Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий действие его при крекинге

    Крекинг-процесс предъявляет строгие требования к свойствам катализатора. Катализатор должен обеспечить не только требуемые выходы продуктов, но также и удовлетворительное качество их. Он должен противостоять действию высокой температуры при регенерации, а также обладать достаточной устойчивостью к истиранию как в процессе крекинга, так и при регенерации. Катализатор, кроме того, должен обладать определенным сочетанием химических и физических свойств. Эти требования ограничивают выбор материала, который может быть использован в качестве катализатора крекинга. Из большого числа исследованных катализаторов лишь немногие имеют требуемые свойства и, кроме того, недороги в производстве. С точки зрения сырья, используемого для приготовления катализаторов, последние делятся на два класса естественные и синтетические. В качестве естественных катализаторов могут быть использованы природные бентонитовые глины [11, 12] типа монтмориллонита и другие природные алюмосиликаты, такие как каолин и галлуазит. Синтетические катализаторы могут быть приготовлены из окиси кремния в комбинации с окисями алюминия, циркония или магния. Химия производства катализаторов обоих типов очень сложна и здесь обсуждаться не будет. Большинство катализаторов каталитического крекинга различаются по их активности и стабильности и при сравнимой активности обеспечивают лишь незначительные различия в распределении и качестве продуктов крекинга. В табл. И приводится сравнение действия катализаторов синтетического алюмосиликатного шарикового, двух типов природных глинистых и синтетического катализатора из окисей магния и кремния. [c.154]


    Другие промоторы. Сами по себе окислы металлов также являются катализаторами. Окись хрома (одну или в смеси с глиноземом) применяют для дегидрогенизации. Этой же цели могут служить окись хрома с добавкой окиси церия, смесь окиси магния, окиси железа и окиси калия, окись молибдена (последняя является также катализатором гидроформинга). Соли металлов, в частности соли галогеноводородных кислот, были первыми синтетическими катализаторами в переработке нефти под действием хлористого алюминия проводились процессы крекинга галоидные соли алюминия служат катализаторами процессов полимеризации и изомеризации, а хлористый водород является их промотором. [c.23]

    Коксование сырья с добавкой до 7% хлористого алюминия привело к уменьшению количества серы в коксе в 1,5—2 раза [133]. Обессеривающее действие хлористого алюминия при крекинге было известно ранее [70], но не нашло промышленного применения из-за коррозии аппаратуры, дороговизны и дефицитности самого реагента. В этих опытах также происходила сильная коррозия аппаратуры и возрастало содержание золы в коксе с 0,7—0,9 до 5—7,8%. Кокс при этом получался непрочный и легко истирался в порошок. Зола состояла в основном из окислов железа и алюминия. [c.160]

    Каталитическое действие хлористого алюминия при крекинге нефтяных продуктов является особым и несравнимо с действием какого-либо другого катализатора. Мак-Афи [30] описал этот процесс еще в 1915 г. Процесс с хлористым алюминием протекает при низких температурах, около 250—280° С, и при атмосферном давлении в присутствии 2—10% безводного хлористого алюминия. Так как хлористый алюминий не растворим в нефтепродуктах, то смесь нефтепродукта и катализатора перемешивается в перегонном кубе при температуре крекинга. Крекинг протекает постепенно, давая крекинг-бензин и другие более тяжелые продукты разложения. Продукты разложения направляются в холодильник, где высококипящие фракции отделяются и возвращаются обратно в перегонный аппарат для повторного крекинга. Продолжительность процесса от 24 до 48 час. Работа прекращается, когда в перегонном аппарате остаются только высококипящие фракции. Одновременно идут реакции конденсации, вызывающие образование кокса, как и при обычном крекинг-процессе. Выход [c.149]


    Действие хлористого алюминия, способствующее крекингу углеводо родов даже при низких температурах, является совершенно своеобразным й ему посвящена поэтому отдельная глава (глава 6). [c.122]

    Сильную коррозию некоторых металлов могут вызывать крекинг-бензины, которые при взаимодействии с металлами осмоля-ются, вследствие чего повышается их кислотность. Хорошо сопротивляются действию крекинг-бензинов алюминий, алюминиевые сплавы и нержавеющие стали. [c.78]

    Как явствует из табл. 132, смесь хлористого алюминия и хлористого водорода вызывает при повышенной температуре крекинг бутана, в результате которого появляются олефины, тотчас же возбуждающие изомеризацию. Приведенные в табл. 134 результаты опытов показывают, что заранее введенный олефин действует более благоприятно [20]. [c.518]

    Трехкомпонентные катализаторы состоят из трех окислов, из которых два являются окислами металлов (магний, алюминий) и один — окислом неметалла (кремний), В процессе каталитического крекинга катализатор подвергается действию сырья и присутствующих в нем ядов, продуктов реакции, водяного пара, воздуха и- [c.91]

    Бензин прямой гонки при отсутствии воды практически не действует на технически важные металлы. Крекинг-бензины и сырые фенолы при взаимодействии со многими металлами (Ре, Си, Mg, РЬ, 2п) осмоляются, их кислотность повышается, что вызывает коррозию этих металлов. Устойчивы в крекинг-бензинах алюминий и его сплавы, а также коррозионностойкие стали. [c.142]

    Возможность изменения скорости реакций крекинга п интенсификации процесса крекинга путем применения катализаторов отмечалась в литературе различными исследователями. Изучение влияния на процесс крекинга различных катализаторов (металлов, окислов металлов и хлоридов металлов) показало, что наибольшее действие по сравнению с другими катализаторами оказывает хлористый алюминий. [c.430]

    Каталитические явления при переработке нефти были известны уже в 70—80-х годах прошлого столетия. А. А. Летний в 1877—1878 гг., а позже Шмидт (сотрудник Д. И. Менделеева) наблюдали действие древесного угля и платинированного угля в процессе пиролиза нефти. В. В. Марковников и Ю. В. Лермонтова получали 40—50% ароматических углеводородов при пиролизе нефти в присутствии красной меди. Фридель и Крафте за границей (1877 г.), а Г. Г. Густавсон в России (1880 г.) исследовали крекинг нефти в присутствии хлористого и бромистого алюминия. [c.200]

    Так как полистирольные пластические массы оказались очень ценным материалом, то они готовятся в громадных количествах. Стирол получают из бензола и этилена (газы крекинга) при действии безводного хлористого алюминия. Образующийся при этом этилбензол подвергается дегидрированию над катализатором (СгаОз) при 400 °С  [c.486]

    По второму механизму железо, содержащееся в различных количествах в природных катализаторах, превращается из инертной или безвредной формы в активный каталитический яд. Считают, что железо присутствует в кристаллической решетке монтмориллонита не в виде свободной окиси железа,, а в форме, изоморфной с окисью алюминия. Образование сульфида железа создает движущую силу, необходимую для вытеснения железа из решетки. Этот взгляд подтверждается общеизвестным наблюдением, что природные катализаторы крекинга чернеют под действием сероводорода [50]. Присутствие водяного пара или предварительная гидратация предотвращает подобное образование сульфида железа правда, механизм этого защитного действия полностью не выяснен. Следует отметить, что в противоположность сравнительно серостойким свежим синтетическим катализаторам работавшие синтетические алюмосиликатные катализаторы, содержащие железо, подвержены отравлению серой. [c.174]

    Под действием твердого хлористого алюминия уже при нагревании смеси до невысокой температуры рвутся углеродные цепи, причем высшие парафины, так же как при высокой температуре, превращаются в смесь низших парафинов и олефинов. Высокотемпературный крекинг включает кроме того, процессы циклизации парафинов в более прочные циклоал-каны и в особенно прочные ароматические углеводороды. [c.71]

    При применении катализаторов типа Фридель—Крафтса изомеризация парафинов, за исключением бутана, обычно сопровождается побочными реакциями, включающими и разрыв связи С—С. В процессе реакции синтезируются соединения, кипящие либо выше, либо ниже первоначального углеводорода. Реакции перераспределения, проходящие особенно с пентанами или более высокими парафинами, вызываются, очевидно, крекингом изо-парафиновых молекул, которые галоидом алюминия пе активируются [409]. По аналогии с реакциями, происходящими в авто-деструктивном алкилировапии, описываемый процесс является все-таки соединением деалкилирования (крекинг) и алкилирования [410], которые дают изопарафины более высокого либо более низкого молекулярного веса, чем первоначальный алкан. Возможно, проведением изомеризации под давлением водорода [411 — 413], в присутствии изобутана [412, 414], ароматики [412], нафтеновых углеводородов [412, 415—418] или гетероциклических углеводородов, таких как тиофен [419], можно свести к минимуму боковые реакции для нентанов и гексанов, но не для гептанов и более высоких парафинов. Устранение побочных реакций обычно сопровождается замедлением изомеризации, однако, прибавление олефинов уменьшает предохраняющее действие вышеприведенных агентов. Реакции изомеризации проходят через индукционный период в течение этого времени проходят незначительные реакции перераспределения [420, 421]. [c.117]


    Процесс каталитической депарафинизации предназначен для переработки парафинистых дистиллятов и деасфалыизатов взамен низкотемпературной депарафинизации. В основе процесса селективные превращения нормальных алканов под действием весьма специфических катализаторов, содержащих 0,5 - 2,0% платины или палладия на носителе. (Оксид алюминия или кристаллические алюмосиликаты с размером пор 4 10" °м.) Благодаря тому, что реакции крекинга и изомеризации протекают параллельно, выход депарафинированного продукта выше, чем при депарафинизации растворителем. При необходимости каталитическая депарафинизация обеспечивает получение продуктов с / заст - 50 "С и ниже [45]. [c.157]

    Модифицированный оксид алюминия по характеру действия аналогичен алю-мосиликатному катализатору каталитического крекинга, хотя и обнаруживает меньшую активность. [c.222]

    Природные активированные алюмосиликатные катализаторы крекинга представляют собой главным образом монтмориллонито-вые глины, обработанные серной кислотой, сформованные и прокаленные. Применялись и другие природные алюмосиликаты — каолин, галлуазит. В процессе кислотной обработки из природного алюмосиликата удаляются кальций, натрий и калий, часть содержащихся в его структуре железа и алюминия. В катализаторах, полученных на основе различных глин, содержание алюминия (считая на АЬОз) составляет от 17,5 до 45%. Катализаторы этого типа обладают относительно низкой устойчивостью к действию высоких температур. Высокое содержание железа отрицательно влияет на их свойства, так как железо катализирует паразитную реакцию распада на углерод и водород. Антидетонационные свойства бензинов, получаемых при крекинге с катализаторами из природных алюмосиликатов, существенно ниже, чем при применении синтетических катализаторов. В настоящее время катализаторы на основе природных алюмосиликатов практически не применяют. [c.209]

    В этом параграфе описываются только катализаторы 2, 4 и 5 типов. Нужно иметь в виду, что за исключением хлористого алюминия активность катализаторов, разрывающих С —Си С — Н связи, не особенно велика. Эти катализаторы могут применяться только при сравнительно высоких температурах, приближающихся к температурам некаталитического крекинга. Этим объясняется, что каталитическое действие таких веществ было изучено только в последние годы. [c.24]

    Создание процесса каталитического крекинга было обусловлс-П-О необходимостью смягчить условия крекинга нефтяных продуктов (понизить температуру и давление), повысить выход бензина п улучшить качество. Наиболее активным катализатором крекинга углеводородов является хлористый алюминий. Впервые крекинг в присутствии А1С1з был проведен Густавсоном. Под действием хлористого алюминия крекинг, например, парафинл начинается ирн 100° при 200° крекинг протекает с высокой скоростью. Недостаток процесса крекинга в присутствии этого катализатора состоит в повышенном расходе хлористого алюминия и невозможности его регенерации, а также в то.м, что при его разложении под действием влаги воздуха выделяется хлористый водород, сильно корродирующий аппаратуру. [c.128]

    Крекинг-олефины или чистые олефины с двойной связью, расположенной у конца молекулы, как они могут быть получены полимерйзацией этилена способом Циглера, совместным действием металлического алюминия и водорода при температуре около 120° и давлении превращаются в триал-жилалюминий [56]  [c.221]

    Дегидрирование изобутана в изобутилен. Эффективные катализаторы для превращения низших алканов в алкены — это окислы металлов VI группы, способные к активированной адсорбции водорода при повышенных температурах. На практике наибольшее распространение получили катализаторы на основе окиси хрома, нанесенной на окись алюминия. Наиболее активна аморфная форма окиси трехвалентного хромаСгаОз, содержащая некоторое количество соединений шестивалентного хрома. Роль окиси алюминия помимо основной функции носителя заключается в тормозящем действии на процесс кристаллизации окислов хрома, приводящий к потере активности катализатора. Кислотная функция окиси алюминия, наличие которой ускоряет реакции изомеризации и крекинга, подавляется добавлением небольших количеств щелочных металлов, в частности окиси калия. В некоторых случаях катализаторы дегидрирования алканов Q—Се промотируются редкоземельными элементами, например NdjOa, уменьшающих период разработки . Катализаторы на основе окиси алюминия неустойчивы к действию влаги, поэтому распространенный прием повышения степени превращения (и селективности) за счет снижения парциального давления углеводо- зодов при разбавлении сырья водяным паром в данном случае неприменим. [c.351]

    Способность угля экстрагироваться пиридином после такой обработки приведена на диаграмме рис. 2 для сравнения приведено и действие. хлористого алюминия. 1Чожно видеть, что раство-ри.мость высоколетучего угля в пиридине после их обработки снижается (возможно, из-за конденсации молекул угля под действием катализаторов), а свойства среднелетучего угля, ио-видимому, остаются примерно такими же (вероятно, процессы конденсации и крекинга в данном случае уравновешивают друг друга). Растворимость низколетучего угля заметно возрастает, особенно после его обработки фтористым водородом ири 80 "С. Свойства полу-антрацита суш,ественно не изменяются, что объясняется высокой степенью ароматизации его структуры. Хлористый алюминий и фтористый водород действуют на уголь примерно одинаково. Добавление трифторида бора к фтористому водороду существенно не влияет на способность углей растворяться. [c.304]

    В качество хсатализаторов для крекинга применяют естественные или синтетические алюмосиликаты. Чрезвычайно большая поверхность этих алюмосиликатов является иредносылкой, но не причиной их активности. Из различных веществ, пригодных в качестве катализаторов крекинга, наилучшие те, которые обладают большой поверхностью. Однако существуют вещества с еще более развитой поверхностью, но но проявляющие каталитического действия. Так, например, силикагель с удельной поверхностью 300 м г совершенно каталитически неактивен, тогда как технический катализатор, применяемый в нефтяной промышленности и имеющий меньшую удельную поверхность (око го 200 м г), обладает высокой активностью. Если к силикагелю добавить около 1% окиси алюминия (практически добавляют около 10%), то нелгедлснно образуется высокоактивный катализатор. [c.260]

    Наконец диены, содержащиеся в крекинг-бензине, являются одними из компонентов, образующих нефтяные смолы, которые используются в лакокрасочной промышленности (в виде искусственной олифы) и в промышленности пластмасс. Такие смолы получают полимеризацией диепа с олефинами, содержащимися в той же фракции, под действием ионных катализаторов, например хлористого алюминия (гл. 21, стр. 400), [c.228]

    Действие этого катализатора чрезвычайно многообразно и порой неожиданно. Он вызывает разложение, полимеризацию, изомеризацию, перераспределение водорода, миграцию радикалов и другие реакции. Крекинг углеводородов с хлористым алюминием при небольшом нагревании приводит обычно к образованию двух слоев верхнего, состоящего из углеводородов, и нижнего, Al Ig-yr-леводородного комплекса, который после разложения водой образует сильно ненасыщенные углеводороды, тогда как в верхнем слое последние отсутствуют. [c.330]

    Для синтеза хлорпроизводных метана исходят из метана 99%-ной чп-стоты. Метанол получается непосредственно из природного газа, но тщательно очищенного от сероводорода и органической серы [24]. Сероуглерод производится также из природного газа, содержащего преимущественно метан с минимальным количеством углеводородов Сз [24]. Для производства ацетилена окислительным крекингом метана необходимо отделение этого носледиего от и СО. В электрической дуге ацетилен успешно получается из 90—92%-ного метана, а в циклично действующих регенеративных печах Вульфа пиролизу подвергается природный газ без разделения его на фракции [24]. Для получения альдегидов окислением углеводородов также нет необходимости выделять метан из природного газа. Промышленный способ окисления СН4 па фосфатах алюминия и меди проводится на сырье, содержащем 60% СЫ4 [27]. [c.159]

    Модифицированный оксид алюминия по характеру действия аналогичен алюмосиликатному катализатору каталитического крекинга, хотя и обнаруживает меньшую, активность. Коксообразование на кислотных центрах катализатора риформинга, как и при крекинге, протекает за счет полимеризации, перераспределения водорода, циклизации, конденсации и других реакций непредельных и ароматических соединений. Образовавшийся кокс состоит из полициклических ароматических колец, связанных с алкеновыми и циклоалкановыми фрагментами. [c.352]

    Такого типа реакции распада органической молекулы под влиянием высокой температуры называют пиролизом. Разрыхлению углеродо-водородных связей прежде всего содействует повышение температуры до достаточно высокого предела, — этим например пользуются при крекинге нефтяных углеводородов. С другой стороны, действие такого катализатора, как хлористый алюминий, особенно активного по отношению к углеродо-водородной связи, может дать тот же результат и при более низкой температуре. Не исключается возможность участия и других катализаторов. [c.499]

    Отин и Савенку [36] исследовали действие различных катализаторов при крекинге керосина уд. веса 0,801 при 20° С и вьщипающего от 139 до 295° С при перегонке по Энглеру. Температура опытов изменялась от 100 до 254° С, давление — от 1 до 20 ат, продолжительность реакции во всех опытах была 2 часа. После каждого опыта производили разгонку по Энглеру и определяли химический состав керосина. Различные металлы (калий, натрий, магний, цинк, никель, олово, железо и алюминий), окислы (кальция, магния, цинка, железа и алюминия), хлориды (калия, натрия, кальция, магния, цинка, железа, хрома и алюминия) и сульфаты применялись как катализаторы в количестве 5% вес. на керосин. Со всеми этими катализаторами, за исключением хлористого алюминия, выход продуктов разложения был очень небольшой. При самых жестких условиях (200—230° С) и продолжительности, равной двум часам, выход фракции до 150° С, которой в исходном продукте содержалось 3%, или оставался неизменным (3%) или же увеличивался до 4—6% и до 8% при применении хлорного железа. Только в присутствии хлористого алюминия количество этой фракции возрастало до 34%. [c.149]

    Следует подчеркнуть, что крекинг с хлористым алюминием был развит в первые годы применения промышленного крекинга, когда считали, что применение высоких температур и давлений опасно. В дальнейшем трудности, встречаемые при работе с высокими температурами и давлениями, при термическом крекинге были преодолены. В настоярдее время преимуществ применения низких температур и низких давлений в процессе с хлористым алюминием значительно меньше, чем недостатков, связанных с применением катализатора, корродирующим действием хлористого водорода, образованием кокса и других. [c.150]

    Очистка крекинг-бензинов хлористым алюминием дает вполне удовлетворительные результаты в отношении стабильности. Кроме того, обессеривающее действие хлористого алюминия гораздо выше, чем у хлористого цинка. ОчиЛка хлористым алюминием производится при низких температурах, около 20° С или несколько выше. Количество хлористого алюминия может быть ограничено 0,5% вес. но отработанный рзактив не может быть регенерирован. [c.369]

    Первые процессы крекинга, осуществленные в 1920—1930 гг., представляли некаталитические термические реакции. В этих реакциях большие молекулы парафинов или боковые цепи замещенных ароматических молекул расщепляются на меньшие молекулы насыщенных углеводородов и олефинов считается, что в качестве промежуточных соединений при этом образуются незаряженные свободные радикалы. Главными конечными продуктами, полученными из парафинов и олефинов и боковых цепей ароматики, были углеводороды от С1 до С3. Однако очень скоро было установлено, что лучшие топлива можно получать каталитическим разложением, и некаталитический термический крекинг был в основном вытеснен каталитическим крекингом на древесном угле или платине, на различных кислотных катализаторах, как, например, на обработанных кислотой глинах или смесях силикагеля с окисью алюминия или на катализаторах двойного действия , состоящих из платины, никеля или молибдена на окиси алюминия. Считается, что кислотные катализаторы действуют подобно катализаторам Фриделя — Крафтса, превращая олефины в карбониевые ноны, которые участвуют в различных превращениях, давая ряд продуктов, совершенно отличных от получаемых при термическом крекинге, с большими выходами углеводородов Сз и С4, разветвленных олефинов, изопарафинов и ароматических углеводородов, которые, в частности, используются в составе моторных топлив или как исходные вещества для синтеза других химических продуктов. По-видимому, эти реакции на металлических катализаторах по своему характеру относятся к свободнорадикальным, но тем не менее получаемые в них продукты более полезны, чем продукты термического крекинга, так как здесь в большей степени идут изомеризация в разветвленные цепи, дегидрирование С - [c.336]

    При действии таких химических реагентов, как серная кислота, хлористый алюминий или хлористый цинк, на насыщенные или ненасыщенные алифатические или ароматические углеводороды (например, нефть, крекинг-бензин, каменноугольную смолу) может происходить одновременно несколько реакций. Часто соответствующие соединения подвергаются вначале дегидрогенизации, затем полимеризации и, наконец, гидрогенизации. Эти процессы могут вести к образованию смолы или асфальтообразных веществ и часто происходят при перегонке даже в отсутствии кислорода. Смолообразные вещества, получающиеся при дегидро- и гидро полимеризационных процессах, не являются истинными полимерами олефинов, первоначально присутствовавших в продукте, а представляют собой продукты процессов крекинга и дегидрогенизации, сопровождающих полимеризацию. [c.641]


Смотреть страницы где упоминается термин Алюминий действие его при крекинге: [c.391]    [c.391]    [c.514]    [c.520]    [c.122]    [c.122]    [c.405]    [c.55]    [c.59]    [c.332]    [c.103]    [c.78]    [c.725]    [c.845]    [c.25]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.129 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминий окись, действие ее при крекинге посредством хлористого алюминия

Алюминий, действие его на каталитическую активность хлористого алюминия ПрН крекинге

Кислородсодержащие соединения действие их на крекинг с хлористым алюминием

дифторид, обработка нефтяных соли его, действие их на крекинг посредством хлористого алюминия



© 2025 chem21.info Реклама на сайте