноса электрона (если нет каких-либо осложняющих реакцию процессов) равна разности между сродством к электрону и разностью теплот гидратации начальных и конечных продуктов. Величина этой разности такова, что процесс в целом характеризуется положительным значением энтальпии +183,9 кДж. Прирост энтропии составляет 246,6 Дж/моль-г, что дает для изменения энергии Гиббса при 300 К положительную величину  [c.258]

    Поскольку экспериментальное исследование растворов, содержащих ионы только одного сорта, практически неосуществимо, энтальпия образования протона может быть рассчитана на основе какой-либо гипотезы или модели. Часто используется, например, допущение Ланге и Мищенко о примерном равенстве химических теплот гидратации однозарядных ионов цезия и иода. Обосновывается это допущение обычно асимметрией диполя молекулы воды, которая оценивается приблизительно в 0,025 нм, что почти в точности компенсирует разницу в радиусах нонов. Известны и другие способы деления энтальпии гидратации соли на ионные составляющие, как, например, =АнН и др. [c.227]

    Теплота гидратации ионов может быть рассчитана как изменение энтальпии при переходе иона из газообразного состояния в вакууме в раствор при условии бесконечного разбавления (так называемая химическая теплота гидратации) по следующему термодинамическому уравнению [1731 [c.371]

    Так как различие между энтальпией и изобарным потенциалом для конденсированных систем невелико, то по теплоте растворения и энергии кристаллической решетки можно определить теплоту гидратации или сольватации ионов . [c.182]

    Как правило, для построения указанных выше кривых условных теплот гидратации ионов нельзя использовать функцию первой степени от обратной величины радиуса гидратированного иона (где = Г + Гн о, — ионный радиус). Эта трудность возникает вследствие того, что вклад первичной оболочки [53, 80] зависит в основном от г п, а вклад внешней области (рассчитываемый обычно по уравнению Борна — Бьеррума для энтальпии поляризации диэлектрика за пределами области, в которой ионное поле сравнимо с полем насыщения) зависит от (г + 2/ н2о) - Таким образом, с расстоянием от центра иона меняется не только показа- [c.75]


    В мысленном эксперименте металл должен быть переведен в вакуум с затратой теплоты сублимации L, затем атомы металла должны быть ионизированы (теплота ионизации /), освобожденное при этом количество электронов z возвращено в металл (с выделением химической энергии гЯ = z (Ф — Хме )) ионы металла Ме " переведены из вакуума в электролит с освобождением теплоты гидратации Отсюда изменение энтальпии [c.122]

    Рис. 44 показывает путь реакции при вычислении АН. Восстановленное вещество 53 должно быть дегидратировано с затратой теплоты гидратации Н и переведено в вакуум, где при затрате теплоты ионизации I от отщепляется электрон, который переходит в металл с выделением химической энергии Ф — е Вещество возвращается в раствор и гидратируется. Отсюда для всего изменения энтальпии [c.123]

    В этих реакциях наряду с изменением энтальпии, наблюдающимся для реакции в газовой фазе, необходимо учитьшать такл е теплоты гидратации обоих комплексов и лигандов и теплоту ассоциации воды. [c.450]

    Энтальпия (теплота) гидратации ионов. Раство )ение ионного соединения можно представить в виде двух стадий разрушение кристаллической решетки на свободные ионы и гидратация ионов. Тогда согласно закону Гесса тепловой эффект (энтальпию) растворения АН,, ,в можио представить в внде алгебраической суммы энергии (энтальпии) разрушения кристаллической решетки АНр,. , и энтальпии гидратации ионов АНтн.ц,.  [c.122]

    Энтальпия (теплота) гидратации ионов. Интенсивность взаимодействия ионов растворенного вещества с молекулами воды можно охарактеризовать величиной энтальпии теплоты) гидратации АЯридр — количеством теплоты, которое выделяется при переходе [c.168]

    В других случаях решающее влияние на значение энтальпии может оказать энергия гидратации. Большие значения потенциала ионизации и теплоты сублимации при сравнительно малой теплоте гидратации характерны для малоактивных — благородных— металлов. У элементов, образующих отрицательные ионы, окислительный потенциал тем больше, чем выше энергия гидратации и сродство к электрону и чем меньше энергия образования одноатомного газа из вещества, взятого в стандартном состоянии. Латимер отметил, что, например, большая окислительная активность фтора сравнительно с иодом в основном обусловлена большей теплотой гидратации иона фтора (—514,14 кДж у фтора и —300,96 кДж у иода) различие в значениях сродства к электрону не слишком велико (—384,56 кДж у фтора и —313,5кДж у иода) .  [c.88]

    Здесь АЯреш — изменение энтальпии при пзаимном удалении ионов от расстояния их в решетке до бесконечности (энергия решетки) АН- — суммарная теплота гидратации положительных и отрицательных ионов. [c.215]

    Рассчитать теплоту гидратации NaaSO (тв.), зная, что интегральные теплоты растворения NaaSO (тв.) и NaaSO -lO Н2О (тв.) в бесконечно большом количестве воды равны соответственно —0,56 и +18,85 ккал/моль. Энтальпии гидратации нельзя измерить непосредственно из-за слишком малой скорости фазового превращения. [c.46]

    Эта величина, по данным Яцимирского, равна 101,0 ккал1г-ион, поданным Кондратьева — 107,5 ккал/г-ион. Из этих данных можно определить теплоту гидратации протона. Разность между теплотой образования протонов в вакууме и теплотой их образования в растворе представляет изменение энтальпии при переходе протона из вакуума в воду, т. е. теплоту реакции  [c.370]

    Гидратация ионов оказывает очень сильное влияние на свойства растворов и кинетику многих физико-химических (и, следовательно, технологических и биологических) процессов. Поэтому установление влияния магнитной обработки растворов на гидратацию ионов имеет принципиальное значение. Количественно оценить степень гидратации ионов можно по теплоте гидратации (изменению энтальпии), изобарно-изотермическому потенциалу, энтропии, энергии активации самодиффузии молекул воды, ванфлековскому парамагнетизму и др. Пока имеются результаты только двух довольно надежных экспериментальных исследований, свидетельствующих о том, что магнитная обработка заметно влияет на гидратацию ионов. [c.27]

    Существует линейная зависимость между теплотами гидратации ионов металлов, из которых вычтены части, обусловленные стабилизацией в Поле лигандов, и потенциалами ионизации, исправленными таким образом, чтобы они относились к одному и тому же основному состоянию. Это показывает, что более простое соответствие, которого искали Ирвинг и Уилльямс, в действительности не имеет места [108, 217]. Теория поля лигандов предсказывает последовательность изменений энтальпии от хрома до цинка. В первом приближении можно предположить, что рассмотрение методом теории поля лигандов, применимое для суммарного изменения энтальпии А может быть применено также для рассмотрения изменений АЯ в отдельных последовательных стадиях, а также при отсутствии данных по энтальпиям — к изменениям свободной энергии, Константы устойчивости с введением поправок на стабилизацию в поле лигандов могут быть оценены путем линейной интерполяции между значениями для кальция, марганца и цинка. Величины стабилизации в поле лигандов представляют собой разности между экспериментальными и исправленными значениями [32, 217]. Вычисленные таким путем величины стабилизации в поле лигандов приведены в табл. 9. Стабилизации для отдельных стадий для комплексов железа, кобальта и никеля и, следовательно, суммарные стабилизации для присоединения трех этилендиаминовых лигандов постепенно возрастают, причем приближенно выполняется предсказанное соотношение 1 2 3. Спектроскопическое значение [c.52]

    После того как нами было выдвинуто предложение принять близкими друг другу величины химических теплот гидратации ионов и I" (стр. 69), некоторые авторы, в том числе А. Ф. Канустинский в более поздних работах, распространили этот способ разделения и на другие термодинамические свойства ионов, в частности на п. м. энтропии и теплоемкости. Против выбора в этих случаях Сз1 можно выдвинуть следующее возражение как энтропия, так и теплоемкость являются производными термодинамических функций по температуре. Из равенства интегральных величин (изменение энтальпии или изобарного потенциала) вовсе не вытекает равенство их изменений с температурой. [c.222]

    Чтобы изучить влияние гидратации ионов на свойства воды, а следовательно, выявить формы проявления периодического закона еще и на других свойствах растворов, были предприняты работы по исследованию давления паров воды над растворами перхлоратов и галогенидов элементов второй группы Периодической системы [51—59]. Сравнение данных по двойным системам МХг — НгО и НХ — НгО (часть данных взята из литературы [60, 61]) представлено на рис. 5 и 6. Рис. 5 относится к перхлоратным системам.. На оси абсцисс — порядковые номера элементов, а на оси ординат — давление паров воды, соответствующее растворам концентрации 3 мольЦОбО г воды. На том же рисунке нанесены данные по ионизационным потенциалам. Соединение точек проводилось так же, как и в предыдущем случае (см. рис. 3 и 4). Симбатность кривых неоспорима. Изучаемая величина (давление паров воды) сходна в некоторой степени с величинами, характеризующими теплоту гидратации иона, однако между ними имеется принципиальное различие первая величина относится к изменению свободной энергии перехода воды из раствора в газообразное состояние, что предполагает необходимость учета не только энтальпии, но и энтропии. [c.16]

    Из данных табл. 3 видно, что наиболее существенна одна из двух поправок к величине АЯи.гэе- необходимых для вычисления АЯ/,0 и АНе.о, а именно поправка на теплоты гидратации. Эти данные показывают, насколько важно не только знать теплоты гидратации, но и располагать весьма точными их значениями за счет этих величин энтальпия образования молекул HgX2 в газовой и водной фазах изменяется по ряду в противоположных направлениях. Тем не менее для очень многих систем по указанным выше причинам не известны не только точные, но даже и ориентировочные значения теплот гидратации лиганда и комплекса. В связи с этим Существует настоятельная необходимость в разработке других методов, которые позволили бы сопоставить значения АЯ , получаемые с помощью калориметрии в растворе, с энергией связи и структурными эффектами в комплексных ионах. [c.27]

    Калориметрические данные в сочетании со значениями свободной энергии реакций в водных и неводных растворах позволяют получить полезные сведения о соотношениях, существующих между величинами энтальпии и энтропии реакции и константой равновесия. Такие сведения часто очень нужны для интерпретации закономерностей, наблюдаемых для устойчивости ряда комплексов. Однако не всегда понимают, что на основании одних только значений ДЯс и Д5с для реакции в растворе, как правило, нельзя сделать почти никаких выводов об истинных причинах наблюдаемой в ряду зависимости, поскольку эти значения содержат члены, которые трудно выделить и еще труднее оценить количественно. Например, теплоты гидратации многих двухзарядных ионов металлов имеют величину порядка 500 ккал/моль (см. табл. 3). Во всякой реакции, где лиганд замещает молекулу воды, важную роль играет некоторая неизвестная доля этой теплоты гидратации, причем эта доля может оказаться неодинаковой для различных ионов металлов. Поскольку наблюдаемые значения ДЯ образования комплексов металлов в водном растворе обычно в 10—100 раз меньше теплоты гидратации, они могут оказаться намного меньшими, чем неопределенность в значениях теплот гидратации. Иногда закономерности в значениях ДЯс оказываются достаточно явными, и на их основании удается обнаружить интересные корреляции для данного ряда ионов в данном растворителе однако сами по сеЗе эти значения совершенно недостаточны для того, чтобы судить об относительной или абсолютной прочности связей металл—лиганд. Не располагая сведениями о величинах ДЯ% или ДЯдо для термодинамических циклов, описанных в разд. II, бессмысленно обсуждать такие вопросы, как, например, наличие или отсутствие п-связи, резонанс, стери-ческие факторы и т. д. В настоящее время имеется очень мало количественных данных, позволяющих проводить вычисление энергетических членов, указанных в разд. II. Несомненно, эта область исследований должна развиваться в будущем, так как значения энергетнческихсоставляющих ДЯс необходимы для изучения энер- [c.63]

    Энтальпия (теплосодержание) комплексообразования в водных растворах обусловлена замещением молекул воды на другие лиганды. Значение АН определяют или путем прямых калориметрических измерений, или рассчитывают. Значения АН°, полученные косвенным расчетным методом, часто сильно отличаются от значений АН , полученных путем непосредственных калориметрических измерений. Однако прямой метод практически не применим в случае малых изменений энтальпии. Гринберг и Яцимирский [71] показали, что изменение энтальпии при комплексообразовании в растворе отличается от изменения энтальпии в газовой фазе (АЯ°аз) (при замещении во внутренней сфере аквакомплекса молекул воды другим лигандом) на величину теплоты гидратации катиона (АЯгидр (ме)) и нового комп.чекса [c.26]

    Энтальпия. Изменение энтальпии при гидратации определяли из температурной зависимости изотерм сорбции. Величина теплоты сорбции составляет около 80 кДж/моль воды при малых степенях покрытия (область колена при степени гидратации 0,05) и уменьшается до значения, равного теплоте испарения воды (44 кДж/моль) при относительном содержании воды, равном 0,2 г/г белка. Вследствие гистерезиса, обычно наблюдаемого при снятии изотерм сорбции, вычисление значения теплоты сорбции по уравнению Вант-Гоффа в предположении термодинамического равновесия может привести к некорректным значениям. Калориметрическое исследование, проведенное на коллагене [4], подтверждает, вантгоффовские значения. Моделирование системы лизоцим — вода методом Монте-Карло [5] указывает на то, что часть воды на поверхности белка имеет энергию взаимодействия 80 кДж/моль или больше. Вода, находящаяся на поверхности белка, отличается от объемной воды больше по значениям энтальпии, чем по величине свобод- [c.116]

    Расчет абсолютной энтальпии гидратации протона был, повидимому, впервые выполнен Фаянсом [66], который предположил, что абсолютная свободная энергия электродного процесса может быть рассчитана из значения потенциала электрода, измеренного относительно ртутного электрода, находящегося при потенциале нулевого заряда (п. н. з.). Приняв эту величину равной —0,56 в по отношению к 1 н. каломельному электроду и используя имевшиеся в то время (1919 г.) данные по энергии диссоциации молекулярного водорода и энергии ионизации Н, Фаянс получил суммарную теплоту гидратации Н+, равную —362 8 ккал-моль . В последующей публикации того же года [66] эта величина была пересчитана исходя из разности энергий гидратации ионов П+ и К" , оцененной в 180 ккал-моль , и значения АЯк+ = = —80 ккал - моль , что дало для АЯн+ значение —260 ккал-моль , хорошо согласующееся с более поздними расчетами Холливела и Найбурга [78]. Допущение, что потенциалы электродов, измеренные против ртутного электрода при п.н.з., являются абсолютными потенциалами, положенное в основу расчета Фаянса, должно быть подвергнуто критике по той же причине, по которой следует признать ошибочными и другие расчеты подобного типа [73, 96]. Совсем не обязательно и, более того, маловероятно, чтобы абсолютная разность потенциалов металл — раствор при п. н. з., какого-либо электрода равнялась нулю . Из-за неопределенности в знаке и величине поверхностных потенциалов [98] возможны ошибки в потенциалах и их температурных коэффициентах, из которых рассчитываются теплоты гидратации, порядка 0,4 в. Поэтому совпадение с величиной, полученной из разностей условных теплот гидратации [78], должно рассматриваться как совершенно случайное, тем более что вначале Фаянс получил АЯн+ = = —362 ккал - моль . [c.85]

    В большинстве молекулярных теорий гидратации молекулу воды рассматривают как сферу с определенным числом точечных зарядов или, следуя Букингему [100], принимают, что подобная сфера характеризуется собственным радиусом, диэлектрической проницаемостью, поляризуемостью, а также дипольным и квад-руиольным моментами. Если принять, что теплота гидратации делится на две части АЯ (пустоты) и АЯ (взаимодействия), то в соответствии с представлениями Букингема взаимодействия ион — диполь, ион — квадруполь и ион — индуцированный диполь, силы дисперсии, а также взаимодействия между собственно молекулами растворителя в сольватном слое и поляризацию растворителя вне координационной оболочки следует рассматривать как часть АЯ (взаимодействия). Сомсен расширил эту теорию, введя в нее представления о энергии отталкивания между ионом и близлежащими молекулами воды и взаимодействиях между квадруполями молекул воды в сольватном комплексе. Сомсен не пытался оценить энтальпию образования пустоты в растворителе или энтальпию изменения структуры воды вне гидратного комплекса. Слабым местом данной трактовки могут быть, ио-видимому, неопределенность в истинных значениях квадрупольных моментов воды и предположение, что ориентация молекул воды вблизи анионов в точности противоположна их ориентации вблизи катионов [150]. Несмотря на эти недостатки, при использовании указанной теории были получены разумные данные для простых одновалентных ионов, причем установленные опытным путем значения теплот гидратации оказались между соответствующими вычисленными величинами для координационных чисел 4 и 6. [c.46]


Смотреть страницы где упоминается термин Энтальпии теплота гидратации: [c.168]    [c.4]    [c.195]    [c.186]    [c.186]    [c.194]    [c.223]    [c.51]    [c.72]    [c.46]   
Современная химия координационных соединений (1963) -- [ c.37 , c.38 ]




ПОИСК





Смотрите так же термины и статьи:

Гидратация теплота

Энтальпия гидратации



© 2024 chem21.info Реклама на сайте