Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эфир сгорание

    Эта сумма одинакова для изомерных соединений, в том числе и соединений, содержащих разные функциональные группы, например этилового спирта и диметилового эфира. Она не зависит и от агрегатного состояния, и кристаллической модификации ве-1 щества. Но в отдельности теплота образования и теплота сгорания в общем случае различны для изомеров и зависят от агрегатного состояния и кристаллической модификации. [c.209]


    Для уменьшения образования вязких отложений на металлических поверхностях в двигателе внутреннего сгорания запатентован состав на основе монометиловых эфиров этиленгликоля, а также эфиров рицинолевой кислоты и низших спиртов [пат. ФРГ 8855500]. Описано применение в качестве противонагарных при- [c.270]

    В связи с удорожанием нефти и ограничением применения ТЭС в последние годы во многих странах мира наметилась тенденция к возрастающему использованию кислородсодержащих соединений в товарных высокооктановых автобензинах. Среди кислородных соединений достаточно широкое применение находят метиловый (МС), этиловый (ЭС) и грег-бутиловый спирты (ТБС), метил-грет бутиловый эфир (МТБЭ), обладающие (табл. 8.3) высокими октановыми числами, низкими температурами кипения, что позволяет повысить 04 головных фракций и тем самым улучшить коэффициент распределения ДС, а также достаточно высокой теплотой сгорания. Особенно быстрыми [c.209]

    Среди альтернативных моторных топлив значимое место занимают такие кислородсодержащие продукты, как спирты и эфиры. Особенно перспективно применение метил-грег-бутилового эфира (МТБЭ) -эффективного высокооктанового компонента автобензинов (04 (И.М.) = 115-135]. Этот эфир прошел все испытания с положительными результатами, и во многих странах строятся, промышленные установки по его каталитическому синтезу из метанола и изобутилена. Из спиртов как самостоятельный вид топлива и как компонент моторных топлив наиболее перспективны метанол и этанол. Метанол привлекает прежде всего широкими сырьевыми возможностями. Его можно производить из газа, угля, древесины, биомассы и различного рода отходов. Безводный метанол хорошо смешивается с бензином в любых соотношениях, однако малейшее попадание воды вызывает расслаивание смеси. У метанола ниже теплота сгорания, чем у бензина, он более токсичен. Тем не менее метанол рассматривают как топливо будущего. Ведутся также исследования по непрямому использованию метанола в качестве моторных топлив. Так, разработаны процессы получения бензина из метанола на цеолитах типа ZSM. [c.215]

    Этиленгликоль применяют в основном в качестве антифриза для двигателей внутреннего сгорания, например в автомобилях или самолетах. Он гораздо менее летуч, чем метиловый спирт, и имеет меньший молекулярный вес, чем глицерин. Этиленгликоль используют также для производства различных сложных эфиров как органических, так и неорганических кислот. Динитрат этиленгликоля — взрывчатое вещество, входящее в состав динамитов, замерзающих при низкой температуре. Ацетаты и фталаты этиленгликоля служат пластификаторами. Их можно также получить непосредственно из окиси этилена и соответствующей кислоты или ее ангидрида (стр. 363). [c.355]


    В состав бензинов входят углеводороды, в которых соотношение углерода к водороду может значительно изменяться. Так, в 1 К1- бутана (С.Н ,,) содержится 0,827 кг углерода и 0,173 кг водорода, тогда как в 1 кг бензола (С Н ) содержится 0,923 кг углерода и только 0,077 кг водорода. Теоретически необходимое количество воздуха для сгорания бутана составляет 15,5 кг/кг, а для сгорания бензола — всего лишь 13,3 кг/кг. Преобладание в бензине углеводородов того или иного строения, естественно, сказывается на теоретически необходимом количестве воздуха для сгорания бензина в целом (см. 1л. 5, табл. 5.1). Это обстоятельство следует учитывать при проведении различных расчетов и результатов испытаний на двигателях, так как в последние годы содержание ароматических углеводородов в товарных бен зинах может изменяться от 20 до 55%. Кроме того, в новые товарные бензины, вырабатываемые в нашей стране и за рубежом, добавляют кислородсодержащие соединения различного состава с целью снижения токсичности отработавших газов (так называемые реформулированные бензины). Разрешено добавлять в бензины до 2,7% кислорода в составе любых кислородсодержащих соединений (спирты, эфиры и т.д.). При добавлении в бензин 2,7% кислорода количество теоретически необходимого воздуха уменьшится еще примерно на 0,4—0,5 кг/кг бензина. [c.83]

    Наиболее перспективными среди оксигенатов являются эфиры. Обладая высокими октановыми характеристиками, не уступающими спиртам, они хорошо смешиваются с бензином, значительно хуже растворяют воду и практически не вызывают коррозии. Кроме того, эфиры имеют меньшую плотность, более высокую теплоту сгорания и соизмеримую с углеводородами скрытую теплоту испарения. [c.227]

    Оценку эффективности горючих АДД, принимающих непосредственное участие в процессе сгорания (спиртов, эфиров, кетонов и др.), производят при подаче их во впускной патрубок двигателя до электронагревателя ТВС, как и основного бензина, но по раздельным системам питания. [c.423]

    Для органических соединений имеется возможность непосредственного определения теплоты сгорания. Любой углеводород, спирт, эфир и другие индивидуальные вещества легко сжечь до СО2 и жидкой Н2О. Получить же заданное индивидуальное соединение из простых веществ при прямом их взаимодействии в большинстве случаев нельзя, не говоря уже о трудностях измерения теплоты такого процесса. В связи с этим для органических реакций расчет теплот реакций по теплотам сгорания участвующих в реакции веществ получил широкое распространение. [c.15]

    МТБЭ (метил-трет-бутиловый эфир) - малотоксичное вещество, наиболее широко применяемое для повышения детонационной стойкости бензинов температура кипения 55 С, 04 смешения 115-135 по исследовательскому, 98- 110 по моторному методу. Добавка в бензин до 15% об. МТБЭ снижает содержание СО и углеводородов в отработавших газах. Недостатками МТБЭ являются относительно низкая теплота сгорания (35,2 против 43 МДж/кг у бензина), растворимость в воде (5% мае.) и повышенная эмульгирующая способность. [c.127]

    Одним из современных антидетонаторов бензинов в двигателях внутреннего сгорания является метил-трет-бутиловый эфир  [c.573]

    Борат-ионы — по образованию окрашенного пламени при сгорании борнометилового или борноэтилового эфиров. [c.221]

    При сгорании эфира образуется вода с Ю, т о. гидроксил отщепляется от сложного эфира. [c.30]

    Найти теплоту сгорания этилацетата, если тепловая поправка на связь в сложных алифатических эфирах составляет [c.28]

    Задача 5. При сгорании 260 г смеси диэтилового эфира и этанола выделилось 8200,28 кДж энергии. Вычислите массу диэтилового эфира в смеси. [c.49]

    Решение. Искомая величина X — масса диэтилового эфира в смеси. При сгорании смеси протекают реакции  [c.49]

    X. А При сгорании — молей эфира выделилось 2720,04, а при сгорании молей этанола 1366,91 кДж энергии. Сумма выделившейся энергии равна  [c.50]

    Большую группу защитных материалов представляют покрытия, наносимые из легколетучего растворителя. Так, для консервации цилиндров, клапанов и пружин поршневых авиационных двигателей в Англии и в некоторых других европейских странах используют композиции типа РХ-13 по спецификации DTD. 791 . Они представляют собой смесь масла с ингибитором коррозии, микрокристаллическим парафином, моющей присадкой и небольшим количеством загустителя, усиливающего липкость пленки. Смесь разбавлена примерно трехкратным количеством петролейиого эфира [11 ]. После испарения растворителя на деталях образуется невысыхающая парафинисто-масляная пленка, не стекающая с наклонных плоскостей. Состав пленки одновременно нейтрализует коррозионное действие продуктов сгорания авиационных бензинов. Аналогичным образом защищают детали композициями типа РХ-9 по спецификации DTD. 663А, типа РХ-11 по спецификации DEF-2334 и др. [c.108]

    Среди кислородных сое)щнений широко исследуются спирты, эфиры и их смеси. Примененив. спиртов в качестве самостоятельных топлив или компонентов бензинов известно давно. Они имеют высокую детонационную стойкость, удовлетворительную испаряемость, образуют минимальный нагар, а продукты их сгорания менее токсичны, чем продукты сгорания бензинов. Высокая теплота пспарения позволяет снизить температуру горючей смеси в такте впуска, повысить коэффициент наполнения и при малой склонности к нагарообразованию снизить требования двигателя к детонационной стойкости применяемых топлив. Основным недостатком спиртов как топлив является их низкая теплота сгорания. Кроме того, многие из них ограниченно растворимы в бензине особенно в присутствии воды. Среди спиртов с учетом сырьевых ресурсов, технологии получения и ряда технико-экономических факторов наиболее перспективен в качестве топлива для двигателей с принудительным зажиганием — метанол. Безводный метанол при обычных температурах хорошо смешивается с бензином в любых соотношениях. Но даже малейшее попадание воды вызывает расслаивание смеси. Так, смесь метанола (15%) с бензином расслаивается при О °С при содержании воды более 0,06%, а при 20 °С — более 0,18%. Введение в смесь метанола с бензином небольшого количества бензилового или изобутилового спиртов несколько увеличивает стабильность смеси, но не решает вопроса полностью. [c.170]


    Теплота сгорания газообразного диметилового эфира, СН —О—СН3, с образованием диоксида углерода и жидкой воды равна -1461 кДж на 1 моль эфира, а) Вычислите стандартную теплоту образования диметилового эфира и сравните полученный результат со значением, приведенным в приложении 3. б) При помощи таблицы энергий связей вьиислите стандартную теплоту образовании диметилового эфира. Проиллюстрируйте ващи вычисления при помощи энергетической диаграммы типа изображенной на рис. 15-7 укажите на ней все энергетические уровни и энергетические переходы. Согласуется ли ваш ответ с ответом на вопрос (а)  [c.42]

    Одной из распространенных противонагарных присадок для этилированных бензинов является трикрезилфосфат. Его добавка предотвращает нагарообразование на свечах зажигания и увеличивает почти вдвое срок работы свечей без замыкания электродов. Эффективность трикрезилфосфата объясняется тем, что в его присутствии при сгорании этилированного бензина образуется соединение ЗРЬз(Р04)2-РЬВг2 (т. пл. 955 °С), частично уносимое с отработанными газами. Действие трикрезилфосфата усиливается в присутствии аминов или Ы-метилпирролидона. Для двигателей с высокой степенью сжатия топлив и при использовании топлив с большим содержанием ТЭС весьма эффективны смеси трикре-аилфосфата с полярными органическими соединениями (эфирами, кетонами, эфирами оксикислот и лактонами). Для сернистого топлива предложена присадка на основе трикрезилфосфата и нитробензола с добавками изопропилового спирта и нитрата хрома. [c.265]

    В качестве противонагарных присадок предлагаются также эфиры алкенилянтарной, угольной, фталевой и жирных кислот, мо-нометиловые эфиры этиленгликоля и эфиры нафтеновых кислот. Так, уменьшение отложений в камере сгорания двигателя достигается путем добавления в топливо 0,001—2 % (масс.) моно- или диэфира алкенилянтарной кислоты или ее ангидрида (алкенил Са—С[8) [пат. США 2993771, 2993772]. Присадка применима как для этилированных топлив, так и для топлив, не содержащих ТЭС и выкипающих до 260 °С. [c.270]

    Д етил-т 5бт-бутнловый эфир (МТБЭ). является высокооктановым кислородсодержащим компонентом автомобильного бензина. По сравнению с другими компонентами он имеет ряд преи-мущес гв телшература кипения, которая находится в пределах, соответствующих интервалу минимальной детонационной стойкости бензина, плохая растворимость в воде, полное смешение с любыми углеводородами, низкая плотность. Добавка МТБЭ в бензин обеспечивает большую полноту сгорания и не требует изменений в конструкции двигателя. Однако основное преимущество МТБЭ — обеспечение резкого повышения октанового числа бензина как по исследовательскому, так и моторному методам (рнс. 2.45), особенно головной фракции до 100 °С, имеющей большое значение при разгоне автомобиля. Октановое число смешения по исследовательскому методу составляет 117 пунктов, по моторному — 101. [c.190]

    Для повышения детонационной стойкости вводят этиловую жидкость. Помимо этиловой жидкости, где компонентом, повы-шаюш,им октановое число, является тетраэтилсвинец (ТЭС), для повышения детонационной стойкости применяют также тетра-метилсвинец (ТМС) и метил-трет-бутиловый эфир (МТБЭ). Последний использовать наиболее целесообразно, так как в процессе сгорания бензина не образуются токсичные газы, содержащие свинец. В качестве высокооктанового компонента автомобильных бензинов возможно использование метилового спирта. [c.432]

    В свое время органический синтез решил проблему получения углеводородов из СО и Нг, что позволило производить жидкое топливо из угля. Затем для двигателей внутреннего сгорания по-требозалось высокооктановое топливо, и был осуществлен синтез изопарафинов, особенно изооктана (СНз)2СН—СНг—С (СНз) а, являющегося эталоном 100-октанового топлива, В качестве высокооктановых компонентов моторных топлив применяют изопропилбензол СбНз—СН(СНз)2, а в последнее время становятся перспективными метиловый спирт, трет-бутилметиловый эфир (СНз)зС-О-СНз и др. [c.13]

    Присадкп типа алкилнитратов и перекисей улучшают и сгорание реактивных топлив. Для этих же целей успешно исследован и ряд других веществ из числа эфиров, сернистых соединении и др. [И]. [c.313]

    Метиловый спирт (метанол)—важное соединение для получения главным образом формальдегида, а также диметилсульфата, диметилтерефталата, метилацетата, диметилформамида, антидето-пационных смесей (тетраметилсвинец), ингибиторов, антифризов, метиламина, метилового эфира акриловой кислоты, лаков, красителей и других продуктов. В чистом виде применяется в качестве растворителя и может быть использован как моторное топливо или как высокооктановая добавка к нему. Применение метанола в двигателях внутреннего сгорания решает как энергетическую, так и экологическую проблемы, так как при сгорании метанола образуются только водяной пар и СОг, тогда как при сгорании бензина— оксиды азота, СО и другие токсические соединения. [c.164]

    Чолимерные материалы отличаются высоким содержанием углерода большинство из них не содержит кислорода или содержит его в небольшом количестве. Поэтому для их горения необходим значительный объем воздуха (10—12 м кг) горение их происходит с образованием продукта неполного сгорания — технического углерода. При нагревании большинство полимерных материалов плавится с образованием на поверхности горения жидкого слоя. При дальнейшем нагревании расплавленной массы на воздухе происходит термоокислительная деструкция с образованием горючих и часто ядовитых паров и газов (диоксида и оксида углерода, непредельных углеводородов, органических кислот, эфиров, альдегидов и др.). За исключением диоксида углерода, все продукты деструкции горючие, поэтому, когда концентрация их в воздухе достигает предельного значения, полимерные материалы воспламеняются от источника воспламенения. [c.187]

    Пусковые жидкости (табл. 31). Основной составляющей этих жидкостей является легко испаряющийся этиловый эфир (45...60%), который обладает хорошей воспламеняемостью. Для поддержания процесса горения к эфиру добавляют петролейный эфир, газовый бензин и другие низкокипящие углеводороды. Кроме того, для первоначальной смазки поверхновтей трения цилиндро-поршневой группы в жидкость вводят 2...12% маловязкого смазочного масла. С помощью специального пускового приспособления (ПП-40 или 6-ПП-40) эту жидкость подают во впускной трубопровод холодного двигателя при одновременном прокручивании коленчатого вала. Для воспламенения эфира нужна сравнительно невысокая температура в, камере сгорания (180...200° С). Воспламенившись, эфир поджигает пары бензина, в результате сгорания которого в цилиндрах создается давление, достаточное для пуска двигателя. Например, с помощью пусковой жидкости Холод Д-40 можно пускать холодный дизельный дви-гатель при температуре воздуха до —40 С при условии провертывания вручную коленчатого вала с частотой вращения 100 об/мин. [c.61]

    При создании условий для формирования крупных ССЕ с малодоступной для кислорода воздуха поверхностью достигается обычное нормальное сгорание. В качестве модификаторов размеров ССЕ используют алкилсвинцовые соединения, спирты, эфиры и другие антидетонаторы. Па рис. 87 показано экстремальное изменение октанового числа (О.Ч.) от концентрации тетраэтилсвинца. [c.217]

    Рост потребности в бензинах с повышенным октановым числом сопровождается в настоящее время ужесточением требований к охране окружающей среды. Применение в качестве анти-детонационной добавки тетраэтилсвинца, получившего широкое распространение, приводит к выбросу в атмосферу токсичных веществ и отравлению катализаторов дожига выхлопных газов автомобилей. В таких условиях растет потребность в высокооктановых, особенно низкокипящих компонентах бензина. Перспективным из них следует считать трег-бутилметиловый эфир (ТБМЭ) это соединение имеет октановые числа 102 по моторному и 117 по исследовательскому методам. Характеристика ТБМЭ температура кипения 55,3 °С и застывания —108,6 °С плотность 740,4 кг/м и теплота сгорания 38,22 МДж/кг полностью смешивается со всеми углеводородами и стабилен при хранении. Получают его из метанола и изобутена по реакции  [c.118]

    Высокие антидетонационные качества определяют преимущественное использование спиртов в двигателях внутреннего сгорания с принудительным (искровым) зажиганием. При этом основные мероприятия по переводу автомобилей на работу на чистых спиртах сводятся к увеличению вместимости топливного бака (в случае необходимости сохранения беззаправочного пробега), увеличению степени сжатия двигателя до е = 12—14 с целью полного использования детонационной стойкости топлива и перерегулировки карбюратора на более высокие его расходы (в соответствии со стехиометрическим коэффициентом) и большую степень обеднения смеси. Низкое давление насыщенных паров и высокая теплота испарения спиртов делают практически невозможным запуск карбюраторных двигателей уже при температурах ниже +10 С. Для улучшени Д пусковых качеств в спирты добавляют 4—6% изопентана или 6—8% диметилового эфира, что обеспечивает нормальный пуск двигателя ири температуре окружающего воздуха от —20 до —25 °С. Для этой же цели спиртовые двигатели оборудуются специальными пусковыми подогревателями. При неустойчивой работе двигателя на повышенных нагрузках из-за плохого испарения спиртов требуется дополнительный подогрев топливной смеси с помощью, например, отработавших газов. [c.150]

    В ряде стран в качестве добавки, расширяющей ресурсы высокооктановых бензинов, используют трет-бутилметиловый эфир. Аптидетонационная эффективность его по сравнению с алкилбензином в 3—4 раза выше, благодаря чему с помощью эфира можно получить широкий ассортимент неэтилированных высокооктановых бензинов. грег-Бутилметиловый эфир характеризуется следующими показателями плотность 740— 750 кг/м , температура кипения 48—55 °С, давление насыщенных паров (25 °С) 32,2 кПа, теплота сгорания 35,2 МДж/кг, октановое число 95—ПО (моторный метод) и 115—135 (исследовательский метод). Наибольшую антидетонационную эффек- [c.161]

    Реакции, протекающие при взаимодействии углеводородов, содержащихся в нефтяных фракциях, с молекулярным кислородом, имеют огромное практическое значение в процессах хранения и сгорания моторных топлив, при использовании смазочных масел, а также в технологии основного органического синтеза при производстве ряда кислородных соединений углеводо-оодов (альдегиды, кетоны, спирты, эфиры, кислоты и т. п.). [c.163]

    В связи с отказом от применения свинцовых антидетонаторов стали исследовать и испытывать различные нетоксичные соединения для улучшения детонационной стойкости бензинов. В качестве высокооктановых компонентов предложено использовать некоторые кислородсодержащие соединения (спирты, эфиры и т. д.). В качестве ант1идето1национных присадок продолжают исследовать соединения марганца. Такое соединение, как циклопентадиеннл-трикарбонил марганца (ЦТМ) по эффективности не уступает ТЭС, но в 300 раз менее токсично. Однако после сгорания ЦТМ образуются отложения, препятствующие (нормальной работе свечей зажигания. Пока данный недостаток устранить не удалось, но исследования в этой области нродолл<аются во многих странах. [c.289]

    При производстве высокооктановых бензинов используются алкилбензин, изооктан, изопентан и толуол. Бензины АИ-95 и АИ-98 обычно получают с добавлением кислородсодержащих компонентов метил-трет-бутилового эфира (МТБЭ) или его смеси с трет-бутанолом, получившей название фэтерол. Введение МТБЭ в бензин позволяет повысить полноту его сгорания и равномерность распределения детонационной стойкости по фракциям. Максимально допустимая концентрация МТБЭ в бензинах составляет 15 % из-за его относительно низкой теплоты сгорания и высокой агрессивности по отношению к резинам. [c.39]

    Масла, применяемые для смазывания поршневых двигателей внутреннего сгорания, называют моторными. В зависимости от назначения их подразделяют на масла для дизелей, масла для бензиновых двигателей и универсальные моторные масла, которые предназначены для смазывания двигателей обоих типов. Все современные моторные масла состоят из базовых масел и улучшающих их свойства присадок. По температурным пределам работоспособности моторные масла подразделяют на летние, зимние и всесезонные. В качестве базовых масел используют дистил-лятные компоненты различной вязкости, остаточные компоненты, смеси остаточного и дистиллятных компонентов, а также синтетические продукты (поли-альфа-олефины, алкил-бензолы, эфиры). Большинство всесезонных масел получают путем загущения маловязкой основы макрополимерными присадками. По составу базового масла моторные масла подразделяют на синтетические, минеральные и частично синтетические (смеси минерального и синтетических компонентов). [c.124]

    Метилтретбутиловый эфир — бесцветная жидкость с резким запахом, температура кипения 55°С. Введение МТБЭ снижает неравномерность распределения детонационной стойкости бензина по фракциям. МТБЭ обладает высокой детонационной стойкостью, октановые числа смешения его изменяются от 115 до 135 по исследовательскому методу или от 98 до ПО — по моторному (табл. 6.14). Токсикологические испытания показали, что МТБЭ не оказывает отрицательного действия на организм человека. Добавление МТБЭ в бензины снижает содержание оксида углерода, углеводородов и полициклических ароматических соединений в отработавших газах (см. ниже). Некоторым недостатком МТБЭ является более низкая, чем у углеводородов, теплота сгорания (35 200 кДж/кг) и способность растворяться в воде, хотя и в небольшой концентрации (до 4,8 г в 100 г воды при 20°С). При испытаниях отмечено, что применение МТБЭ ведет лишь к незначительному увеличению расхода бензина. [c.228]

    Одна из интересных смесей, состоящая из 48% метанола и 52% третбутилового спирта, испытана в качестве кислородсодержащего компонента под названием оксинол . Исследована побочная фракция при производстве изопропилового спирта — диизопропиловый эфир (ДИПЭ). Испытания показали, что наличие в бензине 2% кислорода в виде оксинола или МТБЭ практически не изменяло мощности и экономичности двигателя. При содержании 2,7% кислорода в виде технического ДИПЭ увеличение массового расхода топлива из-за снижения теплоты сгорания уже не компенсировалось улучшением экономичности из-за обеднения смеси и отмечалось некоторое увеличение удельного расхода топлива. Во всех случаях при переходе с товарного бензина на опытный снижалось содержание СО в отработавших газах (ОГ) от 30 до более 50%. В значительно меньшей степени введение в бензин оксигенатов влияет на выброс углеводородов и окислов азота. В состав так называемого модифицированного бензина, перспективного с экологической точки зрения, обязательно вводится от 2,0 до 2,7% кислородсодержащих соединений (см. ниже). [c.231]

    Основным модифицирующим фактором в составе бензинов с улучшенными экологическими свойствами является введение кислородсодержащих соединений (оксигенатов). Добавка таких соединений позволяет снизить выбросы оксида углерода в ОГ и повысить детонационную стойкость бензинов. Оксигенаты фотохимически менее активны, чем углеводороды, и, следовательно, имеют более низкую смогообразующую способность. Наиболее дешевые и доступные оксигенаты — метанол и этанол, но они гигроскопичны и в процессах сгорания образуют смогообразующие альдегиды. Считают, что наиболее подходящими оксигенатами для бензинов являются эфиры и в первую очередь МТБЭ (метилтретбутиловый эфир). Он содержит в составе 18% кислорода, и добавлять его можно в количестве до 15%, что обеспечивает содержание кислорода в таком бензине 2,7%. [c.346]

    Методом некаталитического окисления спиртов с помощью хромовой смеси, азотной кислоты, хромового ангидрида, персульфатов и т. д. получали альдегиды, кетоны и карбоновые кислоты. Уже в 1819 г. было установлено, что при неполном сгорании спирта в спиртовых лампочках образуется ламповая кислота , содержащая уксусную кислоту и некое от эфира отличное вещество , которое известно теперь как ацетальдегид. Ацетальдегид был получен каталитическим. Ван-Марумом при пропускании паров этилового спирта над накаленными металлами ( обуглероженный водород ). [c.202]

    В целом продукты для смазки с потерей смазочного материала в развитых странах (Германия, 1995 г.) занимают 7—8% общего потребления смазочных материалов. Их ассортимент весьма разнообразен это масла для цепных пил, смазки опалубки, двухтактных ДВС, многие пластичные смазки. Здесь также наблюдается тенденция к использованию в качестве базовых масел быстробио-разлагаемых сложных эфиров. Масла для двухтактных двигателей, для обеспечения бездымного сгорания в двухколесных транспортных средствах, кроме сложных эфиров, рекомендуется приготовлять на базе ПАО [211]. [c.204]

    Добавки спиртов позволяют повышать полноту сгорания топлива и снизить количество выбросов оксидов углерода и азота, а также канцерогенных соединений. К недостаткам спиртовых добавок следует отнести их низкую гидролитическую устойчивость, плохие про-тивоизносные и антикоррозионные свойства, отрицательное воздействие на резины и пластмассы (спирты проникают в материал шлангов и герметических уплотнений, что увеличивает потери топлива при испарении). Более перспективны добавки простых эфиров типа [c.127]

    Получение борноэтилового эфира. (Работать под тягой в защитной маске ). В фарфоровый тигель помещают примерно 0,5 г сухой борной кислоты, приливают 1 мл конц. H2SO4 и 3 мл этилового спирта. Через 1 мин, соблюдая предосторожность, зажженной спичкой поджигают смесь. Наблюдают характерную окраску пламени, образующегося при сгорании борноэтилового эфира. [c.139]

    Пример 4. Рассчитать тепловой эффект сгорания диэтилового эфира ( jH5)20 по энергиям разрыва связей при 298 К. Теплота испарения эфира [c.47]

    Расставьте в ряд вещества угарный газ, метан, глюкоза, этиловый эфир, этиловый спирт, сероуглерод по принципу уменьшения энергосодержания в единице массы. Изменится ли порядок при расстановке этих веществ в ряд по принципу уменьшения теплоты, выделяющейс при сгорании единицы массы вещества  [c.52]


Смотреть страницы где упоминается термин Эфир сгорание: [c.137]    [c.57]    [c.436]    [c.52]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.1041 , c.1050 ]




ПОИСК







© 2025 chem21.info Реклама на сайте