Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ненасыщенные окисление восстановление

    Общий механизм каталитического действия координационных комплексов сводится к облегчению электронных переходов в общей системе электронов и ядер внутри комплекса по сравнению с переходами между отдельными молекулами. С этих позиций естественно считать, что стадия образования координационных комплексов может ускорять как реакции окисления—восстановления, так и реакции перераспределения валентных связей (ин-тра- и интермолекулярные), поскольку между различными молекулами, входящими в координационную сферу комплекса в качестве лигандов, взаимодействие облегчается 5, 61. В случае гетерогенного катализа через координационные комплексы можно рассматривать активный центр как металл (его ион) с незаполненной сферой лигандов и применять к нему уже известные общие и частные принципы связи между строением комплексообразующего иона или ненасыщенного комплекса с его каталитической активностью. Существенную роль в определении активности катализатора в координационном катализе играют стабильность первоначально образующегося комплекса в реакциях, протекающих по механизму замещения лигандов. В этом случае, как следует из общей теории катализа и принципа энергетического соответствия Баландина, должна наблюдаться экстремальная зависимость между активностью катализатора и стабильностью комплекса. [c.59]


    Что же касается общетеоретических вопросов, то при описании многих тем школьного курса химии учение о периодичности позволяет глубже раскрыть их содержание. Так, при изучении водных растворов следует обратить внимание на свойства растворителя (вода) и свойства растворяемых веществ (типы связи, строение молекулы, степени окисления), которые определяют такое свойство веществ, как их растворимость, поведение в воде (электролитическая диссоциация, гидролиз, окисление—восстановление). При описании состава химических соединений следует обратить внимание на взаимосвязь классификации соединений по составу с положением элементов в системе (совокупность свободных атомов, номер группы и периода). Это дает возможность устанавливать связи между разными классами соединений (оксиды, фториды, хлориды, гидриды, интерметаллиды) и видеть особенности каждого из них по составу (насыщенные или ненасыщенные молекулы), по агрегатному состоянию и строению (водородные соединения неметаллов, как правило, газообразны при обычных условиях, гидриды типичных металлов — ионные кристаллы) и т. п. [c.71]

    Присоединение водорода к я-связям алкенов, алкинов и других ненасыщенных углеводородов до сих пор относят к реакциям восстановления. Однако ранее было показано, что гидрирование ненасыщенных углеводородов не изменяет степени окисления атома углерода и атома водорода и не может быть отнесено к реакциям окисления—восстановления. [c.351]

    Снижение каталитической активности при избытке активатора наблюдалось и в других каталитических реакциях — гидролиза, окисления-восстановления, замещения [26, 62—77], причем всегда наибольшую активность проявляли координационно-ненасыщенные комплексы. Заполнение координационной сферы максимально возможным количеством молекул активатора приводит к ингибированию каталитической реакции даже в присутствии веществ, способных при низких концентрациях увеличивать скорость каталитического процесса на несколько порядков. Поэтому часто зависимость скорости каталитической реакции от концентрации активатора проходит через максимум (рис. 1). [c.31]

    Разумеется, в процессе окисления в координационно-ненасыщенный ион Pt (NH3)4< могут попадать и другие частицы, отличающиеся от аммиака, но с учетом многократного повторения процессов окисления-восстановления выживает ион [Р1(КНз)в1 . [c.50]


    В лакокрасочном производстве также широко используются ОВС при отверждении ненасыщенных пленкообразователей путем так называемой окислительной полимеризации. Здесь обычно в качестве восстановителя применяются нафтенаты или линолеаты кобальта, марганца и других металлов переменной валентности (сиккативы—см. стр. 312), а в качестве окислителя — гидроперекиси пленкообразователя, возникающие в результате взаимодействия с кислородом воздуха. При этом образуется пространственный полимер за счет обратимого цикла окисления — восстановления даже при комнатной температуре (см. стр. 297). [c.66]

    Реакции окисления—восстановления используются при титровании неорганических восстановителей, гидрохинона, аминофенолов, сахаров, щавелевой, малеиновой, аскорбиновой, лимонной и других оксикислот, а также при титровании неорганических окислителей, ненасыщенных орга- [c.41]

    Сернистые соединения, содержащиеся в масле, относятся к классу тио-фановых соединений с двухвалентной серой. При обработке таких масел олеумом сернистые соединения частично окисляются до более высоких валентностей серы с образованием ненасыщенных соединений, склонных к полимеризации с образованием кислого гудрона. Одновременно с этим наблюдается раскисление серной кислоты с образованием 80 2. Если предварительно окислить масло ДС-11, то сернистые соединения превращаются в сульфоны, последующее сульфирование которых олеумом протекает без побочных реакций окисления, восстановления и полимеризации. [c.95]

    Предыдущее наше знакомство с отдельными группами углеводородов, входящих в состав нефти, показало, что химическая активность углеводородов всецело зависит от степени насыщения углеродных атомов в той или иной группе углеводородов. Наибольшей реакционной способностью обладают ненасыщенные углеводороды, несколько менее — ароматические, затем — нафтены и, наконец, наименьшей способностью к химическим реакциям обладают, углеводороды парафинового ряда (под химическими реакциями в данном случае подразумеваются реакции присоединений, восстановления, полимеризации, окисления и т. д.). [c.89]

    Катализаторы — комплексные соединения переходных металлов. Реакции восстановления, гидрирования, окисления, гидратации ненасыщенных соединений, изомеризации, полимеризации и многие другие в промышленных условиях осуществляются в растворах в присутствии комплексных катализаторов. По типу применяемых катализаторов эти процессы иногда объединяют в группу координационного катализа. В качестве катализаторов в таких процессах применяются комплексные соединения катионов переходных металлов. Сюда относятся металлы УП1 группы Ре, Со, N1, Ни, КЬ, Рс1, Оз, 1г, Р1, а также Си, Ag, Hg, Сг и Мп. Сущность каталитического действия заключается в том, что ионы металлов с -электронной конфигурацией с/ —могут взаимодействовать с другими молекулами, выступая как акцепторы электронов, принимая электроны на свободные /-орбитали, и как доноры электронов. На рис. 200 показано взаимодействие ВЗМО этилена со свободной -орбиталью иона металла (а) и одновременное взаимодействие заполненной -орбитали металла с НСМО этилена (б). Донорно-акцепторное взаимодействие, обусловленное переходом электронов с я-орбитали этилена, уменьшает электронную плотность между атомами углерода и, следовательно, уменьшает энергию связи С=С. Взаимодействие, обусловленное переходами электронов с -орбитали иона металла на разрыхляющую орбиталь молекулы этилена, приводит к ослаблению связей С=С и С—Н. [c.626]

    При каталитическом гидрировании масел происходит восстановление двойных связей ненасыщенных кислот и образуются жиры, которые обладают рядом достоинств по сравнению с маслами они более устойчивы к окислению на воздухе и к действию микроорганизмов и не имеют того неприятного запаха, который типичен для некоторых масел и препятствует их использованию в качестве пищи. Превращение масел в жиры называется отверждением и осуществляется в больших масштабах путем каталитического гидрирования водородом в присутствии порошкообразного никеля. [c.197]

    Как и при восстановлении по Меервейну — Понндорфу — Верлею, при окислении по Оппенауэру не затрагиваются двойные связи. Может, однако, происходить изомеризация с образованием а,р-ненасыщенных карбонильных соединений. [c.181]

    В данном разделе рассматриваются только такие реакции окисления или восстановления, которые являются специфическими для образования сложных эфиров. Очевидно, это рассмотрение стало бы слишком обширным, если бы в него были включены также реакции восстановления ненасыщенных эфиров или кетоэфиров. Эти реакции протекают гладко и проводятся в основном так же, как превращение олефинов или кетонов в алканы. Из методов синтеза, при которых образуется именно сложноэфирная группа, рассматриваются пять методов, основанных на окислении, и три — основанных на, восстановлении. [c.341]


    Окислительно-восстановительные реакции этого класса соединений можно разделить на две большие группы. Первая из них — это превращения координированного лиганда, сопровождающиеся изменением степени ненасыщенности. Вторая группа — процессы окисления или восстановления центрального атома. [c.131]

    Гидрогенизация ненасыщенных углеводородов. 1,4.-Присоедине-ние. Гидрирование ацетиленов. Гидрирование ароматических углеводородов. Восстановление карбонильных соединений. Восстановление карбоновых кислот и их производных. Восстановление ароматических ьигросоединений. Бензидиновая перегруппировка. Восстановление алифатических нитросоединений. Сопряженное окисление — восстановление. Реакция Тищенко. Восстанавливающие агенты натрий, водород, цинк, амальгамы металлов, алкоголяты алюминия, алюминнйгидриды, иодистоводородная кислота. [c.100]

    Синтетические душистые вещества встречаются в очень многих классах органических соединений. Строение их весьма разнообразно это соединения с открытой цепью насыщенного и ненасыщенного характера, ароматические соединения, циклические соединения с различным числом углеродных атомов в цикле. Среди углеводородов вещества с парфюмерными свойствами встречаются довольно редко. Большинство душистых веществ содержат в. молекуле одну нли несколько функциональных групп. Сложные и простые эфиры, спирты, альдегиды, кетоиы, лактоны, иитропродукты — вот далеко не полный перечень классов химических соединений, среди которых разбросаны вещества с ценными парфюмерными свойствами. Для получения душистых веществ применяется самое разнообразное сырье, переработка которого основана на использовании большого числа химических процессов органического синтеза. Некоторые химические превращения приводят к введению заместителей в органические соединения нитрование, алкилирование, галоидирова-ние. К другой группе химических процессов относятся превращения, связанные с изменением функциональной группы веществ окисление, восстановление, этерификация, омыление. Третьи химические процессы приводят к изменению углеродного скелета химических веществ пиролиз, конденсация, изомеризация, циклизация, полимеризация. Ниже рассмотрены химические процессы, наиболее часто используемые в синтезе душистых веществ. [c.232]

    Однако механизм Вейганда не объясняет, почему реакция останавливается с введением двух остатков фенилгидразина. В самом деле, не ясно, почему, например, фенилозазон VIII не подвергается дальнейшей внутримолекулярной реакции окисления — восстановления с участием третьего углеродного атома Известно, что при взаимодействии глюкозы с фелинговой жидкостью расходуемое количество последней значительно выше вычисленного для окисления одной альдегидной группы, что указывает на продолжение окисления углеводной цепи в результате активирования положения, соседнего с центром ненасыщенности. Согласно нашим предположениям, фенилозазон стабилизуется вследствие образования хелата I  [c.522]

    Обобщение огромного материала в этой области было сделано Томсеном в 4-м томе его Термохимических исследований (1886). Им были рассмотрены замещение при действии галогенов на насыщенные углеводороды и на галогенопроизводные, присоединение галогенов и галогеноводородных кислот к ненасыщенным соединениям восстановление галогенопроизводных водородом и образование из них спиртов дегидратация и окисление спиртов, образование сложных эфиров, получение аминов, расщепление кислот с образованием соответствующих углеводородов, альдегидов и кетонов и т. д. Термохимические расчеты, по Томсену, подтвердили эмпирически найденное правило о том, что вода (в присутствии серной кислоты) присоединяется к ненасыщенному углеводороду с образованием вторичного, а не первичного спирта. Небольшие тепловые эффекты могут вести к обратимости реакции, о чем он говорит по поводу образования Шрет-бутилового спирта из mpem-бутилиодида. В этом же направлении работали и многие другие химики. Из них особенно тесно сближал проблемы структурной теории и термохимии Каблуков (1887 г.). Так, он объяснил подсчетом тепловых эффектов [c.111]

    Изомеризация карб0нилы7ых соединений, как н другие реакции внутримолекулярного окисления-восстановления, при которых образуются альдегиды и кетоны (изомеризация ненасыщенных спиртов и а-окисей, гидратация ацетиленовых углеводородов, дегидратация а-гликолей и пр.), протекает главным образом в условиях кислотно-солевого катализа . При этом роль агентов и катализаторов реакций выполняют минеральные кислоты (ча-1це серная кислота разных концентраций), органические кислоты (щавелевая), иногда щелочи (при карбонильном превращении спиртов—гомологов аллилового спирта). Широко применяются хлористый цинк, хлористый алюминий и ртутные соли. [c.243]

    В табл. XIII, 1 приведены некоторые данные, полученные при изучении состава активных центров адсорбционных катализаторов методом теории активных ансамблей. В качестве катализаторов применялись платина, палладий, никель, железо, а также ряд других, например ионных, катализаторов. Катализаторы наносились на силикагель, алюмогель, активированный уголь применялась также окись магния, окись бария, окись кадмия, металлический кадмий и никель (на платине) и ряд других. Изученные каталитические процессы можно разделить на следующие окисление, восстановление кислородсодержащих групп, гидрирование ненасыщенных связей, разложение перекиси водорода, синтез аммиака. Во всех случаях была получена зависимость активности от концентрации катализатора на носителе, отвечающая теоретической и позволяющая определить состав активного центра. [c.340]

    До сих пор не известно, в каких именно реакциях принимают участие жирорастворимые витамины в организме. Они входят в состав ферментов, и, по-видимому, их действие связано с действием ферментов. Поскольку витамин А является сильно ненасыщенным соединением (в его молекуле содержится система сопряженных двойных связей), он легко дезактивируется под действием окислителей. Витамин О содержит три двойные связи и гидроксильную группу. Его биологическая активность не уменьшается с повышением температуры, как можно было бы ожидать на основании его строения. Витамины А и О с треххлористой сурьмой дают окрашенное в голубой цвет соединение. Эта реакция используется для аналитических целей. Витамин Е быстро превращается в неактивную форму в присутствии окислителей и на свету. В этих условиях разрушается кислородсодержащее кольцо токоферола. Витамин Е устойчив к нагреванию в отсутствие воздуха. При окислении витамина Е азотной кислотой образуются продукты, окрашенные в красный цвет (аналитический метод определения витамина Е). Витамин К, содержащий кольцо нафтохинона-1,4, принимает участие в реакциях окисления — восстановления. Он разрушается под действием кислот, спиртовых растворов щелочей и ультрафиолетовых лучей. При нагревании витамин К не изменяется. Витамин К не удается определить колориметрически. Определение этого витамина основано на изменении времени свертываемости крови цыплят в его присутствии. [c.308]

    Цитронеллаль кипит при 202° и обладает приятным запахом, благодаря которому находит применение в парфюмерии. При восстановлении цитронеллаля получается цитронеллол (стр. 143), а при окислении — различные продукты, по которым можно судить о строении 5Т0Г0 ненасыщенного альдегида. [c.215]

    Из электрохимических производств, основанных на использовании электролиза для проведения окислительных или восстановительных реакций, можно назвать электрохимическое окисление Na l в Na lOa производство перхлоратов окислением хлоратов электрохимическое получение хлорной кислоты при обессоливании морской и минерализованных вод электролизным методом получение диоксида хлора и т. д. В органической химии процессы электролиза используются в реакциях катодного восстановления нитросоединений, иминов, имидоэфиров, альдегидов и кетонов, карбоновых кислот, сложных эфиров, а также в реакциях анодного окисления жирных кислот и их солей, ненасыщенных кислот ароматического ряда, ацетилирова-ния, алкилирования и др. [c.357]

    Для сужения кольца D ацетонид XIII был гидролизован в кислой среде до 1 Ис-гликоля и окислен йодной кислотой до диальдегида XIV последний в присутствии уксуснокислого пиперидина в качестве катализатора циклизовался в ненасыщенный альдегид XV, который окислением и этерификацией был превращен в соответствующий сложный кетоэфир. Разделение этого ( )-эфира на антиподы было выполнено методом, основанным на открытии Виндауса (1909), который установил, что Зр-оксистероиды, в отличие от За-эпимеров, обычно осаждаются из 90%-ного спирта стероидным сапонином дигитонином. При восстановлении ненасыщенного кетоэфира XV боргидридом натрия образовалась смесь За и Зр-оксиэфиров (XVI и XVII), из которой дигитонином была избирательно осаждена правовращающая форма Зр-спирта XVII, полученная после двух переосаждений в чистом виде  [c.106]

    Границы стабильности растворов. Предельный катодный потенциал для акрилонитрильных растворов ПТЭА (фоновый электролит) на КРЭ составляет -1,5 В по ПКЭ. Песомненно, что реакцией, лимитирующей стабильность, в данном случае является восстановление, обусловленное наличием ненасыщенной связи. Основным продуктом, служащим подходящим источником протона,. должен быть пропионитрил. Данные по анодной границе стабильности растворов акрилонитрила отсутствуют однако если использовать платину в качестве анода и перхлорат в качестве фонового электролита, то акрилонитрильный раствор должен оставаться стабильным при достаточно положительных потенциалах, так как нитрильная группа должна способствовать деактивации сопряженной связи в отношении процессов окисления. [c.14]


Смотреть страницы где упоминается термин ненасыщенные окисление восстановление: [c.361]    [c.248]    [c.170]    [c.233]    [c.51]    [c.655]    [c.154]    [c.828]    [c.61]    [c.107]    [c.109]    [c.111]    [c.385]    [c.223]    [c.142]    [c.122]    [c.93]   
Основы органической химии (1968) -- [ c.416 ]




ПОИСК





Смотрите так же термины и статьи:

окисление—восстановление



© 2024 chem21.info Реклама на сайте