Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплексы аммиак основания

    Таким образом, электронная теория Льюиса рассматривает нейтрализацию в водных растворах, взаимодействие аммиака с галогенидами бора, комплексообразование, реакции ангидридов с водой как сходные процессы. Действительно, согласно теории химической связи, во всех этих процессах взаимодействие между частицами имеет одинаковую природу — образуется донорно-акцепторная связь. Вещества, являющиеся донорами электрон] ых пар, часто называют основаниями Льюиса, а акцепторы электронных пар — кислотами Льюиса или L-кислотами. Большинство катионов является L-кислотами, а анионов — льюисовскими основаниями. Соли — типичные кислотно-основные комплексы. Мы видим, что теория Льюиса рассматривает вопрос о кислотах и основаниях более широко, чем другие теории. [c.241]


    Некоторые молекулы, хотя они на первый взгляд являются валентно насыщенными системами, так как их валентные электроны попарно заселяют молекулярные орбитали, отнюдь не лишены способности соединяться химическими связями с другими молекулами, не разрывая при этом своих собственных межатомных связей. Одни из этих молекул для этого должны иметь незанятые валентные орбитали, а другие — неподеленные пары электронов. Таким образом, одни молекулы проявляют способность присоединять другие молекулы до тех пор, пока не будут заняты все их валентные орбитали. Как известно, р -орбиталь бора не занята в молекуле ВРз. Поэтому эта молекула присоединяет молекулу аммиака, атом азота которой имеет на валентной орбитали одну пару неподеленных электронов, причем образуется донорно-акцеп-торная связь, почти ничем не отличающаяся от других ковалентных связей. Следовательно, нет оснований называть подобные соединения молекулярными комплексами — это настоящие атомные, а не молекулярные соединения. Связи подобного типа с донорами электронов могут образовать также молекулы — соединения бериллия, алюминия и др. В молекулах типа ВеРг имеются две незанятые валентные орбитали. Благодаря этому фторид бериллия присоединяет две молекулы диэтилового эфира, кислород которого служит донором электронов. Если в молекулах имеются незанятые валентные орбитали и недостаточное количество электронов для их нормального заселения парами электронов, как, например, в молекулах бороводородов, то эти молекулы в ряде случаев соединяются друг с другом путем делокализации всех валентных электронов между всеми молекулярными орбиталями, в результате чего все они оказываются частично заселенными электронами и между молекулами образуются настоящие химические связи. Это относится не только к взаимодействию молекул диборана с образованием высших боранов, но и к конденсации атомов металлов, в результате которой получаются твердые металлы. Атомы металлов также имеют незаселенные валентные орбитали, которые при конденсации сливаются в валентную зону и таким образом становятся достоянием всех валентных электронов. [c.88]

    В отличие от аммиака, этилендиамин способен присоединить два иона водорода это несколько усложняет расчет кривой образования для систем этилендиаминовых комплексов на основании измерения только водородных ионов. Как принято в химии комплексных соединений, обозначим этилендиамин через еп и две его кислотные формы через епН+ и епН . Две ступенчатые константы кислотной диссоциации обозначим через епн, епн соответственно. Кроме того, введем следующие величины для кислотно-основной системы этилендиамина  [c.209]


    При образовании комплексов с молекулярными лигандами заряд комплексного иона не меняется по сравнению с ионом-комплексообразователем, а радиус комплексного иона резко возрастает и соответственно падает плотность заряда на его ловерхности. Если во внешней сфере находится ион ОН-, то связь между катионом и гидроксильным ионом внешней сферы комплекса в основаниях уменьшается. Сила основания растет. Например, гидроксид меди Си (ОН) 2 —слабое труднорастворимое основание. При действии на него аммиака возникает комплекс аммиаката меди  [c.104]

    Пиридин — значительно более слабое основание, чем аммиак. Пиридин образует довольно прочные комплексы с теми же ионами металлов, что и аммиак. Известны комплексы пиридина с ионами серебра, меди (интенсивно синего цвета), никеля, кобальта и др. При образовании подобных комплексов, в отличие от предыдущей группы органических реактивов, не происходит вытеснения ионов водорода. Тем не менее вследствие основного характера этих реактивов равновесие образования комплексов также сильно зависит от концентрации ионов водо рода в растворе, например [c.100]

    В водном растворе аммиак является основанием потому, что его молекулы связываются с Н-ионами, причем освобождается эквивалентное количество ионов гидроксила. В комплексах аммиак вместо Н-иона присоединен к иону металла, и потому теряет свои основные свойства. Наоборот, здесь на передний план выступает его природа, как водородистого соединения, способного проявлять кислотные свойства . Кислотные свойства аммиакатов Р1(1У) обусловлены диссоциацией типа  [c.378]

    Изменяя концентрацию ионов металла в фазе ионита и регулируя состав среднестатистического координационного центра, можно направленно менять сорбционную емкость ионитного комплекса по основаниям Льюиса. В качестве примера в табл. 6.11 приведены данные о сорбции аммиака и этилендиамина из водных растворов анионитными комплексами некоторых переходных металлов. [c.278]

    В процессе с участием растворителя органическое основание может быть заменено неорганическим, например едким натром или окисью кальция [19]. В патенте [20] было показано, что реакция чувствительна к растворителю, температуре и источнику меди. Утверждается, что лучшие результаты получаются при проведении реакции фталонитрила в нитробензоле в присутствии безводного аммиака и комплекса аммиака с ацетатом меди. Заявлено, что преимущество этого процесса состоит в том, что он не дает хлорированного фталоцианина меди, который образуется при применении галогенидов меди, хотя того же можно, очевидно, достигнуть при проведении реакции хлорида меди в нитробензоле в мягких условиях в присутствии катализатора. В качестве катализаторов предпочтительны соединения молибдена, титана или железа, которые снижают время и температуру реакции от 10—12 ч при 220 °С до 10—20 мин при 170 °С [21.  [c.213]

    В растворах жидкого аммиака согласно теории сольвосистем все аммонийные соли кислоты, а амиды — основания. Причем последние часто проявляют амфотерность вследствие образования комплексов с ЫН 7 в качестве лиганда. Для растворов жидкого аммиака характерен аммонолиз и другие реакции. [c.286]

    Катион Ag+ образует в водном растворе устойчивый аммиакат, а катионы Са + — неустойчивый аммиакат. Объясните этот факт. Сохраняется лн такая тенденция в образовании различных по устойчивости комплексов для растворов Ag+ и Са + в жидком аммиаке Оцените растворимость Agi и al в жидком аммиаке по сравнению с их растворимостью в воде. Какой растворитель (воду или жидкий аммиак) можно предложить для разделения Ре(МОз)з и o(N03)2 способом, основанным на [c.164]

    Если содержание железа ниже 2-10 —5-10 %, рекомендуется более чувствительный метод, основанный на образовании красного комплексного соединения железа (И) и 4,7-дифенил-1,10-фенантро-лина . Пробу растворяют в разбавленной фтористоводородной кислоте, добавляют цитрат натрия для предотвращения гидролиза солей ниобия и раствор аммиака до pH 5. Железо восстанавливают дитионитом натрия, затем добавляют 4,7-дифенил-1,10-фенантролин и экстрагируют образовавшийся комплекс хлороформом. Экстракт хлороформа разбавляют этанолом и измеряют оптическую плотность комплекса при длине волны 533 нм. Комплекс стабилен в течение нескольких дней. [c.192]

    Все технологические схемы, реализованные в настоящее время отечественной промышленностью, основаны на получении гидроокиси алюминия требуемого химического и фазового состава путем переосаждения из окиси алюминия ( гидрата глинозема ). Схема такого процесса включает растворение гидрата глинозема в кислотах (серной, азотной) или в щелочи (едком натре) с последующим гидролизом при нейтрализации соответственно основанием или кислотой. Процесс переосаждения гидроокиси алюминия связан с большими затратами кислот или оснований (2—4 т/т окиси алюминия), которые практически не регенерируются. Исключение составляет нитратная технология (растворение гидрата глинозема в азотной кислоте и нейтрализация аммиаком), которая в случае привязки к заводу, имеющему комплекс производства аммиачной селитры, позволяет практически полностью использовать затраченные реагенты. [c.103]


    К водным основным растворителям целлюлозы относятся растворы комплексных соединений гидроксидов некоторых поливалентных металлов с аммиаком или аминами щелочные растворы комплексов, в которых центральный атом металла связан с молекулами гидроксикислот растворы четвертичных аммониевых оснований. К водным кислотным растворителям относят концентрированные растворы минеральных кислот, а также смеси кислот и солей. Нейтральные водные растворители - это главным образом концентрированные растворы ряда солей. В данной главе рассматриваются лишь наиболее важные водные системы. [c.556]

    Вместо аммиака рекомендуют менее сильные основания, которые позволяют легче регулировать pH раствора, в частности органические основания ароматического ряда. Так, например, а-пиколин (см. табл. 12) создает pH 7,0 и, подобно пиридину, образует комплексные соединения с Мп, Zn, Со, Ni, но не образует комплекса с бериллием. [c.51]

    Расстояние между гуаниновыми основаниями в цепи ДНК (0,32 нм) практически совпадает с расстоянием между лигандами в цис-изомере комплекса платины и заметно короче, чем в транс-изо-мере комплекса. Поэтому для цис-изомера комплекса платины возможно замещение двух молекул аммиака на остатки азотистого основания молекулы ДНК с образованием хелатного цикла. [c.110]

    Было исследовано явление частичного отравления катализатора. Оказалось, что первые порции хинолина наиболее сильно дезактивируют катализатор. Степень дезактивации катализатора различными азотистыми соединениями различна. По уменьшению дезактивирующего действия азотистые соединения можно расположить в следующем порядке хинальдин > хинолин > пиррол > пиперидин >дециламин > анилин. Если рассмотреть их исключительно с точки зрения основности, то наиболее эффективным из приведенных ядов должен бы быть пиперидин. Однако в присутствии катализатора пиперидин в значительной степени распадается при температуре около 425°, Дециламин избирательно расщепляется на аммиак и децен. Хинолин и хинальдин в этих условиях не расщепляются и являются эффективными ядами. Сравнительно сильное отравляющее действие пиррола, возможно, является следствием отложения на катализаторе полимера, так как известно, что пиррол легко полимеризуется в присутствии кислот. Кроме того, на хемосорбцию азотистых оснований оказывают влияние силы ван-дер-Ваальса. Необходимо учитывать степень этого влияния так же, как размер молекулы и структуру адсорбированного вещества. Отравляющая природа азотистых оснований согласуется с общей теорией катализаторов кислотного типа, которые содержат серную и фосфорную кислоты и промотированы галогенидами алюминия и бора. Предполагают, что механизм действия этих веществ включает образование карбониевых ионов. Азотистые. соединения являются более основными, чем олефины или ароматические соединения, если основность определять, согласно Льюису, как способность отдавать электронную пару. Азотистые основания, следовательно, способны реагировать с кислотой катализатора с образованием устойчивой соли. Следствием таких реакций является отравление катализатора, который обычно действует путем обратимого образования нестойких комплексов. [c.241]

    Кислотно-основное равновесие зависит не только от силы кислоты, но и от силы основания. Амид калия в жидком аммиаке — основание более сильное, чем едкое кали в воде. В жидком аммиаке протекает реакция между основанием и нитробензолом, тогда как в воде не только нитробензол, но и л-динигробензол не дает окрашенного комплекса со щелочью [c.289]

    Поскольку амид-ионы в жидком аммиаке являются более сильными основаниями, чем гидроксил-ионы в воде, амидные комплексы образуются даже с элементами, для которых неизвестны одноядерные гидроксокомплексы, например ад2г(МН2)4]. [c.443]

    На основании закономерности трансвлияния можно не только объяснить химическое поведение веществ, но и предсказать методы синтеза ряда комплексов. Например, удалось получить неизвестный ыс-изомер (NH3)2(NH3 l)2Pt l2 при действии аммиака на соль (NH3)2NH3 l l2Pt l, содержащую легкоподвижную хлорогруппу на С1—Pt— I координате [c.101]

    Только два естественных процесса вызывают пополнение запасов связанного азота - образование NO в плазме фозовых разрядов и деятельность некоторых видов живущих в почве микроорганизмов, способных связывать молекулярный азот. В экологическом равновесии эти процессы компенсируют убыль связанного азота, нЬ при интенсивном ведении хозяйства расход азота превышает его приход, поэтому существует проблема промышленного синтеза связанного азсгта, имеющая огромное хозяйственное значение. В настоящее время ее решают путем производства синтетического аммиака, из которого получают все другие соединения азота. В будущем, возможно, появятся иные промышленные способы связывания азота, в частности, возродится в ином аппаратурном оформлении плазменный синтез NO, который в начале нашего ека некоторое время использовали я промышленности. Кроме того, разрабатываются методы получения соединений аэота, основанные на каталитическом связывании Nj в комплексы некоторых (/-элементов. [c.396]

    Метод основан на взаимодействии бромидного комплекса индия с родамином 6Ж. Образующееся соединение экстрагируют бензолом из 15 н. серной кислоты и определяют концентрацию индия по интенснвно-сти флуоресценции экстракта. Мешающие ионы железа (III), меди (II), олова (IV), сурь.мы (III), таллия (III), золота (III), ртути (II) удаляют при экстракции индия бутилацетатом с последующей реэкстракцнеи хлористоводородной кислотой. Возможен ускоренный вариант отделения мешающих элементов с применением двукратного осаждения аммиаком и цементации на металлическом железе. [c.388]

    Хлориды элементов цериевой подгруппы образуют комплексы с водой, аммиаком, пиридином и другими органическими основаниями. [c.282]

    По первому способу для обессеривания сернистого кокса применяют различные реагенты пар, воздух, паровоздушную смесь, азот, водород, метан, хлор, аммиак, нефтяные газы (низкотемпературное обессеривание с применением газов). Этот способ, в соответствии с ранее расмотренным механизмом реакций прокаливания при низких тем пературах (см. стр. 200—202), основан либо на химическом связывании продуктов первичного распада сернистых соединений и быстром отводе их из зоны реакции, либо (на более поздних стадиях) на использовании химической активности и кинетической энергии газов для разрушения вторичных комплексов. Подача твердых реагентов (А1С1з, КаОН и др.), которые могут связывать НзЗ, также должна способствовать глубокому обессе-риванню. [c.212]

    Оэобщено о нескольких методах одностадийного превращения первичных спиртов или альдегидов в нитрилы. По первому методу бутиловый спирт и аммиак, пропускаемые над катализатором, содержащим 3% восстановленного никеля на активированной окиси алюминия при 300 °С, дают нитрил масляной кислоты с выходом 81,5% [7]. Согласно второму методу, ароматические альдегиды образуют нитрилы с выходами, обычно составляющими 70%, при взаимодействии со вторичным кислым фосфатом аммония, нитропропаном и ледяной уксусной кислотой [8]. По третьему методу первичные ароматические спирты или альдегиды можно превращать в нитрилы окислением в метанольном растворе аммиака, содержащем сильное основание, например метилат натрия, и комплекс меди [9]. Для ряда ароматических альдегидов, которые обычно дают лучшие выходы, чем соответствующие первичные спирты, выходы колебались от 40 до 90%. Четвертый метод ПО] заключается в обработке альдегида в бензоле аммиаком и тетраацетатом свинца. По этому способу лучшие результаты были также получены с ароматическими альдегидами, выходы для которых составляли от 64 до 90%. [c.475]

    Предложена [14] схема прямого разделения, основанная на абсорбции аммиака и цианистого водорода водным раствором пентаэритрита и борной кислоты. Аммиак образует комплексную соль с обоими компонентами поглотительного раствора, а цианистый водород можно удалить из раствора комплекса отпаркой при 80—90° С под пониженным давлением. Затем аммиак регенерируют на последующей ступени путем пагрева раствора до кипения под атмосферным давлением. При этом происходит диссоциация комплексной соли с выделением свободного аммиака. Такой процесс разделения и регенерации применяется в промышленности, но в США еще не осуществлен. Согласно имеющимся данным в США применяют другой процесс пепосредственной регенерации основного количества ненревращенного аммиака, но детали этого процесса на опубликованы. [c.225]

    Паусон и Фишер опубликовали обзоры методов получения ферроцена. Ферроцен был получен взаимодействием хлорного железа с циклопентадиенилмагнийбромидом непосредственным нагреванием циклопентадиена с металлическим железом , прямым взаимодействием циклопентадиена с карбонилом железа реакцией хлористого железа с циклопентадиеном в присутствии таких органических оснований, как диэтиламин реакцией хлористого железа с натриевым производным циклопентадиена в жидком аммиаке и из циклопентадиена и ацетилацетон-днпи-рндинового комплекса с двувалентным железом. Приведенная здесь пропись основана на методике, которую разработали Уилкинсон и сотрудники для получения ферроцена и многих [c.66]

    На рис. 6 в координатах В —р показаны опытные данные по исследованию отрывных диаметров для воды, фреона и аммиака. Здесь же нанесены осредняющие линии каждого вещества. В качестве масштабного линейного размера на основании работ [2, 5] выбирался комплекс КТимеющий размерность длины. [c.59]

    Аминобензолфосфоновая кислота впервые [1] получена нагреванием в течение 18 часов 2-бромбензолфосфоновой кислоты с раствором аммиаком на кипящей водяной бане в присутствии свежеприготовленной закиси меди. Выход амина составлял 40% выделение его производилось упариванием реакционной массы и дробным отделением неорганических солей. Позднее те же авторы описали [2] другой способ выделения продукта, основанный на способности подобных аминов образовывать комплекс с медью, ранее предложенный другими авторами [3], выход 2-аминобензолфоофоновой кислоты при этом повысился до 58%.  [c.11]

    Среди ферментов, содержащих ионы переходных металлов, важное место принадлежит нитрогеназе. Ряд видов бактерий (в частности, находящихся в симбиозе с бобовыми растениями) и водорослей обладает способностью восстанавливать азот воздуха до аммиака. В конечном счете именно этим способом в организмы доставляется азот, необходимый как для белков, так и для нуклеиновых кислот. Такая реакция, как N2 + ЗПг-> 2NПз, в газе требует гетерогенного катализатора, давления порядка 250 атм и температуры до 450°С (процесс Габера—Боша). В бактериях эта реакция идет с участием нитрогеназы — комплекса двух белков, один из которых содержит молибден и железо, а другой — только железо. Роль Мо является определяющей. Несмотря на то, что структура нитрогеназы пока еще мало изучена, с помощью качественных методов квантовой химии, основанных на теории поля лигандов, удалось выявить роль молибдена. Активация молекулярного азота N2 происходит, по- видимому, в комплексе Ме — N = N — Ме (Ме — металл). При этом связь NN в N2 из тройной превращается практически в единичную. Рентгеноструктурный анализ показал, что в модельных комплексах N2 с металлами длина связи NN равна 0,137 нм (длина связи N=N 0,110 нм, N=N 0,123 нм, N—N 0,144 нм). [c.218]

    Катионы больших периодов периодической системы Д. И. Менделеева, такие, как Zn " , Со , Ni , проявляют способность к образованию комплексных аммиаков [Zn(NH3)J , [Со(КНз)б] + и [№(КНз)б] . Большое значение имеет образование комплексных цианидов, тиоцианатов, ртутьтиоцианатов при обнаружении катионов Fe , Ре , Zn , Со . Широко используют для анализа реакции образования комплексов с органическим основанием пиридином, диметилглиоксимом, а-нит-розо-Р-нафтолом, ализарином, дитизоном, арсеназо. [c.149]

    Метод амперометрического определения кальция титрованием раствором комплексона III предложен Пршиблом и Виценовой [1371] и основан на использовании в качестве амперометрического индикатора катионов цинка. Титрование проводится в 4—5 N аммиаке. Кальций образует с комплексоном III более устойчивый комплекс, чем цинк. Поэтому в первую очередь титруется кальций, если концентрация ионов цинка в растворе 0,002 М. В процессе титрования диффузионный ток ионов цинка при потенциале —1,5 в остается постоянным, а после точки эквивалентности начинает постепенно убывать (рис. 7). В присутствии магния наклон полярографической волны цинка, показывающий конец титрования, становится менее резким, так как вместе с цинком титруются также и ионы магния. Определение кальция возможно в присутствии магния при соотношении Са Mg < 1 5. Метод применен к анализу продуктов питания [1076]. [c.78]


Смотреть страницы где упоминается термин Комплексы аммиак основания: [c.487]    [c.97]    [c.212]    [c.243]    [c.333]    [c.160]    [c.82]    [c.195]    [c.547]    [c.337]    [c.36]    [c.212]    [c.153]    [c.246]    [c.204]    [c.16]    [c.66]    [c.20]   
Водородная связь (1964) -- [ c.299 ]




ПОИСК





Смотрите так же термины и статьи:

Аммиак комплексы

Аммиак основаниями

Комплексы металлов с аммиаком и органическими основаниями



© 2025 chem21.info Реклама на сайте