Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Радикалы многоатомные

    Так как здесь кислотный радикал связан, так сказать, с алкогольной стороной другого кислотного радикала посредством кислорода, то молекулы имеют алкогольный характер. Если не обращать внимания на химическое строение радикала многоатомной кислоты, занимающей здесь место алкоголя, то такие соединения представляются также как бы кислотными ангидридами . [c.558]


    Для реакций радикала СНз были получены лишь отношения скоростей этих реакций к скорости рекомбинации СН3. Абсолютные значения констант вычислены из данных Гомера и Кистяковского (см. табл. XI 1.8) для скорости рекомбинации метильных радикалов . Как можно видеть, большинство стерических множителей для реакции обмена метильных радикалов равно по порядку величины 10" . Это значение немногим отличается от величины стерического фактора для реакции между двумя многоатомными молекулами [c.263]

    Характер алифатического радикала определяет насыщенность или ненасыщенность спиртов, а от числа гидроксильных групп, содержащихся в молекуле спирта, зависит его атомность спирты бывают одноатомные (I), двухатомные (U), трехатомные (П1) и многоатомные (IV)  [c.103]

    Распад многоатомной молекулы на два радикала. Для таких реакций предэкспонента чаще всего лежит й диапазоне 101 —1014" Распад этана, например, происходит с предэкспонентой А = = с"1, что соответствует = 69,7 Дж/град (400 К). Это увеличение энтропии при образовании активированного комплекса можно приписать следующим изменениям появляется свободное вращение СНэ-групп Д5 = +3 Дж/град, увеличивается момент инерции Д5 =+15 Дж/град, ослабляются 4 маятниковых колебания [c.83]

    Распад многоатомной молекулы на два радикала. Для таких реакций предэкспонента чаще всего лежит в диапазоне 10 — 10 с . Распад этана, например, происходит с предэкспонентой с ,  [c.97]

    Для атомов элементов малых периодов периодической системы Д. И. Менделеева, равно как и для ряда элементов больших периодов, характерно образование определенного числа химических связей. Это число называется валентностью. Если в состав многоатомной частицы входит атом, образующий меньшее число химических связей, чем это соответствует его валентности, то говорят, что частица обладает свободной валентностью. Такие частицы называют свободными радикалами. При встрече двух свободных радикалов за счет их свободных валентностей между ними возникает новая химическая связь, и пара свободных радикалов превращается в молекулу. В силу этой тенденции к попарному объединению свободные радикалы не могут образовать соответствующее вещество. Например, существует и хорошо изучен свободный радикал ОН (свободный гидроксил, точкой сверху обозначено наличие свободной валентности), но не существует вещества гидроксила. [c.53]

    Внутренняя энергия покоящихся многоатомных молекул в состоянии идеального газа равна сумме энергий разрыва всех химических связей в этой молекуле (энергий связей). Эта величина может быть представлена как взятая со знаком минус сумма энергий разрыва отдельных связей в рассматриваемой молекуле и в частицах, образующихся из нее при последовательном разрыве связей. Например, энергия разрыва связи О — Н в молекуле HjO, приводящая к образованию атома Н и свободного радикала ОН, равна 493,8 кДж/моль. Энергия разрыва связи в двухатомной частице ОН равна 423,7 кДж/моль. Следовательно, внутренняя энергия паров воды за вычетом энергии термического возбуждения составляет — 9)7,5 кДж/моль. Из этого примера ясно, что энергия разрыва связи зависит не только от того, между какими атомами эта связь образована, но и от того, в какой частице эта связь находится. [c.134]


    В поглощении спектры свободных радикалов могут быть получены в пламенах или газах, нагретых до высоких температур. В 1928 г. при исследовании спектра поглощения паров воды при высокой температуре Бонгоффер и Рейхардт [И] впервые в лаборатории получили спектр поглощения свободного радикала ОН. В равновесных условиях при достаточно высокой температуре присутствует определенное количество свободных радикалов ОН. Позднее аналогичным путем были обнаружены спектры других двухатомных радикалов, таких, как СН и С2- В спектрах поглощения атмосферы солнца и низкотемпературных звезд также наблюдаются системы полос двухатомных свободных радикалов. Небольшое число многоатомных свободных радикалов наблюдалось как в лабораторных условиях при высокой температуре, так и в атмосферах звезд в этих условиях были получены спектры Сз и 5Юз- [c.13]

    Вращательные спектры линейных многоатомных радикалов совершенно аналогичны спектрам двухатомных молекул (стр. 56 и сл.), поэтому нет необходимости останавливаться на них подробно. Эти спектры проявляются в микроволновой области, но до сих пор наблюдался только один такой спектр для свободного радикала — для N O [121]. Спектр комбинационного рассеяния для какого-либо радикала не наблюдался, однако были получены спектры электронного спинового резонанса. Для линейных многоатомных молекул не было обнаружено ни одного спектра переориентации спина. [c.99]

    Оба эффекта — обрыв ветвей в спектре испускания и уширение линий в спектре поглощения — наблюдались только у одного многоатомного радикала (или молекулы) HNO [5, 19]. [c.183]

    У многоатомных молекул и радикалов обрыв вращательной структуры в спектре испускания из-за предиссоциации наблюдался только в одном случае — у радикала HNO. Хотя обрыв структуры и был обнаружен у двух колебательных уровней (ООО и 010) возбужденного электронного состояния [19], невозможно сделать вывод о том, что граница предиссоциации позволяет определить диссоциационный предел, так как разность энергий предиссоциированных уровней довольно велика (/ 300 см" ) и имеет другой знак по сравнению с обычно наблюдаемым для двухатомных молекул (рис. 106). Однако нижний предиссоциированный уровень дает точную верхнюю границу для одной из энергий диссоциации радикала HNO Dq"< 2,11 эВ. [c.189]

    В качестве источника атомов А обычно используют СВЧ-разряд. Получение многоатомных радикалов обычно осуществляют с помощью быстрых реакций атомов со стабильными молекулами С. Для этого реагент С подбирают таким, чтобы в его избытке все атомы А очень быстро прореагировали с образованием нужного радикала + С -> К . Тогда можно считать, что движется поток радикалов К-, к которому подмешивается второй реагент В. При изучении реакции [c.109]

    В двойном соударении в такой же безактивационной реакции участвуют атом и многоатомный радикал К или два радикала с суммарным Х = 2(3л - 6) колебательными степенями свободы, величина фактора соударений А) будет большей. [c.110]

    Возможно, в переходном состоянии реакций многоатомных радикалов происходит изменение конфигурации реагентов. Например, метильный радикал, имеющий [c.147]

    По энергиям разрыва связи (С3—Н) имеются только две экспериментальные величины. При последовательном разрыве связей (С—Н) в метане для отрыва последнего атома водорода 0(Сз—Н) дается величина 81 ккал, а при разрыве связи (СНд)зС-Н с образованием трет-бутильного радикала 89 ккал [13, 16]. Для расчета энергии связей в алканах использована последняя величина. Она более правильна, поскольку определена в многоатомной молекуле. [c.8]

    Если в результате адсорбции двухатомная молекула диссоциирует на атомы, многоатомная — на два радикала и адсорбция сильно локализована, то уравнение приобретает вид [c.492]

    V. Двухатомная молекула (или радикал) и многоатомная молекула (или, радикал) [c.133]

    Такая классификация представляет опять многие из неудобств, свойственных рядовой системе Gerhardt a. Понятие об атомности радикала, содержащегося в теле, представляет много неопределенного уже потому, что почти в каждом соединении можно принимать радикалы различного состава и атомности смотря по способу превращения, часто одно и то же вещество дает то радикал одноатомный, то радикал многоатомный. Вследствие этого, одного принципа атомности радикалов недостаточно даже для причисления к определенным отделам многих из тех веществ, в которых все паи угля находятся в непосредственной связи. Личный взгляд классификатора, по необходимости, опять выдвигается здесь на первый взгляд.— Что же касается до тел с частицами, составленными из различных радикалов, соединенных посредственно — многоатомными паями, то они, как и в классификации Gerhardt a, являются имеющими равное право на помещение в различных рядах и группах. [c.65]

    ХИМИЧЕСКАЯ СВЯЗЬ — взаимодействие между атомами, обусловлива-ющее образование устойчивой многоатомной системы (молекулы, радикала, молекулярного иона, комплекса, кристалла и др.). Все химические превращения сопровождаются разрушением химической связи. X. с. возникает вследствие кулоновского притяжения между ядрами и электронным зарядом, распределение которого обусловлено динамикой поведения электронов и подлежит квантовомеханическим законам. Электронный заряд многоатомной системы возникает нри обобществлении атомных электронов. Различают ионную (гетерополяр-ную, электровалентную), ковалентную (гомеополярную, атомную) и металлическую X. с. X. с. н зыз 1ЮТионной, если она возникает вследствие практически полного перехода электронов с орбитали одного атома на орбиталь другого. Например, во время реакции натрия с хлором атомы натрия теряют, а атомы хлора присоединяют по одному электрону, превращаясь в ионы Ыа+ и С1 (электронный заряд локализован на атомах). Если ионная связь возникает между ионами и полярными (дипольными) молекулами, то ее называют ионно-ди-10 8-149 [c.273]


    Свободный радикал — нейтральная многоатомная частица с неспаренньш электроном на внешней валентной орбитали. Свободные атомы и радикалы являются активными промежуточными частицами в самых разнообразных химических процессах, таких, как полимеризация, окисление, галоидирование, распад с их участием протекают реакции в атмосфере, многие технологические процессы, окислительно-восстановительные превращения в живом организме. [c.138]

    Интересным примером предсказательных возможностей теоретических методов является определение структуры метилена, наименьшего многоатомного радикала, существующего в триплетном состоянии. По экспериментальным данным Герцберга метилен в триплетном состоянии должен обладать линейной конфигурацией. Расчеты, проведенные Поплом методом N00/2, привели к угловой структуре с валентным углом НСН 141,4°. Это расхождение с экспериментом заставило Попла усомниться в применимости метода для изучения геометрии триплетных состояний. Проведенные несколькими годами позже неэмпирические расчеты геометрии метилена в триплетном состоянии также указывали на угловую структуру с валентным углом 135°, причем улучшения базиса качественно не меняли ситуацию. Эти факты привели Герцберга к необходимости повторных экспериментальных исследований структуры метилена. Данные, полученные в повторных предельно прецизионных экспериментах по изучению микроволнового спектра и спектра ЭПР метилена, согласовывались с предсказаниями теории. [c.348]

    Эволюция локализованных возбуждений. Дальнейшая судьба образовавшихся радикалов и экситонов также во многом определяется исходной геометрией аниона, симметрией местоположения, степенью орбитального вырождения, природой центрального атома аниона. Если орбиталь, занимаемая неспаренным электроном, вырождена, то эффект Яна-Теллера приводит к искажению ядерной конфигурации вплоть до диссоциации. Устойчивость к диссоциации определяется химической природой радикала. Для координационно-насыщенных соединений наблюдается разрыв связи, а для ненасыщенных - нет. При локализации экситона наблюдаются аналогичные вибронные эффекты. Энергия возбуждений анионов заведомо превышает энергию разрыва любой из химических связей внутри многоатомного аниона. Прямая диссоциация синглетных возбуждений кислородсодержащих анионов с образованием атомарного или молекулярного кислорода запрещена правилом сохранения мультиплетности, в связи с чем она протекает через образование комплексов с переносом заряда типа [ХОп-т От]. Экспериментально такие комгшексы обнаружены в нитратах, хлоратах и перхлоратах. Первоначально при диссоциации происходит селективный разрыв наиболее длинной связи (даже при разности длин связей менее 1%), что экспериментально подтверждено для нитратов щелочных металлов, хлората калия, перхлората бария. [c.98]

    Проблема утилизации супертоксикантов сегодня стала действительно одной из серьезнейших проблем, которые стоят перед человечеством. При изучении процесса плазмохимической утилизации таких многофазных систем необходимо соблюдать несколько правил. Во-первых, необходимо прежде всего провести термодинамические расчеты таких систем и проследить возможность их нежелательного изменения при изменении внешних параметров, т.е. по сути провести термодинамическое моделирование процесса утилизации. Во-вторых, необходим контроль ситуации по электронным спектрам простых свободным радикала, в первую очередь по двухатомных радикалам, которые достаточно хорошо изучены, - это радикалы Сз, СК, РО, А10 и др. Возможна качественная диагностика по электронным спектрам многоатомных радикалов, таких как СРз, С Р, Сгр2 [1] и др. В-третьих, должны быть проработаны все стадии процесса независимо от вида супертоксикантов, т.е. процесс утилизации имеет гибкую схему. Так, например, для связывания хлорида водорода необходимо подавать в процесс нейтрализации либо гидрокарбонат натрия, либо карбонат кальция, в то время как для нейтрализации ртути желательно подавать сероводород, чтобы получить не растворимую в воде киноварь, которая к тому же является товарным продуктом.. Здесь мы не останавливаемся на тонкостях процесса работы с сероводородом и не рассматриваем альтернативные ситуации. [c.100]

    В поглощении в электрических разрядах. В 1934 г. Олденберг [106] впервые наблюдал спектр радикала ОН, образующегося в разряде через влажный водород. В 1950 г. Барроу и сотр. [85] впервые получили в разряде через смесь фторуглеродов спектр поглощения многоатомного свободного радикала СРз- Недавно в нашей лаборатории был развит метод импульсного разряда для исследования спектров поглощения свободных радикалов суть метода иллюстрируется рис. 2. Импульсный разряд пропускается через поглощающую кювету Р, а второй импульс проходит через разрядную трубку 5, которая служит источником непрерывного излучения в опытах с поглощением. Интервал времени между двумя импульсами может изменяться с целью получения спектра поглощения в момент достижения наибольшей концентрации исследуемого свободного радикала в кювете Р. Импульсный разряд благодаря созданию высокой плотности тока в большом объеме исходного соединения дает значительно более высокую мгновенную концЫтрацию свободных радикалов (включая молекулярные ионы), чем обычный разряд. Таким путем были обнаружены спектры нескольких свободных радикалов и молекулярных ионов. [c.15]

    Приводит ли в данном случае обращенный процесс Оже к большей скорости рекомбинации с излучением, чем прямой процесс, зависит от относительных значений вероятностей перехода в нижние устойчивые состояния и от плотности предиссоциирующих или преионизирующих состояний. Для рекомбинации электрона с одноатомным ионом различными авторами [12, 451 было найдено, что при высоких температурах влияние обращенной преионизации велико (скорость увеличивается в 100—1000 раз). Этот факт имеет важное значение для понимания процессов в звездных атмосферах и в солнечной короне. Для рекомбинации радикала с атомом или радикала с радикалом, насколько известно, подобные расчеты не производились, однако весьма вероятно, что обращенная предиссоциация вносит существенный вклад в скорость рекомбинации при низком давлении, в частности,, в многоатомных системах. Обращенные процессы Оже также увеличивают скорость рекомбинации при соударении трех частиц, так как время жизни образующегося комплекса достаточно велико. [c.191]

    КОНФИГУРАЦИЯ РАВНОВЕСНАЯ, расположение атомных ядер молекулы (или радикала, иона) в пространстве, соответствующее минимуму ее потенц. энергии. К. р. двухатомной молекулы характеризуется расстоянием между атомными ядрами. Для описания К. р. многоатомных молекул необходимо исппльловат] такие параметры, как длины связей, валентные углы, а также двугранные углы (см. Номенклатура стереохимическая). К. р. молекулы зависит от ее электронного состояния. Так, в оси. состоянии молекула ацетилена имеет линейную конфигурацию, в возбужденном — трансоидную. Параметры молекулы (или ее геометрию) определяют методами рентгеновского структурного анализа, газовой электронографии, микроволновой спектроскопии, нейтронографии и др., а в случае простых молекул также рассчитывают квантовомех. методами. КОНФОРМАЦИИ молекул, различные пространств, формы молекулы, возникающие при изменении относит, ориентации отд. ее частей в результате виутр. вращения атомов или групп атомов вокруг простых ( вя 1еп, изгиба связей и др. При этом стереохим. конфигурация молекулы остается неизменной. Каждой К. соответствует определ. энергия. Так, для молекулы зтана можно представить существование двух максимально ра )личающихся по энергии К.— 1аслоненной (ф-ла la), для к-рой диэдральный угол Ф (см. Номенклатура стереохимическая) имеет значения О, 2, 4, и. заторможенной, или шахматной ([б), с ф = 1, 3, 3. Первой из них соответствует максимум энергии, второй — минимум. Поэтому молекулы этана существуют практически только в заторможенной К. [c.274]

    Специфические реагенты (реактивы) — органические или неорганические реагенты, которые позволяют при определенных условиях обнаруживать (определять) одно вещество (нон элемента). Напр., крахмал представляет С. р. на свободный ио,7,. Спирты (алкоголи) -—органические соединения, содержащие гидроксогрупну ОН, соединенную с каким-либо углеводородным радикалом. По числу гидроксогрупп различают одноатомные спирты (СНзОН — метиловый, СвНбСНаОН — бензило-вый), двухатомные (СНгОН—СНгОН — этиленгликоль), многоатомные (глицерин СНзОН-СН(ОН) —СНгОН) если радикал ароматический, то С. называют фенолами. Низшие предельные С.— легко подвижные, растворимые в воде жидкости с характерным запахом и жгучим вкусом более сложные (от С4 до Си) — маслянистые жидкости, не смешивающиеся с водой выше i2—твердые вещества без запаха и вкуса. С. образуют алкоголяты с активными металлами (напр., HsONa), первичные С. окисляются до альдегидов, вторичные —до кетонов, дегидратируются  [c.125]

    Реакция ксантогенирования характерна для всех спиртовых групп. Для целлюлозы она впервые была изучена Кроссом, Биве-ном и Бидлом, родоначальниками вискозного способа получения химических волокон. Целлюлоза содержит две вторичных гидроксильных группы в положении 2 и 3 и одну первичную — в положении 6. Преимущественное взаимодействие тех или иных групп зависит от нуклеофильной реакционной способности гидроксильных групп, которую можно характеризовать по константе их диссоциации [3]. Зависимость константы скорости реакции ксантогенирования К от константы диссоциации Кдисс для различных спиртов показана на рис. 4.1. Наименьшей Ктсс обладают спирты с большей длиной радикала (бутанол, пропанол). Для них характерна низкая реакционная способность. Этанол, и особенно метанол, имеют константу скорости на 1,0—1,5 порядка выше. Вторичные и многоатомные спирты (полигликоль, глицерин) обладают еще большей реакционной способностью. Поэтому при ксантогенировании целлюлозы преимущественно происходит этерифика-ция вторичных гидроксильных групп, у которых связано до 70— 80% всех ксантогенатных групп [4]. Однако при избытке сероуглерода происходит полная этерификация всех гидроксильных групп с достижением степени этерификации ya 300 [5]. [c.80]

    Бактериохлорофиллы а, Ь и с, по последним данным, существуют в нескольких модификациях, так как радикал может быть фитолом, фарнезолом, геранил-гераниолом или другим многоатомным спиртом (табл. 19). [c.264]

    Особенно сильные сдвиги частот, соответствующих данной группе как свободной системе (собственные частоты), могут происходить тогда, когда одна из собственных частот группы (радикала) совпадает с какой-нибудь частотой колебаний окружающей части молекулы. При этом при определенных условиях возникает явление механического резонанса и колебания перемешиваются . К числу таких колебаний весьма часто относятся различные скелетные колебания многоатомных молекул. Резонанс нередко возникает при дейтерировании и поэтому дейтерирование часто сопровождается не только сдвигом многих полос поглощения в спектре, но и весьма резким изменением их интенсивностей. Это может послужить даже затруднением при интерпретации полос. Хороший пример представляет в этом отношении молекула ацетонитрила. В ее спектре наблюдаются колебания с частотами 919 и 1059 см , которые могут быть интерпретированы как валентное колебание связи С—С и внешние деформационные колебания углов Н—С—С. Казалось бы, эта интерпретация легко может быть проверена дейтери-рованием. Производим его и получаем две частоты 850 и 833 т. е. смещение обеих спорных полос на значительную величину. Здесь сказывается резонанс колебаний. [c.174]

    В настоящем Справочнике в соответствии с работой Уолша [4141] принимается, что радикал НО2 в основном электронном состоянии имеет нелинейное строение. Вывод о нелинейной структуре НО2 был сделан Уолшем [4141] на основании систематического изучения корреляции между числом валентных электронов в многоатомных молекулах и их геометрической структурой. Согласно Уолшу, угол между связями в НОз должен быть меньше, чем в HNO . В результате исследования электронного спектра HNO угол между направлением связей в этой молекуле был найден равным — 109° (см. стр. 373). С другой стороны. [c.211]

    Основное электронное состояние радикала 5Р должно быть таким же, как и у изостериче-ских радикалов СЮ, ОР, ОН, 5Н, т. е. состоянием П/. Сравнение молекулярных постоянных двухатомных фторидов элементов второго и третьего периодов, а также привлечение данных для соответствующих связей в многоатомных фторидах тех же элементов позволяет оценить значения межатомного расстояния и силовой постоянной радикала 5Р Ге= 1,60 Н-+ 0,05 А, ке = (4,6 + 0,2) 10 дин-см -. Указанным значениям постоянных Ге и соответствуют значения постоянных Ве и сое, приведенные в табл. 78 и принятые в настоящем Справочнике. Погрешность принятого значения частоты колебаний 5Р оценивается в + 30 м и постоянной Ве — В + 0,05 СМ".  [c.316]


Смотреть страницы где упоминается термин Радикалы многоатомные: [c.101]    [c.74]    [c.234]    [c.15]    [c.108]    [c.177]    [c.1174]    [c.27]    [c.248]    [c.127]    [c.557]    [c.176]    [c.221]    [c.362]    [c.6]    [c.539]   
История химии (1975) -- [ c.258 ]

Избранные труды (1955) -- [ c.27 , c.34 , c.35 ]

История химии (1966) -- [ c.258 ]

Сочинения Научно-популярные, исторические, критико-библиографические и другие работы по химии Том 3 (1958) -- [ c.217 , c.226 , c.249 , c.264 , c.265 , c.272 , c.274 ]




ПОИСК







© 2024 chem21.info Реклама на сайте