Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

алкилированный механизм

    Уменьшение концентрации карбкатиона приводит к снижению скорости диспропорционирования. Существует мнение, что на цеолитсодержащих катализаторах, в частности на мордените в катионзамещенных формах (Н, Мо, Са, 5г), диспропорционирование протекает за счет реакций трансметилирования [46]. По нашим данным, наиболее существенную роль играют отщепление и масс-межмолекулярный перенос С2-фрагментов [47]. Некоторые исследователи высказываются за механизм реакций по схеме конденсация - крекинг, т. е. без образования низкомолекулярных алкилирующих агентов [48]. [c.31]


    Решение этих вопросов неразрывно связано с необходимостью глубокого изучения механизма процесса алкилирования бензола различными алкилирующими агентами, с разработкой новых каталитических систем, способствующих ликвидации указанных выше недостатков, поисков новых нетрадиционных пу- [c.6]

    Повышению селективности, активности и стабильности катализаторов алкилирования бензола различными алкилирующими системами, разработке новых технологических схем процессов и улучшению их показателей, а также изучению механизма этой реакции посвящены работы многих советски ученых. [c.7]

    Рассматривая взаимодействие гомологов бензола с разными алкилирующими агентами в широком диапазоне условий, авторы значительное внимание уделяют производству этилбензола, изопропилбензола, додецилбензола и некоторых других, составляющих основу крупнотоннажных процессов алкилирования. Они стремились акцентировать внимание на важнейших сторонах рассматриваемой проблемы выяснении влияния строения на реакционную способность реагентов, установлении с помощью физико-химических методов (меченых атомов, ЭПР, ИКС, УФ, ЯМР-спектроскопии и др.) тонкого механизма реакции и т. д., [c.7]

    На основании полученных ранее экспериментальных данных было высказано мнение, что реакция алкилирования бензола олефинами протекает по электрофильной схеме замещения с промежуточным образованием карбокатионов. Изменение условий экспериментов, природы катализаторов, структуры и длины цепи алкилирующего олефина влияет на соотнощение скоростей реакций алкилирования и изомеризации и тем самым определяет изомерный состав целевых продуктов. В данном разделе будут рассмотрены пути перераспределения изотопной метки О между компонентами реакции алкилирования в зависимости от условий. Для уточнения механизма взаимодействия ароматических углеводородов с олефинами проведено алкилирование дейтеро-обогащенного бензола этиленом, пропиленом, бутеном-1 и буте-ном-2 (табл. 4.2). Полученные алкилбензолы после разделения на препаративном хроматографе анализировали методами ИК-, масс- и ПМР-спектроскопии. [c.89]

    Таким образом, алкилирующие ациклические агенты при контакте с катализаторами или при конкурирующем взаимодействии ароматических соединений с комплексами [НХ-Катализатор] в зависимости от условий, химического состава и структуры реагирующих компонентов претерпевают внутримолекулярные гидридные и скелетные перегруппировки. Близость величин изотопных перегруппировок свидетельствует в пользу идентичного механизма превращения разных алкилирующих групп, тогда как значительный диапазон глубин другого типа изомеризационных превращений указывает на зависимость их от долевой значимости отдельных направлений в общем механизме реакции. [c.118]


    В литературе появилось огромное количество публикаций об алкилирующих каталитических системах на основе цеолитов. Разноречивы мнения в оценке активных центров и механизма реакции алкилирования бензола пропиленом на цеолитсодержащих катализаторах, а также недостаточное изучение кинетики реакции в определенной мере сдерживают реализацию процесса в промышленности. Кроме того, при алкилировании бензола пропиленом на цеолитах и цеолитсодержащих катализаторах протекают побочные реакции образование полиалкилбензолов, крекинг изопропилбензола с образованием этилбензола и толуола, изомеризация изопропилбензола в н-пропилбензол и полимеризация пропилена. Наличие этих примесей ухудшает количество товарного изопропилбензола, ингибирует процесс его окисления. Переалкилирование полиалкилбензолов протекает при более высоких температурах и давлениях, чем алкилирование. Перспективными представляются цеолитсодержащие катализаторы с редкоземельными элементами СаНУ, на которых переалкилирование протекает в условиях реакции алкилирования. Побочные реакции снижают селективность цеолитсодержащих катализаторов, вызывает их дез- [c.252]

    Снижение активности катализатора ниже некоторого предела, обеспечивающего протекание реакции в тонкой пленке кислоты с такой скоростью, что концентрация олефинов в реакционной зоне много ниже концентрации насыщения, приводит к интенсивному протеканию полимеризации олефинов. Эти особенности процесса алкилирО(вания являются определяющими и позволяют, вместе с рассмотренными данными о механизме собственно реакции, достаточно полно проанализировать влияние различных факторов на результаты процеоса алкилирования. [c.179]

    На основании большого числа исследований И. П. Цукерваник [32] установил механизм алкилирования ароматических углеводородов спиртами в присутствии кислых катализаторов. Он нашел, что спирты сперва образуют с катализаторами оксониевые комплексы, которые затем превращаются в смешанные алкоголяты (если катализаторами служат галогенпроизводные металлов) или кислые эфиры (в присутствии минеральных кислот). Далее алкоголяты или кислые эфиры непосредственно алкилируют ароматические углеводороды по примерной схеме  [c.475]

    Для примера (а) приведите механизм реакции алкилиро-вання. [c.120]

    По 5 2-механизму протекает также сульфирование, алкилиро-вание и водородный обмен в ароматических соединениях. [c.126]

    При взаимодействии с нуклеофилами эфиры фосфорной кислоты могут вести себя как ацилирующие, так и алкилирую-щие агенты. Ниже приведены две возможные схемы механизма нуклеофильной атаки Х на эфиры фосфорной кислоты  [c.182]

    Независимо от природы реакционного центра субстрата и его строения, а также от строения алкилирующего агента во всех случаях процессы протекают по электрофильному механизму. На примере алкилирования аминов спиртами (в присутствии сильной минеральной кислоты) схема выглядит так  [c.149]

    С учетом столь сильных алкилирующих свойств диалкокси-карбониевых катионов, непременно возникающих из ортоэфиров в присутствии кислот, может быть предложен более простой механизм реакции [c.50]

    Г. не обладают хим. св-вами восстанавливающих сахаров, обусловленными карбонильной группой, не подвержены мута-ротации. Они легко ацилируются ангидридами и галогенангидридами к-т в пиридине с образованием сложных эфиров, алкилируются типичными алкилирующими агентами в сильнощелочных средах, образуют циклич. ацетали и кетали при конденсации с карбонильными соед., окисляются периодатами с расщеплением связей С—С, подвергаются кислотному гидролизу, алкоголизу, формолизу с расщеплением гликозидной связи. Скорость гидролиза в наиб, степени зависит от размера цикла фуранозиды гидролизуются на два порядка быстрее пиранозидов. Механизм гидролиза м. б. представлен след, схемой (знак означает, что молекула Г. может иметь ас- или р-конфигура-цию)  [c.576]

    Инициированное термическое алкилирование. Термическое алкилиро-вание.парафигговых углеводородов можно осуш ествить в мягких условиях, если к смеси парафинового и олефинового углеводородов добавить небольшие количества (1—3% вес. на о бщ ую загрузку) таких веществ, как алифатические галоидные или нитросоединения [33]. Парафиновые углеводороды с прямой и разветвленной ценью алкилируются ири 300—400° и давлении 210 ат и выше. При этом получаются такие же продукты, как и при чисто термических реакциях это указывает на то, что и здесь имеет место свободно-радикальный механизм реакции, а катализаторы служат в качестве инициаторов цеии путем распада их с образованием радикалов при сравнительно более низкой температуре, чем в случае углеводородов. [c.308]

    Ароматические углеводороды легче алкилируются олефинами, чем изопарафины. Наиболее благоприятными термодинамическими условиями термической реакции между бензолом и этиленом являются атмосферное давление и температуры до 540° [566], в то время как для изопарафинов — около 300° С. Признаки термического алкилирования бензола с этаном, пропаном и бутанами, проходящего, вероятно, по механизму свободных радикалов, получены при 475—550° С иод давлением 323 — 337 кПсм , наряду с другими продуктами (бифенилом, флуоре-пом, антраценом, дифенилбензолом и т. п.) образуются толуол, этилбензол, Сз и С4-алкилбензолы и ксилолы [567]. Алкилирование бензола проходит полностью в присутствии кислотного катализатора. Кремний-алюминиевые комплексы применяются под давлением нри 240—260° С для алкилирования бензола с этиленом и при 190—240° С с пропиленом в результате реакций образуются этил-и изопронилбензолы [568]. С крепкими кислотами реакция проходит еще легче. Цимол получают алкилированием бензола с пропиленом над катализатором (фосфорная кислота на кизельгуре) [569, 570] или серной кислотой [571, 572]. Фтористоводородная кислота также является эффективным катализатором [573, 574] может применяться и алкан-серная кислота [575], хотя и с металлическим натрием [576] в качестве промотора. [c.133]


    Как известно, сульфидные и тиолатные анионы являются сильными нуклеофилами. Кроме того, они легко переходят с четвертичным ониевым противоионом из водной фазы в органическую. Таким образом, они должны быть идеальными субстратами в МФК-реакциях. Действительно, в фундаментальных работах Херриота и Пиккера [28, 201], посвященных изучению механизма МФК и влиянию структуры катализаторов, была использована система тиофенол/алкилирующий агент. [c.142]

    Для понимания механизма очень важным является тот факт, что очень активные алкилирующие агенты (например, бензилхлорид) реагируют с фенилацетонитрилом даже в отсутствие катализатора, хотя реакция идет и намного медленнее, чем в условиях МФК. При повышенных температурах (80 С) алкилиодиды также реагируют довольно быстро без катализаторов [298]. Эти наблюдения, как и результаты конкурентного алкилирования, указывают на важную роль поверхности раздела фаз при алкилировании [298]. Работы по эиантиоселективному алкилированию фенилацетонитрилов с хиральными катализаторами рассмотрены в разд. 3.1.5. Применение фенилацетонитрилов для нуклеофильного ароматического замещения описано в разд. 3.17. [c.181]

    Механизм реакции. В качестве алкилирующих агентов в промышленности применяют главным образом хлорироизводные и олефины. Использование спиртов менее эффективно, потому что при алкилировании спиртами хлористый алюминий разлагается, а протонные кислоты разбавляются образующейся водой. В обоих случатх происходит дезактивирование катализатора, что обусловливает его большой расход. [c.243]

    Необходимо добавить, что момент изомеризации алкилирующего агента может быть установлен лишь при детальном изучении механизма реакции алкилирования. По-видимому, образование прочных ионных пар или других комплексов подобных структур предшествует изомеризационным превращениям. Если же отрыв функциональной группы от алкилирующего агента протекает легко и приводит к образованию карбокатиона в объеме — это является наиболее благоприятным условием для изомеризации алкильной группы. [c.118]

    Полученные результаты объясняют тем [150 151, 1, с. 46], что при алкилировании бензола пропанолом-1 в присутствии хлорида (или бромида) алюминия в системе находятся слабый внешний комплекс бензола с катализатором, довольно стабильный комплекс с переносом заряда пропанол-1 — хлорид алюминия, л-комплексы алкилбензолов с неполной локализацией заряда на а-углеродном атоме. Отсутствие алкилкатионов при алкилировании н в момент разложения указанных выше систем дает основание считать, что изомеризация через карбониевоионный механизм может иметь место при атаке алкилирующим комплексом субстрата с образованием тройного комплекса в координационной сфере алюминия  [c.140]

    Каменные угли не только поддаются алкилпрованню (см. статью 23), но и сами могут быть использованы для алкилирования ароматических соединений. При использовании угля в качестве алкилирующего агента он деиолимеризуется [1—3]. Впервые механизм этой реакции исследовали на модельных соединениях с целью показать, что метиленовые группы, связывающие два ароматических кольца угля, могут отщепляться от кольца и алкилировать ароматические соединения, например фенол. Первая стадия заключается в протонированин ароматического угольного кольца, смежного с метиленовой группой, а затем протекают нуклеофильное бимолекулярное замещение арильной группы фенолом (стадия 2) и регенерация протона (стадия 3)  [c.308]

    Как показано в работах [10, 27], скорость превращения тио-нафтеиа возрастает в ряду процессов сульфирование— -алкилирование— -конденсация. И в таком же цррядке уменьшаются относительные потери нафталина. В двух последних процессах необходимо проводить очистку в две стадии на первой нафталин обрабатывать серной кислотой, а на второй —в реакционную смесь вводить алкилирующее непредельное соединение либо формалин (при ином порядке введения реагентов скорость процесса значительно меньше). Вероятно [10, 27], катализаторами обоих процессов. являются не столько се рная кислота, сколько нафталин-сульфокислоты, т. е. их можно рассматривать как сочетание сернокислотной очистки, протекающей с образованием нафталинсульфокислот, и алкилирования либо конденсации при каталитическом действии сульфокислот. Дело, очевидно, не в изменении механизма процесса, а в том, что нафталинсульфокислоты лучше серной кислоты растворимы в нафталине, и скорость процесса увеличивается из-за повышения концентрации катализатора в реакционной массе. [c.290]

    Реакция применима и к негетероциклическим ароматическим соединениям. Так, бензол, нафталин и фенантрен были алкилированы под действием алкиллитиевых реагентов, хотя обычно эти субстраты металлируются (см. т. 2, реакцию 12-19) [163] нафталин был также алкилирован с помощью реактивов Гриньяра [164]. По-видимому, во исех этих случаях реакции также идут по. механизму присоединения — отщепления. [c.33]

    Реакция протекает только в присутствии катализатора, такого, как хлорид алюминия или бромид железа (III). Поскольку образующийся алкилбензол алкилируется легче, чем исходный бензол, в результате реакции получаются продукты полиалкилирования. Эффективность упомянутых катализаторов была обнаружена Фриделем и Крафтсом и реакции этого типа называются, , . . реакциями Фриделя — Крафтса. Их механизм об- [c.609]

    Структура молекулы и температура плавления (между 100— 140 С) говорят об их растворимости в ароматических углеводородах и уайт-спирите [2, 3]. Для модификации канифоли часто исиользуют низкомолекулярные алкилфенольные смолы, которые активно взаимодействуют с маслами. Эти смолы способствуют пре-вращеиию кислот, содержащихся в канифоли, в полиэфир поли-карбоновой кислоты либо через образование хроманового кольца (см. разд. 3.3.5 и 17.1), либо, что более вероятно, через алкилиро-вание, чему благоприятствует кислотность среды и наличие карбоксильной груины. Фенольную смолу добавляют к раснлавленной канифоли ири ПО—140°С в этих условиях смола должна легко растворяться, потому что в противном случае может произойти самоконденсация резола. Затем температуру повьпнают примерно до 250 °С и добавляют в систему глицерин илн иентаэритрит с целью образования сложных эфиров и повышения молекулярной массы смолы. Прн температуре выше 250 °С начинается декар-боксилирование. В некоторых случаях реакцию проводят при относительно высоких температурах с участием новолаков. Кислоты канифоли могут предварительно взаимодействовать с формальдегидом (механизм реакции Принса, см. разд. 2.17), образуя соединения, содержащие гидроксильные группы в таких случаях интервал температур размягчения канифоли поднимается примерно с 45 до 105 °С. Прн температурах выше 125 °С в систему рекомендуют медленно добавлять ангидрид малеиновой кислоты (механизм реакцпи 1,4-присоедииения сопряженных диенов)  [c.206]

    Реакция ацетилида металла с алкилирующим агентом протекает по механизму 51ч2, поскольку отрицательный ацетилидный ион замещает (в случае алкилгалогенида) атом галогена [c.189]

    Фопурин (13) представляет собой пример придания препара-ту комбинированной (по механизму биодействия) противоопухолевой активности, так как он сконструирован из двух действующих начал - алкилирующей диазиридинилфосфамидной группировки и анти метабол итного нуклеинового основания (пуриновый гетероцикл). [c.77]

    Интенсивность реакций перераспределения водорода значительно усиливается и эта реакция становится основной, если в качестве алкилирующего. агента вместо соответствующего олефина применять сложный алкильный эфир. Этого и следовало ожидать на основании предложенного механизма,. так как сложный эфир является источником высокой, концентрации карбоний-ионов,. принимающих участие в (обычно) необратимой первой ступени цепной реакции, давая трет-бутильные ионы, претерпевающие реакцию автоалкилирования вследствие исчерпания ресурсов олефинов для стадии 2. Так, в присутствии хлористого алюминия в качестве катализатора взаимодействие изобутана с хлористым изопропилом при 40—70° приводило к образованию пропана (выход 60—90%), наряду с жидким продуктом, содержавшим несколько больше-октанов, чем гептанов [30]. В присутствии фтористого бора реакция изобутана с фтористым изопропилом при —80° ведет к образованию 2,2,4-триметилпен-тана в качестве основного компонента жидкого продукта на 1 моль фтористого-пропила, восстанавливающегося до пропана, расходуются 2 моля изобутана [10]. В присутствии серной кислоты в качестве катализатора реакция изобутана с тре/тг-амиловьш спиртом при 2° давала изопентан с выходом 50%. Аналогично при взаимодействии изопентана с тре/п-бутиловым спиртом при 27° получался изобутан с выходом 111% [22]. Образование продуктов перераспределения водорода при этих катализируемых серной кислотой реакциях сопровождалось расходованием изопарафинового сырья в количестве, превышающем эквимолярное при взаимодействии около 1,8 молей изобутана и около- [c.185]

    Способность к легкому раскрытию кольца при нуклеофильной атаке делает трехчленные кольца сильнейшими алкилирующими агентами. Это свойство успешно используется в лекарственных препаратах типа хлорам-буцила — азотного иприта, применяемого при лечении хронического лим-фолейкоза (белокровия). Детальный механизм действия этих препаратов пока еще не выяснен, однако обязательное наличие двух хлорэтильных групп (G1 — GH2GH2—), присоединенных к атому азота, позволяет думать, что действие препарата обусловлено сшиванием компонентов клетки. Большая часть наших знаний о поведении in vitro таких лекарственных препаратов основана на раннем изучении горчичного газа  [c.202]

    Чаще всего предполагают, что механизм реакции алкилиро-вания третичными аминами состоит в отщеплении вторичного амина с образованием нснредс чьного соединения, которое затем присоединяет алкилируемое вещество. [c.169]


Смотреть страницы где упоминается термин алкилированный механизм: [c.173]    [c.179]    [c.185]    [c.470]    [c.240]    [c.62]    [c.112]    [c.134]    [c.330]    [c.395]    [c.146]    [c.442]    [c.166]    [c.196]    [c.483]    [c.1204]    [c.171]    [c.171]    [c.263]   
Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7 (1961) -- [ c.229 , c.244 ]




ПОИСК







© 2025 chem21.info Реклама на сайте