Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворитель влияние в ароматических

    Сравнительная трудность проведения этого процесса означает, что требуется не только какой-либо внешний агент (дополнительная молекула галоида или растворитель) для помощи в достижении переходного состояния, но и значительное участие ароматического кольца п его заместителей. Следовательно, реакция бромирования и в меньшей степени реакция хлорирования являются хорошо выраженными избирательными реакциями, они дают почти исключительно о-п-ориентацию в толуоле со слабо-идущей атакой в ж-положение. Поэтому галоидирование является весьма чувствительной реакцией для изучения влияния заместителей на активность ароматического кольца. Подобные данные [272] суммированы в табл. 13. [c.447]


    Индукционное взаимодействие. Установлено, что раствори — тели, обладающие значительным дипольным моментом, способны индуцировать дипольный момент у молекул асимметричной и сла— боасимметричной структуры. Следовательно, индуцированию подвержены как полярные, так и некоторые неполярные углеводороды масляного сырья. Поляризации подвержены в большей степени полициклические ароматические углеводороды, у которых ароматические кольца слабо экранированы нафтеновыми циклами и короткими алкильными цепями (то есть голоядерные). Под влиянием элв стростатического поля растворителя в таких молекулах масляной фракции возникает дeфopмai ия внешнего электронного слоя, что приводит к неравномерному распределению зарядов на отдельных участках молекул. В результате неполярная молекула временно превращается в индуцированный диполь. Молекулы с индуцированным дипольным моментом подвергаются далее ориентационному взаимодействию и переходят и раствор полярного растворителя. Индукционные силы взаимодействия зависят от силы электростатического поля полярной молекулы, то есть от значения дипольного момента и химической природы неполярных молекул, а именно от способности их поляризоваться. Индуцированный дипольный момент пропорционален напряженности поля Е, то есть =аЕ, где а характеризует степень поляризуемости индуцированной молеку — лы. [c.215]

    Свойства фенантрена при растворении существенно отличаются от свойств антрацена и карбазола. Фенантрен много лучше растворим во всех растворителях антрацен растворяется в ароматических углеводородах несколько лучше карбазола, но хуже последнего растворим в полярных растворителях. Влияние компонентов на растворимость смеси отмечено в работе [5]. Так, растворимость фенантрена снижается в присутствии карбазола,. поэтому в сырье должно быть минимальное его количество. Осо- [c.300]

    Степень извлечения низкоиндексных компонентов зависит от расхода растворителя, определяемого сочетанием его растворяющей способности и избирательности, химическим составом сырья и требуемой степенью очистки. С повышением пределов выкипания масляных фракций в их составе -увеличивается содержание полициклических ароматических и нафтено-ароматических углеводородов, а также смол и серосодержащих соединений, подлежащих удалению. Поэтому при прочих постоянных условиях (температуре, способе экстракции) расход растворителя, необходимый для очистки, увеличивается по мере утяжеления сырья. В то же время при увеличении кратности растворителя к сырью выход рафината уменьшается, одновременно изменяются его химический состав, а следовательно, и свойства. На рис. 21 и 22 показано влияние кратности растворителя на показатели селективной очистки дистиллята одной из восточных нефтей [19]. С увеличением расхода растворителя независимо от его природы выход рафината снижается, а его индекс вязкости растет. Однако при практически одинаковой кратности растворителя к сырью выход рафината заметно ниже в случае очистки фенолом. Высокая растворяющая способность фенола при средней его избирательности приводит к большему извлечению смолистых веществ от их потенциального содержания в дистилляте (см. кривые 4) и большему переходу в экстракт парафино-нафтеновых компонентов (см. кривые 1). [c.94]


    Влияние водорода на интенсивность и глубину процесса деструктивной гидрогенизации углей зависит от их элементного, структурного и минерального составов, парциального давления Нг, температуры и продолжительности процесса, активности и селективности катализаторов и многих других факторов. Водород расходуется на гидрокрекинг ОМУ и стабилизацию образующихся при термораспаде радикалов, образование газов, регенерацию растворителя, гидрирование ароматических и олефиновых структур, удаление гетероатомов, сдвиг обратимых реакций в сторону насыщенных структур, снижения выхода продуктов уплотнения. [c.211]

    Необходимо отметить, что такая закономерность соблюдается лишь при постоянном радикале, так как в случае различных радикалов (например, при сравнении ароматических и алифатических растворителей) влияние функциональной группы может быть нивелировано влиянием радикала. При одинаковом дипольном моменте ароматические растворители обладают более высокой избирательностью. [c.349]

Таблица I. Влияние ароматических растворителей на селективность заместительного хлорирования этилхлорида Таблица I. <a href="/info/1211147">Влияние ароматических растворителей</a> на селективность <a href="/info/562739">заместительного хлорирования</a> этилхлорида
    На избирательную способность полярных растворителей также Елияют величина дипольного момента и особенности молекулярной кх структуры. Исследования показали, что у органических соеди — Е(е ЕИЙ одного и того же класса, различающихся только функцио — Е(альной группой, избирательная способность увеличивается с ростом дипольного момента их молекул. Такая закономерность характерна как для ароматических, так и д, я алифатических растворителей. Функциональные группы по их влиянию на избирательную способность растворителя располагаются в следующей последовательности  [c.224]

    В случае полярного растворителя влияние величины является определяющим и может значительно изменить условия разделения. Относительные летучести рядом расположенных парафинов или ароматических углеводородов все еще высоки, правда они имеют величину 1,7, тогда как в идеальном случае эта величина равна 2,25. Однако разделение парафинов и аро.матических углеводородов с одинаковы.м числом атомов углерода теперь становится не сложным, так как отношение летучестей равно 9. В результате размазывания кривых, а также уменьшения нх наклона различие в числе углеродных атомов при одинаковой летучести вместо величины 0,3 (для идеального случая) становится равным 5. Вследствие влияния величины 7 значения к по сравнению с идеальным случаем заметно уменьшаются. [c.253]

    В случае слабых взаимодействий, в результате которых не всегда образуются стехиометрические комплексы, также можно изучать влияние ароматических соединений на акцепторные компоненты (например, растворитель), для того чтобы выяснить, в какой степени исследуемые свойства изменяются внутри гомологического ряда. [c.303]

    Качество растворителей влияет на многие другие свойства покрытий механические, адгезионные, стойкость к старению и т. д. Это влияние может быть непосредственным (каталитическое или стабилизирующее действие остаточного растворителя на полимер) или косвенным, т. е. проявляться через структуру материала пленки (глобулярная, фибриллярная, ячеистая и т. п.). Так, наблюдаются, существенные различия в физико-механических свойствах и стойкости к тепловому и световому старению перхлорвиниловых покрытий, полученных с применением различных растворителей лучшими являются пленки из лаков, в которых растворителями служат ароматические углеводороды (ксилол, бензол), худшими — из лаков с хлорированными углеводородами (трихлорэтилен, хлорбензол), промежуточные свойства имеют покрытия, полученные из растворов в ацетоне. [c.49]

    Влияние концентрации растворителя на коэффициенты активности и на относительную летучесть показано на рис. 3. Коэффициенты активности обоих компонентов возрастают с ростом концентрации растворителя. Коэффициент активности неароматической фракции увеличивается быстрее, чем коэффициент активности ароматической фракции, так что относительная летучесть а также возрастает с увеличением концентрации растворителя. [c.98]

    Титановый полиизопрен состоит из золь- и гель-фракций. В серийном каучуке, полученном в алифатических растворителях, средняя молекулярная масса золь-фракций равна (1,2-ь1,5) 10 , а содержание гель-фракции составляет 20—30%- При использовании ароматических растворителей содержание геля ниже и он характеризуется более рыхлой структурой. Под влиянием сдвиговых напряжений, возникающих в процессе технологической обработки каучука, гель-фракция с рыхлой структурой может полностью разрушаться. Плотный гель остается в полимере и ведет себя как наполнитель. Сам по себе плотный гель кристаллизуется быстрее, чем исходный каучук и золь-фракция, в то же время с повышением содержания гель-фракции в каучуке полупериод кристаллизации его вначале уменьшается, а затем возрастает. Такой характер влияния геля объясняется, с одной стороны, ускорением образования зародышей кристаллов и, с другой стороны, уменьшением подвижности цепей и нарушением их структуры при большом содержании геля [23]. [c.207]


    Благодаря небольшому содержанию двойных связей бутил-каучук стоек к действию кислорода. Соли металлов переменной валентности (Си, Мп, Ре) оказывают незначительное влияние на стойкость каучука [14]. При воздействии ближнего УФ-света или ионизирующих излучений он сильно деструктирует. Для стабилизации в него вводят до 0,5% антиоксиданта (неозона Д, НГ-2246, ионола). Бутилкаучук легче растворяется в углеводородах жирного ряда, чем в ароматических, нерастворим в спиртах, эфирах, кетонах, диоксане, этилацетате и растворителях, содержащих амино- и нитрогруппы. Ниже приведены некоторые физические свойства бутилкаучука [15]  [c.349]

    Функциональные группы по их влиянию на избирательность растворителя располагаются в такой последовательности Ы02> > СЫ> СНО> СООН >ОН>ЫН2. Из приведенных данных также следует, что при равных значениях дипольного момента ароматические растворители характеризуются более высокой избирательностью, чем алифатические (бензонитрил и ацетонитрил фенол и метанол). [c.58]

    Выделяющиеся при высоких температурах смолы и высокомолекулярные ароматические углеводороды способны извлекать из раствора пропана благодаря влиянию дисперсионных сил остающиеся в нем нежелательные компоненты. В результате в верхней части деасфальтизационной колонны совмещаются процессы фракционирующего разделения пропаном и селективной экстракции избирательным растворителем (смолы, полициклические ароматические углеводороды). Этот процесс можно назвать ректификационной экстракцией . Фракционирование сырья растворителями, находящимися близко к критическому состоянию, имеет свои особенности по сравнению с противоточным экстракционным процессом при помощи избирательных растворителей. Главное различие заключается в том, что при существовании температурного градиента в обычной многоступенчатой экстракционной колонне самопроизвольно возникает внутренняя циркуляция только той жидкой фазы, которая подается на. более холодном [c.68]

    Изучая влияние ароматических растворителей на карбенообразование, мы обнаружили очень удобный способ получения карбенов путем депротонирования солей 2а трет-бутилатом калия в ароматических растворителях (бензол, толуол) (способ А) [24]. Эта модификация способа депротонирования позволила получить с хорошими выходами достаточно чистые образцы 3,4-диарил-1,2,4-триазолин-5-илиденов За, (1 (64 и 51% соответственно). На первой стадии реакции происходит обмен ионов соли на т/ ет-бутилат, на второй - последующий распад трет-бутилата азолия на карбен и т/ ет-бутанол. Благодаря простоте осуществления процесса и отсутствию побочных процессов, способ А может рассматриваться как весьма перспективный для получения различных типов ГК. По сравнению с синтезом по Ардуэнго [4, 5], предлагаемая модификация исключает две дополнительные препаративные стадии (удаление тетрагидрофурана и экстракцию карбена бензолом). [c.282]

    Примером влияния растворителя на ароматическое электро-фильное замещение может служить ЗнАг-реакция азосочетания между тетрафторборатом 4-нитрофенилдиазония и М,М-диме-тиланилином [уравнение (5.27)] [504]. В соответствии с двухстадийным механизмом с участием промежуточного арениевого иона образование активированного комплекса на первой определяющей скорость стадии связано с делокализацией положительного заряда. Следовательно, повышение полярности растворителя должно приводить к замедлению реакции. [c.219]

    В своей классической работе о влиянии ароматических растворителей на свободнорадикальное хлорирование Расселл [ 10] установил необычно сильное комплексообразование атомов хлора с иодбензолом и дифенилсульфидом, включающее прямую связь с гетероатомом, но не с ароматическим кольцом. Эту концепцию использовал Бреслоу [11], который присоединил иодбензольный фрагмент к стероиду в качестве ориентира ( шаблона ), чтобы направить радикальное хлорирование в надлежащее положение ( шаблонный синтез). Недавно в качестве такого шаблона была успешна использована дифенилсульфидная группа. Так, хлорирование производного холестан-За-ола (19) хлористым сульфурилом протекает как процесс с передачей радикала. Гидролиз и дегидрохлорирование продукта (20) с последующим ацетилированием приводят к ацетату -холестен-За-ола [c.195]

    СИЛЬНО изменяются. От бензола через грет-бутилбензол к сероуглероду хлор-радикал все сильнее связывается в комплекс, поэтому его активность уменьшается, а селективность соответственно возрастает. Из таблицы видно, в частности, сильное действие сероуглерода, который столь далеко сдвигает соотношения в сторону случая (в) на схеме (9.12), что имеет место чрезврл-чайно сильная стабилизация промежуточного углеродного радикала влиянием заместителей — эффект, который хотя и за.ме-тен в случае вторичного водорода в н-пентане, но не достигает такой степени. Влияние ароматических растворителей на относительную реакционную способность хорошо пропорционально относительной основности ароматических соединений или а-кон-стантам заместителей, связанных с ароматическими соединениями. [c.542]

    Отновгения выходов циклогептатриена и толуола, получающихся при взаимодействии метилена с бензолом, зависят от природы растворителя. В паровой фазе циклогептатриена получается в 3,3 раза больпю, чем толуола в растворе это отношение составляет 3,7 для 2 М раствора бензола в циклогексане, 4,8 для чистого бензола (11,4 моля) и 7,0 для 2 М раствора бензола в торт-бутилнафталине. Это влияние ароматических растворителей связывают с тем, что метилен образует с ними я-комплексы [156а]. [c.48]

    На специфическое влияние ароматических растворителей в реакциях Меншуткина указывал Рейнгеймер с сотр. [111], а недавно было показано [112], что в-апротонных, не содержащих гидроксильных групп растворителях, не наблюдается даже качественной корреляции между скоростью реакций Меншуткина и диэлектрической проницаемостью среды. Беард и Плеш [113] показали также, что диэлектрическая проницаемость среды не оказывает существенного влияния на скорость образования четвертичных аммониевых солей вопреки общепризнанному до последнего времени мнению (см. гл. VIII, 2). [c.315]

    Реакция циклотримеризации протекает в растворе. Представляло интерес изучение влияния различных растворителей иа реакцию циклотримеризации бутадиена на каталитической системе AI (С2Н.5)2С1/ /Ti(O 4H9)4. Результаты представлены в табл. 2. Лучшими растворителями являются ароматические углеводороды бензол и толуол. В алифатических углеводородах циклотримеризация бутадиена протекает очень медленно и неселективно. Попытка использования ЦДТ-1,5,9 в качестве [c.57]

    Влияние ароматических растворителей на элементарные константы радикальной полимеризации ММА (25° С, азо-бис-изобутиронитрил, >1,=365 лел1к) [7] [c.38]

    В связи с этим целесообразно сопоставить плотность упаковки полимера с величиной а. На рис. 6 такое сопоставление проведено для трех полимеров. Общая тенденция во всех случаях — уплотнение упаковки с улучшением качества растворителя (уменьшепие v с ростом а). Зависимость г" = / (а) для данного полимера расщепляется, однако па линии, около которой группируются точки для растворителей с молекулами преимущественно сходной структурой (ароматические, неароматические и т. п.). Обращает на себя внимание, тем не менее, практическая параллельность всех прямых V / (а). Это указывает па то, что в пределах каждой группы систем полимер—растворитель влияние качества растворителя на плотность упаковки полимера, выражаемое отношением Аг7/Аа, остается примерно одинаковым. [c.185]

    Среди растворителей донорного типа н-бутиловый эфир в наименьшей степени понижает экстракцию Tb(III) и Eu(III) диоктилфосфорной кислотой. Более удивительно влияние ароматических углеводородов. Так, величина К уменьшается в ряду л-ксилол-о-ксилол> >толуол>хлорбензол, что не согласуется с уменьшением основности указанных л-доноров в данном ря-ДУ [14]. [c.136]

    Влияние температуры экстракции на растворимость химических компонентов сырья различного молекулярного строения в неполярных растворителях обсуждалось в 6.2.3. Как видно из рис. 6.4, при пониженных температурах (50 — 70 °С) пропан проявляет высокую растворяющую способность и низкую избирательность и является преимущественно осадителем асфальтенов. При повышенных температурах экстракции (85 °С и выше) у пропана, наобо — рот, низкая растворяющая способность и повышенная избирательность, что позволяет фракционировать гудроны с выделением групп углеводородов, различающихся по структуре и молекулярной массе. Следовательно, в этой температурной области пропан является фракционирующим растворителем. Высокомолекулярные смолы и полициклические ароматические углеводороды, выделяющиеся при предкритических температурах, благодаря действию дисперсионных сил извлекают из дисперсионной среды низкомолекулярные смолы и низкоиндексные углеводороды, повышая тем самым качество деасфальтизата, но снижая его выход. Антибатный характер зависимости растворяющей способЕюсти и избирательности пропана от температуры можно использовать для целей регулирования выхода и качества деасфальтизата созданием определенного тем — перагурного профиля по высоте экстракционной колонны повышенной температуры вверху и пониженной — внизу. Более высокая температура в верхней части колонны будет способствовать повы — шению качества деасфальтизата, а пониженная температура низа колонны будет обеспечивать требуемый отбор целевого продукта. [c.230]

    Качественно та же картина сильного ацидифицирующего влияния ароматически связанных атомов фтора на равновесную NH-кислотность ариламинов сохраняется и при ее определении в растворителе, в частности в ДМСО. Установленные в этом растворителе величины рК дают возможность оценить изменение силы NH-кислот при замещении одного из атомов водорода кислотного центра полифторарильными группами (табл. 37). Оказалось, что [c.227]

    На интенсивность (скорость) термодеструктивных превра — щений ТНО существенное влияние оказывает растворяющая способность дисперсионной среды, которая определяет значение так называемой "пороговой" концентрации асфальтенов. Если дисперсионная среда представлена парафино — нафтеновыми углеводородами, обладающими слабой растворяющей способностью (то есть яиляющимися "плохим" растворителем), асфальтены выпадают из рс1Створа при низких их концентрациях. Наоборот, в среде "хорошего" растворителя, например, полициклических ароматических углеводородов или смол, выпадение асфальтенов происходит только при превышении значения их пороговой концентрации (с показа — телем растворяющей способности тесно связано и такое понятие, Кс1К "агрегативная устойчивость" сырья или реакционной среды, широко применяемое при объяснении причин и разработке способов защиты против расслоения и закоксовывания змеевиков печей и новых сортов высоковязких топлив, вяжущих, связующих материалов и др.). [c.40]

    При высаживании асфальтенов из раствора наблюдается увлечение вместе с ними некоторого количества углеводородов и смол, растворимых в данном растворителе при температуре высаживания, причем часть из них захватывается механически, а часть удерживается внутри агрегированных мицелл вследствие частичной сорбции вместе со смолами. Дрисутствие углеводородов в мицеллярной оболочке можно объяснить дисперсионными силами, возникающими между молекулами смол и углеводородо-в. На поверхности мелкодисперсных твердых частиц асфальтенов смолы сорбируются таким образом, что полярная часть их молекул обращена в сторону ядра коллоидной мицеллы, а неполярная — в сторону дисперсионной среды. В то же время вследствие упорядоченности неполярных частей молекул смол и влияния дисперсионных сил между ними встраиваются молекулы углеводородов. Так как в остатках нефтей содержится больше смол, чем необходимо для пептизации асфальтенов, вероятно образование поли-молекулярных мицеллярных оболочек, в результате чего углеводороды прочно удерживаются между чередующимися молекулярными слоями полярных соединений (смол). Извлечь эти углеводороды можно, полностью разрушая молекулярные оболочки коллоидных мицелл растворением смол многократной коагуляцией или отмывкой. Выше КТРг вследствие ограниченной растворяющей способности пропана по отношению к смолам происходит их выделение из раствора. Выделяющиеся смолы растворяют полициклические ароматические углеводороды и, таким образом, относительно раствора углеводородов выполняют роль селективного растворителя, несмешивающегося с пропаном. [c.67]

    При исследовании ИК-спектров системы ароматическое соединение — НС1 было изучено положение vh i в различных растворителях [36]. При переходе от бензола к пентаметилбензолу Vh i сдвигается в сторону меньших частот. Это уменьшение частоты почти линейно зависит от потенциала ионизации (рис. 22). Поскольку потенциал ионизации может служить мерой силы донора, влияние ароматических соединений на Vhgi зависит от их донорной силы, т. е. от основности. Однако на основании этих данных строгих выводов делать нельзя, поскольку в некоторых случаях наблюдалось значительное отклонение от прямой. [c.305]

    А.Н. Гусева и Е.В. Ск>болев разработали классификацию, основанную на представлениях о нефти как природном углеводородном растворе, в котором содержится наибольшее количество хемофоссилий (унаследованных структур) и меньше всего компонентов, изменяющихся под влиянием условий среды существования нефти в залежи, условий отбора пробы, транспортировки и хранения. Однако авторы почему-то назвали классификацию геохимической, хотя в основе ее лежат генетические признаки — хемофоссилии. В этой классификации нефти подразделялись по растворителю на классы — алкановый, циклано-алкановый, алкано-циклановый и циклановый, т. е. по химическому признаку, а классы — на "генетические" типы нефти, обогащенные парафином, затронутые вторичными процессами (осернение), обогащенные легкими фракциями. Однако это в большей мере признаки вторичных изменений нефтей, а не генетических различий. Кроме того, авторы классификации выделяли нефти разной степени катагенеза. Таким образом, А.Н. Гусева и Е.В. Соболев предложили много разных показателей, но их трудно использовать для четкой классификации нефтей. Они ценны главным образом для раскрытия механизма преобразования нефти при тех или иных процессах. Интересны предложенные этими авторами коэффициенты, отображающие соотношения содержания метановых УВ и твердых парафинов с долей углерода в ароматических структурах, которые увеличиваются с возрастанием степени катагенеза. [c.8]

    В качестве растворителей при полимеризации бутадиена под влиянием бис(я-кротилникельгалогенидов) могут быть использованы ароматические (бензол, толуол) или алифатические (гептан) [c.101]

    На основании изучения действия серы в процессе полимеризации хлоропрена и деструкции полихлоропренсульфидов под влиянием тиурама и других химически пластицирующих веществ были разработаны условия получения низкомолекулярного хлоропренового каучука, который при химической и механической пластикации легко переходит в вязкотекучее состояние [27]. Из этих полимеров могут быть получены концентрированные растворы в менее токсичных растворителях, чем хлоропроизводные и ароматические углеводороды, в частности в смеси этилацетата и бензина. [c.375]

    Фенол — типичный полярный растворитель со средней раство-ряюш,ей способностью и средней избирательностью. Под влиянием силового поля молекул фенола в раствор переходят смолистые вещества, полициклические углеводороды, органические соединения серы. С увеличением кратности отношения растворителя к сырью и с повышением температуры растворяющая способность фенола повышается. При температуре, близкой к критической температуре растворения, в экстрактный раствор начинают переходить желательные ароматические углеводороды с длинными алкильными цепями и нафтеновые углеводороды. [c.245]

    Изучение влияния природы растворителей на степень и чет-Жть выделения ароматических углеводородов из катализата платформинга [71] позволило установить (рис. 25), что наибольшей растворяющей способностью из исследованных растворителей обладает Ы-метилпирролидон, а наименьшей —диэтиленгли-коль (см. рис. 25, а). При одинаковом коэффициенте разделения (см. рис. 25, б) максимальный выход экстракта получен при использовании Ы-метилпирролидона, следовательно, этот растворитель обладает и наибольшей избирательностью по отношению к углеводородам ароматического ряда. По избирательной способности исследованные растворители располагаются в такой последовательности Н-метилпирролидон>у-бутиролактон>гексаметил-фосфотриамид с 10% воды>2-пирролидон>пропиленкарбонат> >сульфолан >диметилсульфоксид >алкилкарбаматы >диэти-ленгликоль. [c.109]


Библиография для Растворитель влияние в ароматических: [c.82]   
Смотреть страницы где упоминается термин Растворитель влияние в ароматических: [c.478]    [c.196]    [c.162]    [c.79]    [c.220]    [c.130]    [c.105]    [c.54]    [c.14]    [c.22]    [c.381]   
Руководство по ядерному магнитному резонансу углерода 13 (1975) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Растворителя влияние ароматические растворители



© 2024 chem21.info Реклама на сайте