Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплота давлений паров

    Циркуляционный газ подвергается очистке от сероводорода и возвращается в цикл. Для поддержания нужной концентрации водорода в циркуляционном газе перед сепаратором на компрессор постоянно подается свежий водородсодержащий газ, а часть циркуляционного газа отдувается. Отдуваемый водородсодержащий газ, предварительно нагретый в подогревателе печп, направляется в стабилизационную колонну с целью снижения парциального давления паров нефтепродукта. В колонне из дизельного топлива выделяются углеводородные газы и бензин для получения дизельного топлива с требуемой температурой вспышки. Тепловой режим колонны обеспечивается теплотой сырья, подаваемого в стабилизационную колонну. Выходящее из нижней части колонны стабильное дизельное топливо охлаждается в теплообменниках и воздушном холодильнике, после чего выводится с установки. С верха колонны отбирается бензин и углеводородный газ после охлаждения они поступают в сепаратор, в котором бензин отстаивается от водного конденсата. [c.64]


    Идеальным называется раствор, общее давление паров которого является линейной функцией его мольного состава в жидкой фазе и при смешении компонентов которого не происходит сжатия или расширения объема, не выделяется и не поглощается теплота. Другое определение идеального раствора будет дано на основе уравнения (1.40). [c.11]

    Большой склонностью к полимеризации характеризуется этиленоксид. При полимеризации этиленоксида выделяется 85— 125 кДж/моль (20—30 ккал/моль) тепла, а так как теплота испарения этиленоксида составляет лишь 25,6 кДж/моль (6,1 ккал/ моль), то в сосуде может создаться весьма высокое давление паров этиленоксида, приводящее к взрыву. [c.344]

    Аналогичные закономерности наблюдаются и в системах, составленных из одного или двух кристаллогидратов и пара воды. Если имеется только одна твердая фаза, то она находится в равновесии с водяным паром, давление которого может изменяться в некотором интервале. Когда давление пара повысилось до определенного значения, начинается взаимодействие пара и кристаллогидрата, который переходит в форму, более богатую водой. Этот процесс сопровождается выделением теплоты, которую необходимо отводить, чтобы температура системы была постоянной. При этих условиях давление пара в течение всего превращения тоже остается постоянным. Таким образом, если сосуществуют два кристаллогидрата различного состава, то равновесный с ними пар должен иметь при заданной температуре строго определенное давление. [c.388]

    На рис. XIX,3 показаны изотермы адсорбции и дифференциальных теплот адсорбции паров бензола на силикагелях различной структуры. Из рисунка видно, что переход от непористого кремнезема (аэросила) к крупнопористым силикагелям (75—105 А) с предельно гидроксилированной поверхностью не изменяет абсолютных величин адсорбции в области заполнения монослоев. Переход же к тонкопористым силикагелям (25 А) вызывает заметный рост величины адсорбции и теплоты адсорбции изотермы адсорбции становятся более выпуклыми. Таким образом, для извлечения паров таких веществ при малых парциальных давлениях выгоднее применять тонкопористые адсорбенты. [c.517]

    Водяной пар как теплоноситель используется главным образом в насыщенном состоянии — как высокого давления, так и отработанный от паровых машин и насосов. Преимуществом насыщенного водяного пара является его высокая теплота конденсации, поэтому для передачи даже большого количества тепла требуется сравнительно немного теплоносителя. Высокие коэффициенты теплопередачи при конденсации водяного пара позволяют иметь относительно малые поверхности теплообмена. Кроме того, постоянство температуры конденсации облегчает эксплуатацию теплообменников. Недостатком водяного пара является значительный рост давления, связанный с повышением температуры насыщения, что ограничивает его применение конечной температурой нагрева вещества 200—215° С. При более высоких температурах требуется высокое давление пара, и тенлообменные аппараты становятся металлоемкими и дорогими. [c.253]


    I — теплота испарения воды при давлении пара, ккал/кг  [c.284]

    С повышением высоты и дальности полета сверхзвуковых летательных аппаратов важное значение при их эксплуатации приобрели давление насыщенных паров топлива и его объемная теплота сгорания. При полете со сверхзвуковой скоростью давление паров топлива в баке самолета повышается в результате нагрева. На определенной высоте оно может стать выше атмосферного, и топливо закипает. Для предотвращения кипения топлива баки сверхзвуковых самолетов делают герметичными, а топливо в них находится под давлением воздуха, подаваемого от компрессора двигателя, или нейтрального газа, например азота. Чем выше давление насыщенных паров топлива, тем выше должно быть давление наддува. При высоком давлении в баках требуется дополнительное увеличение их прочности, что приводит к увеличению веса самолета. Кроме того, при работе на топливе с высоким давлением насыщенных паров на определенных высотах в топливной системе могут образоваться паровые пробки. При сверхзвуковом полете на таком топливе трудно обеспечить бескавитационный режим работы насосов. Поэтому у топлив, предназначенных для сверхзвуковых полетов, давление насыщенных паров регламентируют. Для понижения давления насыщенных паров утяжеляют фракционный состав используемых топлив, в первую очередь повышая температуру начала их кипения. [c.15]

    Плотность кг/м Теплота кДж/кг Давление паров при Термическая ность в условиях 11802—66, топлива осадок [c.18]

    А. В. Думанский показал, что количество прочно связанной воды (Л) более правильно определять по той предельной величине адсорбции, при которой теплота смачивания (Q) близка к нулю [1]. Из наших данных [66] следует, что величину А можно найти по изотерме адсорбции при относительном давлении паров воды р/р5 = 0,95. Для количественной оценки гидрофильности дисперсных материалов может служить отношение Q/A. В зависимости от типа материала оно изменяется от 30 ООО до 420 Дж/моль [66]. Условной границей между гидрофильными и гидрофобными материалами можно считать отношение Р/Л = 3750 н-4200 Дж/моль. [c.32]

    В первых четырех разделах этой главы рассматривается термодинамика фазовых превращений. В некоторых случаях преподаватель может не рассматривать подробно критическую точку или фазовые диаграммы, но все курсы должны включать материал по теплотам плавления, сублимации и испарению, а также по температурам кипения и давлению пара над жидкостью. Если решено включить в курс фазовые диаграммы, следует тщательно пояснить примеры, приведенные в учебнике. [c.579]

    В формуле (6.10) принято г — теплота конденсации пара при заданном давлении, Дж/кг — плотность конденсата (жидкости), кг/м X — теплопроводность конденсата, Вт/(м-К) 1-1 — вязкость конденсата, Па-с  [c.151]

    При абсолютном давлении паров толуола р = 0,15 МПа из табл. 5 приложения имеем температуру кипения толуола 4ип = = 123 °С и скрытую теплоту парообразования толуола = = 354,5 кДж/кг..  [c.169]

    Основными данными при решении задач технологического проектирования и оптимизации являются физико-химические и теплофизические данные. Они обычно представляются в трех формах — в виде таблиц, диаграмм и уравнений. Наиболее распространенным способом все-таки является аналитическое представление, допускающее непосредственный расчет соответствующих параметров при заданных входных условиях. В химической технологии, особенно для целей проектирования, к наиболее распространенным данным обычно относятся давление пара, теплота испарения, удельная теплоемкость, плотность, теплопроводность, вязкость, теплота реакций, данные по пожаробезопасности, поверхностное натяжение, фазовое равновесие (жидкость—пар, жидкость—жидкость, жидкость—жидкость—пар, жидкость—твердое вещество, твердое вещество—пар, растворимость), кинетика реакций химического превращения, полимеризации, растворимости и т. д. [c.177]

    Разработка расчетных методов получения данных. Она приобретает все большее значение по мере развития фундаментальных исследований в области теории растворов и молекулярной термодинамики. Более широко расчетные методы применяются в дополнение к экспериментальным данным. Даже хорошие экспериментальные данные часто нуждаются в аналитической форме представления для их интерполирования или экстраполирования или в качестве исходных данных различного рода систем. В других случаях потребность в расчетных методах появляется при расчете одних свойств по известным термодинамическим соотношениям для других, например энтальпии через теплоемкость, теплоты испарения через давление пара и т. д. Наряду с точными расчетными методиками часто возникает необходимость в оперативной оценке свойств, экспериментальное измерение которых достаточно трудоемко. В этом случае могут быть использованы, на первом этапе оценочные корреляции, прежде чем эти данные будут получены экспериментально. [c.180]


    К свойствам, представляемым зависимостями от температуры, относятся давление пара чистого компонента (упругость пара) плотность жидкой и паровой фаз теплоемкость жидкой и паровой фаз вязкость жидкой и паровой фаз коэффициенты теплопроводности жидкости, теплопроводности пара поверхностное натяжение теплота парообразования. [c.99]

    Растворы, обладающие п о-ложительными отклонениями давления пара, образуются из чистых компонентов большей частью с поглощением теплоты. Эти два свойства, естественно, связаны между собой, так как поглощение теплоты прп образовании раствора приводит к уменьшению количества теплоты, необходимого (/ [c.310]

    Растворы, обладающие отрицательными отклонения м и давления пара, образуются из чистых компонентов обычно с выделением тепло-т ы. Вследствие этого теплота испарения компонентов нз раствора оказывается большей, чем чистого компонента. Поэтому здесь давление насыщенного пара оказывается меньшим, чем соответствующих простейших растворов. Образование раствора из компонентов сопровождается в этом случае большей частью (но тоже не всегда) уменьшением объема. [c.311]

    Обратимся теперь к вопросу о причинах этих отклонений. Наиболее важными факторами в этом отношении являются обычно процессы, связанные с изменением средней величины частиц жидкости. Сюда относится как уменьшение величины частиц вследствие частичной или полной диссоциации тех ассоциированных комплексов, которые могли быть в одном из компонентов в чистом состоянии, так и укрупнение частиц вследствие образования соединений между молекулами компонентов. Уменьшение ассоциации вызывает поглощение теплоты при образовании раствора, облегчает испарение молекул и приводит к положительным отклонениям давления пара. Образование же соединений вызывает противоположные эффекты. Нередко уменьшение ассоциации и образование соединений происходят одновременно, когда один или оба компонента раствора ассоциированы в чистом состоянии и при образовании раствора наряду с изменением средней величины комплексов, состоящих из молекул одного вида, возникают комплексы из молекул различных видов, часто обладающие переменным составом и не отвечающие каким-нибудь простым стехиометрическим соотношениям. [c.311]

    Рассмотрим системы, в которых в наиболее чистой форме выражены отклонения того или другого вида. Примером систем, в которых происходит распад ассоциированных комплексов одного компонента, могут служить системы из спиртов с углеводородами, в особенности простейших спиртов с углеводородами предельного ряда. Комплексы из молекул спирта, попадая в среду неполярного растворителя, претерпевают распад, причем в очень разбавленных растворах этот процесс доходит до распада на отдельные молекулы. В этом случае не происходит какого-нибудь процесса образования соединений, компенсирующего распад молекул. Поэтому образование раствора сопровождается значительным поглощением теплоты (расходуемой на распад комплексов, например, ассоциированных молекул спирта при растворении его в углеводороде предельного ряда) и образовавшийся раствор обладает значительным положительным отклонением давления пара от линейной зависимости (связанным с тем, что для выделения из жидкости одиночных молекул требуется меньше энергии, чем для выделения молекул, соединенных в комплексы). Подобные соотношения мы наблюдаем и в других системах, когда сильно ассоциированный компонент смешивается с неполярным компонентом и молекулы их не образуют между собой соединений. [c.312]

    В качестве примера систем, в которых образуются соединения между молекулами компонентов (и не протекают в заметной степени другие процессы), можно назвать систему эфир — хлороформ. В подобных системах образование раствора сопровождается значительным выделением теплоты и наблюдаются отрицательные отклонения кривых давление пара — состав от линейной зависимости. [c.312]

    Ограниченная взаимная растворимость двух жидкостей имеет место только в тех системах, в которых образование раствора сопровождается поглощением значительного количества теплоты. В этом случае парциальные давления пара обоих компонентов в растворе превосходят парциальные давления пара в соответствующих простейших системах (положительные отклонения даВ ления пара), что облегчает выделение обоих компонентов из раствора. [c.330]

    Так, связь между lg/г и 1/Г всегда в какой-то степени отклоняется от линейной. Но в области невысоких давлений пара эти отклонения невелики, что дает возможность применить здесь допущение о линейном характере зависимости . Этим вводится некоторое искажение результатов, но достигается возможность использовать преимущества линейного уравнения, напри.мер возможность расчета по двум исходным температурам. Конечно, на величинах, являющихся производными от рассматриваемой функции (как теплота испарения, ДЯ , в указанно.м примере), неточность, обуслов- [c.36]

    Изменение энтальпии в процессе испарения (теплота испарения, АЯщ) в области низких давлений насыщенного пара мало зависит от температуры и часто можно допустить, что стандартная теплота испарения (АЯ ) равна равновесной (АЯ , равн). Однако не следует упускать из вида, что такое допущение (исключая область очень низких давлений пара) является приближенным, в особенности для веществ с полярными молекулами. Так, для воды при 25 °С АН1= 10,719, а АЯ ,равн= 10,767 ккал/моль, для метилового спирта при той же температуре поправка на неидеальность пара составляет 0,13 ккал/моль при А/ = 9,07. Правда, для этилового спирта поправка уже вдвое меньше и еще больше уменьшается для [c.47]

    Вычислите разность между давлением пара воды и льда при 272 К. Теплота плавления льда равна 334 Дж/г, Р = = 610,48 Пз при i 73,16 К. [c.154]

    В 1 кг воды растворено 0,0684 кг сахара (УИ = 342), Вычислите давление пара этого раствора при 373 К. Рассчитайте температуру кипения его, если теплота испарения воды при температуре кипения равна 2256,7 10 Дж/кг. [c.192]

    В главах 1, 4, 5, 7 и 9 рассмотрены температурно-концентрационные зависимости парциальных свойств летучих и нелетучих компонентов раствора в ненасыщенном, насыщенном и пересыщенном состояниях. Анализ химических потенциалов и активности компонентов раствора и фаз [см. уравнения (1.6—1.19) и (4.2—4.5)] позволяет оценить состояние фазового стабильного и метастабильиого равновесия. Анализ термодинамических величин фазового превращения (теплоты, давления пара, разности молярных объемов, их температурной и концентрационной зависимости) в значительной мере построен на использовании уравнения (4.19). [c.227]

    При вводе водяного пара в отгонную секцию парциальное давление паров снижается и создаются условия, при которых жидкость оказывается как бы перегретой, что вызывает ее испаре — ние (то есть действие водяног о пара аналогично вакууму). При этом теплота, необходимая для отпаривания паров, отнимается от самой жидкости, в связи с чем она охлаждается. Испарение жидкости, вызванное водяньгм паром, прекращается, когда упругость паров Ячидкости при понижении температуры снизится настолько, что сганет равным парциальному давлению. Таким образом, на каждой теоретической ступени контакта установится соответствующее этим [c.172]

    Теплота смешения паров обычно очень мала, и, кроме случаев весьма высоких давлений, ею вполне можно пренебречь. Это означает, что и для реальных си-втем изотермы (1.101) представляются на тепловой диаграмме прямыми линиями. Однако, как и для случая жидкой фазы, только одна точка-каждой из этих изотерм, та, абсцисса которой равна концен-т рации у равновесной паровой фазы, принадлежит линии на-сыш енного пара энтальпийной диаграммы. Таким образом, если на график энтальпия — состав нанести изотермы (1.100) и (1.101) и с помощью данных парожидкостного равновесия [c.59]

    Теплота смешения паров обычно очень мала п, за исключением случаев весьма ] Ысоких давлений, ею вполне mohiho пренебречь. Это означает, что и для реальных систем пзотермы (1.119) на тенловой диаграмме представятся прямыми линиями. [c.56]

    Когда сорбированный слой очень слабо связан (доказательством чего может служить диапазон давлений и температур, при которых достигается сорбционное равновесие), процесс называется физической адсорбцией . Она характеризуется быстрым и обратимым равновесием с газовой фазой. Измеряемая теплота адсорбции по порядку величины оказывается равной теплоте сжижения адсорбируемого вещества. Интервал температур, в котором осуществляется такая адсорбция, лежит значительно ниже критической температуры адсорбированного вещества. В общем случае этот интервал является довольно большим вблизи точки кипения адсорбированного вещества. Силы, за счет которых происходит физическая адсорбция, ио-видимому, те же самые, что и при сжижении или смешении двух жидкостей, и должны быть отнесены к типу ван-дер-ваальсовых сил. Адсорбируемое вещества может образовывать многомолекулярные слои на поверхности адсорбента при давлениях, достаточно близких к давлению пара адсорбируемого вещества при температуре эксперимента. При давлении, равном давлению насыщающих паров, твердая поверхность просто смачивается жидкостью. [c.536]

    Пример 1Х-3 [39]. Из раствора, поступающего в систему при температуре 20 °С, необходимо -выпарить 2000 кг/ч воды при давлении 1 ат. Процесс можно проводить в единичном выпарном аппарате с использованием теплоты вторичного пара, сжатого до давления свежего греющего пара (2 ат). Рассчитать мощность, затрачиваемую на сжатие, и количество добавляемого сйежего пара. [c.398]

    Поры тонкопористых адсорбентов заполняются молекулами сильно адсорбирующихся веществ уже в области малых относительных давлении паров, так что адсорбция достигает предела. Это выражено особенно ярко в случае адсорбции пористыми кристаллами цеолитов (см. рис. XIX, 2), В случае же крупнопористых адсорбентов на поверхности пор, за исключением мест их сужений, адсорбция в области малых значений р1р происходит подобно адсорбции на непористых телах той же химической природы. Поэтому на стенках широких пор в области больших. значений р/р образуются, как и на поверхности непористых адсорбентов, полимолекулярные слои. Мы вргдели (см. рис. XVI, 8), что теплота адсорбции при образовании таких полимолекулярпых слоев близка к теплоте конденсации. Поэтому свойства адсорбата в этом случае действительно близки к свойствам жидкости. Чтобы выяснить возможность конденсации пара на поверхности жидкой пленки адсорбата в порах, весьма важно найти зависимость давления пара от кривизны поверхносги жидкости. [c.521]

    В сотрудничестве с Герцфельдом Гайтлер выполнил теоретическую работу, посвященную изучению давления паров и теплот смешения в бинарных жидких системах по методу Ван-дер-Ваальса. Его диссертация была посвящена теории концентрированных растворов. В ней он предложил рассматривать жидкие бинарные системы неэлектролит— растворитель как пространственную решетку кубической симметрии. На осрове своей модели Гайтлер рассчитал методами статистической физики наиболее вероятное расположение молекул растворителя около молекулы растворенного вещества. Допуская, что теплота смешения ие зависит от температуры и что все парциальные моляльные теплоты примерно одинаковы, он получил уравнение состояния системы, по которому можно было определить некоторые ее свойства. Сопоставление с экспериментом показало, что теория дает вполне удовлетворительные результаты. По-видимому, исследование растворов неэлектролитов методами статистической термодинамики привело Гайтлера (не без влияния Герцфельда) к вопросу о природе химических взаимодействий в них. [c.154]

    Расчет теплоты сублимации основан на том факте, что интенсивность пиков в спектре прямо пропорциональна давлению пара образца в ионном источнике. Образец помещают в емкость с отверстием очень небольшого диаметра (ячейка Кнудсена), соединяющим ее с ионным источником, поэтому вещество может попасть в источник только за счет диффузии чфез это отверстие. Если ячейка термостатирована и в ней имеется достаточное количество образца, так что часть его всегда находится в твердом виде, то теплоту сублимации образца можно определить, исследуя изменения интенсивности пика (которая связана с давлением пара) в зависимости от температуры образца. Небольшое количество образца, диффундирующее в ионный источник, не оказывает заметного влияния на равновесие. При таких исследованиях были получены интересные результаты относительно природы частиц, присутствующих в паре над некоторыми твердыми веществами, имеющими высокие температуры плавления. В паре над хлоридом лития были обнаружены мономеры, димеры и тримеры, а в паре над хлоридами натрия, калия и цезия — мономеры и димеры [20]. [c.327]

    Дальнейшее деление может быть проведено на основе других характерных свойств соединений. Так, в классе углеводородов можно произвести деление на соединения насыщенные и ненасыщенные, эфиры можно разделить по характеру цепей, прямых или разветвленных, амины—по числу радикалов. Физико-химические свойства растворителей (температура кипения, давление пара, теплота испарения, критические температура и давление, вязкость, плотность, поверхностное натяжение, рефракция, криоскопическая и эбулио-скопическая постоянные) в виде обобщенных формул или отдельных данных указаны в руководстве Вейсбергера Органические растворители [117]. [c.18]

    Зависимость теплоты испарения от температуры характеризуется кривыми, представленными на рис. 65. Теплота испарения с повышением температуры уменьшается, но в области невысоких давлений пара, к которой и относится ур. (VIII, 8), теплота испарения сравнительно слабо изменяется с температурой. Поэтому [c.252]

    При графической форме рассмотрения этой зависимости по оси абсцисс откладыают gpx, а по оси ординат —lgpY и получают прямую рис. 1,2, тангенс угла наклона которой к оси абсцисс для области невысоких давлений пара равен отношению теплот испарения этих жидкостей  [c.38]

    Давление насыщенного пара экспериментально определяется большей частью легче, чем теплота испарения, пбэтому широкое применение получили расчеты теплового эффекта процесса по данным о равновесном давлении пара, в особенности в области низких давлений пара. [c.48]

    Расчет по второму закону термодинамики проводится в этом случае на основе уравнения Клапейрона — Клаузиса или уравнений, получаемых при его интегрировании. В простейшем случае, допуская независимость теплоты испарения от температуры, для области низких давлений пара получают уравнение вида  [c.48]

    Как показывают соотношения (VII, 41), для определения стандартных изменений рассматриваемых величин (при допущении применимости к парам законов идеальных газов) достаточно знать равновесные теплоту испарения (ДЯ , равн), изменение энтронии (Д5г,, равн) и давление насыщенного пара р. При этом изменение энтропни может быть определено через теплоту испарения Д5щ, рави = ДЯ , равн/3 сама теплота испарения при сделанном допущении может быть рассчитана по давлению пара при разных температурах. [c.304]

    Вычислите количество теплоты, необходимое для нагревания 1 кг Ti l4 ст 298 до 423 К. Данные о теплоемкости возьмите из справочника [М.]. Зависимость давления пара (Па) над жидким Ti l от темпе])атуры выражается уравнением [c.153]


Смотреть страницы где упоминается термин Теплота давлений паров: [c.516]    [c.398]    [c.399]    [c.365]    [c.110]    [c.198]    [c.201]    [c.175]    [c.387]   
Свойства газов и жидкостей (1982) -- [ c.190 ]




ПОИСК







© 2024 chem21.info Реклама на сайте