Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ректификация смесей углеводородов экстрактивная

    Если в смесь углеводородов ввести третье вещество, которое увеличит относительную летучесть компонентов, то число теоретических тарелок, необходимое для разделения этих углеводородов, резко снизится. Если добавляемый третий компонент менее летуч, чем исходные углеводороды, то его вводят сверху колонны и выводят снизу вместе с остатком. Такая ректификация называется экстрактивной. При этом вводимое вещество называют растворителем, ввод его в систему приводит к повышению коэффициентов относительной летучести из-за различной растворимости в нем компонентов смеси. [c.207]


    Смесь углеводородов после дегидрирования бутиленов подвергают вначале обычной ректификации для удаления углеводородов Сд и ацетилена, после чего содержание бутадиена в смеси доходит до 25%. Полученная смесь подвергается экстрактивной ректификации также в системе из двух колонн по 50 тарелок с применением в качестве разделяющего агента фурфурола, содержащего 4% воды. При экстрактивной ректификации отгоняются изобутилен, бутан, изобутан и часть бутиленов, возвращаемых на дегидрирование, а в виде экстракта получают бутадиен и часть бутиленов с незначительными примесями иных углеводородов. Эта смесь, содержащая не менее 85% бутадиена, подвергается затем тщательной ректификации для получения продукта, содержащего 99% бутадиена. Обычно для этой цели требуется ректификационная установка, состоящая не менее чем из 100 ректификационных тарелок и предусматривающая большое орошение. [c.101]

    При разделении путем экстрактивной ректификации с водным раствором ацетона [303] в качестве разделяющего агента исходная смесь подается в колонну, орошаемую ацетоном, объемный расход которого в 2—3 раза превышает расход углеводородной смеси. Кубовый остаток из этой колонны направляется в колонну, в которой сырой изопрен отгоняется в виде азеотропа с ацетоном. Этот азеотроп промывается равным объемом воды, и углеводородная фаза разгоняется давая в дистиллате чистый изопрен, а в кубе — смесь циклопентадиена и циклопентена. Парафиновые и олефиновые углеводороды С5, отбираемые в качестве дистиллата в процессе экстрактивной ректификации, содержат значительное количество ацетона вследствие образования им азеотропов с указанными углеводородами. Ацетон из этих смесей отделяется путем отмывки водой и последующей ректификации водного раствора. Образование углеводородами С5 азеотропов с ацетоном является крупным не- [c.279]

    Дополнительные возможности интенсификации процессов разделения смесей углеводородов открывает сочетание в одном процессе азеотропной и экстрактивной ректификации. Примером такого процесса может являться метод разделения смесей циклопентана и неогексана, с использованием -в качестве разделяющих агентов метилформиата, образующего азеотроп с нео-гексаном, и фурфурола, повышающего относительную летучесть последнего [322]. В качестве дистиллата отбирается азеотроп неогексана с метилформиатом, из которого последний выделяется путем экстракции фурфуролом. В результате экстракции получается неогексан с примесью разделяющих агентов, а также смесь метилформиата и фурфурола, возвращаемая в процесс азеотропно-экстрактивной ректификации. Кубовый оста- [c.282]


    В настоящее время более широко используются высшие полигликоли — триэтиленгликоль и тетраэтиленгликоль, обладающие большей емкостью по сравнению с диэтиленгликолем и практически такой же селективностью. Применяемая в некоторых случаях смесь диэтиленгликоля с дипропиленгликолем по экстракционным свойствам близка к триэтиленгликолю. Схема экстракции гликолями изображена на рис. 5.9. Экстракция проводится при температуре 140—150 °С и давлении 0,7—1,0 МПа. Исходное сырье вводится в среднюю часть экстрактора Э-1, представляющего собой колонну с перфорированными тарелками. Растворитель подается на верх экстрактора. Из нижней части экстрактора насыщенный растворитель через камеру однократного испарения И-1 поступает в отпарную колонну К-1, где при давлении, близком к атмосферному, осуществляется процесс экстрактивной ректификации. Из верхней части этой колонны отводятся практически все содержащиеся в насыщенном растворителе неароматические углеводороды вместе с некоторой частью ароматических углеводородов и воды. Поток, выходящий из верхней части отпарной колонны, объединяется с потоком, выходящим из камеры однократного испарения, и после охлаждения и отделения от воды в разделительной емкости Е-1 направляется в нижнюю часть экстрактора, образуя орошение. Из средней части отпарной колонны выводятся чистые ароматические углеводороды [c.286]

    Таким образом, используя обычную ректификацию, селективную химическую экстракцию и физический метод экстрактивной перегонки, удается весьма четко разделить смесь пяти различных углеводородов С4. [c.198]

    В качестве нижнего продукта при экстрактивной перегонке получают смесь растворителя с ароматическими углеводородами. Экстракт можно отделить от растворителя обычной ректификацией в регенерационной колонне. Вследствие превосходной стойкости сульфолана к нагреву и окислению можно проводить ректификацию при сравнительно высокой температуре низа колонны (175—180°С) и под вакуумом. Последние следы углеводородов удаляют отдувкой водяным паром в нижней секции регенерационной колонны. [c.241]

    Стерины относятся к самым устойчивым компонентам экстрактивных веществ, тогда как жиры подвергаются превращениям уже при хранении древесины. При сульфатной варке в результате взаимодействия смоляных и жирных кислот, жиров и восков с гидроксидом натрия образуется сульфатное мыло. Жиры и воски в щелочной среде омыляются с образованием натриевых солей жирных кислот. Поверхностно-активные свойства мыла способствуют эмульгированию части неомыляемых липофильных компонентов экстрактивных веществ. В результате отбираемое после отстаивания упаренного отработанного варочного раствора (черного щелока) сульфатное мыло будет содержать натриевые соли смоляных и жирных кислот и неомыляемые соединения (фитостерины и др.). При обработке сульфатного мыла раствором серной кислоты получают талловое масло. Оно представляет собой смесь смоляных и жирных кислот и нейтральных веществ (фитостерин, высшие алифатические спирты, углеводороды). Вакуум-ректификацией таллового масла получают талловые продукты (дистиллированное талловое масло, талловую канифоль, талловые жирные кислоты и талловый пек). [c.537]

    Критическая температура растворения. Многие растворители, пригодные для экстрактивной разгонки, не вполне растворимы при комнатной температуре в одном или в обоих компонентах, подлежащих разделению. Максимальная температура, при которой любая смесь компонента и растворителя, углеводорода и нитробензола, может еще существовать в двух жидких фазах, называется критической температурой растворения смеси (КТР). Эти величины известны для многих двойных смесей. Оказалось, что чем больше разница КТР компонентов, которые должны быть разделены в растворителе, тем более пригоден растворитель в качестве разделяющего средства для экстрактивной разгонки. Например, н-гептан и метилциклогексан, критические температуры растворения которых в анилине соответственно равны 70 и 41° [24], были подвергнуты разделению экстрактивной разгонкой в присутствии анилина как растворителя. При весовом отношении анилина к углеводородам, равном 2 1, разделение было достигнуто в три раза лучше, нежели то, которое может быть достигнуто при простой ректификации на той же самой колонке [12]. [c.283]

    Для процессов экстрактивной ректификации помимо жидких разделяющих агентов в ряде случаев используют твердые вещества, например соли. Такие процессы называют солевой ректификацией. Применяются также комбинированные разделяющие агенты, представляющие собой смесь чаще всего двух веществ. Так, для разделения смесей углеводородов путем экстрактивной ректификации в качестве разделяющих агентов используют полярные органические соединения с добавкой воды. Подробные сведения о методах выбора разделяющих агентов для процессов азеотропной и экстрактивной ректификации приводятся в книге [18]. [c.563]


    Из объединенных дистиллятов колонн 1 и. 3, после гидрирования непредельных углеводородов, экстракцией могут быть выделены бензол, толуол и ксилолы. Смесь аренов g может быть выделена экстрактивной ректификацией из дистиллята колонны 3. Из смеси аренов g дегидрированием содержащегося в ней этилбензола возможно получение дополнительного количества стирола. [c.333]

    В настоящее время в промышленности вместо описанного выше периодического процесса приняты непрерывные схемы экстракции с использованием большого числа смесителей и отстойников. Растворитель поступает в верхнюю часть колонны, в низ которой противотоком подают катализат риформинга, причем эффективное смешивание обоих потоков в колонне обеспечивается с помощью вращающихся дисков. Вытекающий из нижней части колонны растворитель обогащен ароматическими углеводородами и содержит лишь небольшое количество парафинов и нафтенов. Последние удаляют экстрактивной отгонкой, а ароматические углеводороды подвергают ректификации. Остающийся в кубе ректификационной колонны растворитель возвращают на стадию экстракции. В качестве растворителя обычно используют сульфолан, смесь Ы-метилпирролидона с этилеигликолем или диметилсульфоксид. В зависимости от применяемого растворителя детали проведения процесса экстракции могут несколько варьироваться. [c.136]

    Во многих случаях, в частности при разделении смесей веществ, близких по химической природе, например смесей углеводородов, концентрация разделяющего агента и энтальпия жидкости по высоте колонны изменяются мало. При этом роль разделяющего агента может быть сведена только к изменению относительной летучести компонентов заданной смеси. Принимая соответствующие значения коэффициентов относительной летучести, можно рассчитывать процесс экстрактивной ректификации без учета наличия разделяющего агента в смеси. Это чрезвычайно упрощает задачу, поскольку, оперируя относительными концентрациями компонентов заданной смеси, можно свести расчет процесса экстрактивной ректификации к расчету обычной ректификации. Особенно упрощается задача, если подвергаемая разделению смесь является бинарной. В этом случае могут применяться обычные широко известные методы расчета процессов ректификации бинарных смесей. [c.294]

    Процессы азеотропной и экстрактивной ректификации почти никогда не используются самостоятельно, а являются стадиями технологических процессов разделения смесей. Естественно, поэтому, что эффективность и показатели процессов азеотропной и экстрактивной ректификации в большой степени зависят от показателей предшествующих и последующих стадий. Так, для успешного выделения путем азеотропной и экстрактивной ректификации отдельных веществ из многокомпонентных смесей, например из смесей углеводородов, важнейшее значение имеет предварительное выделение узкой фракции, являющейся в указанных процессах исходной смесью. Состав этой функции определяется требованиями к целевому продукту, составом исходной смеси и особенностями процесса азеотропной и экстрактивной ректификации. Так, экстрактивная ректификация широко применяется для выделения ароматических углеводородов из природных смесей. Последние, кроме ароматических, содержат парафиновые и нафтеновые углеводороды, отгоняющиеся при экстрактивной ректификации в виде дистиллата. Наличие этих соединений с температурами, превышающими температуру кипения ароматического углеводорода, затрудняет разделение. Такие соединения должны быть, поэтому, предварительно отделены, если возможно, путем обычной ректификации. В связи с тем, что ароматические углеводороды образуют положительные азеотропы с многими парафиновыми углеводородами, фракция, выделенная путем обычной ректификации и предназначенная для разделения путем экстрактивной ректификации, имеет интервал температур кипения ниже температуры кипения ароматического углеводорода. Так, например, для выделения толуола используется смесь с интервалом температур кипения 95—105° С [345], а для выделения бензола — с интервалом температур кипения 73—77° С [346]. Из этих фракций ароматические углеводороды выделяются путем экстрактивной ректификации с применением полярных веществ в качестве разделяющих агентов. [c.318]

    Если смесь, подаваемая в колонну для экстрактивной ректификации, недостаточно освобождена от неароматических углеводородов с температурами кипения выше, чем у ароматического углеводорода, то последний получается с примесями этих высококипящих соединений. Для освобождения конечного продукта от них требуется дополнительная очистка, которая может быть осуществлена с помощью обычной ректификации. [c.319]

    В обоих процессах экстрактивной ректификации углеводородную смесь подают на 50-ю тарелку, а разделяющий агент — на 96-ю, считая от куба. Оставшиеся 4 тарелки до верха колонны обеспечивают удаление из дистиллата фурфурола, содержание которого в углеводородных смесях должно быть минимальным. Регулирование процесса осуществляется следующим образом устанавливаются постоянные расходы исходной смеси, флегмы и разделяющего агента и температура последнего, а регулируемым параметром является нагрев куба. Соотношение расходов разделяющего агента и подаваемой смеси углеводородов составляет около 2 I по объему. Надежным критерием для контроля процесса является состав углеводородной части смесей на тарелках, промежуточных между кубами и тарелками, на которые подаются исходные смеси углеводородов. Так, было найдено, что при 30— 35% концентрации непредельных углеводородов в жидкости, отбираемой с 30-й от куба тарелки колонны для разделения бутилена-2 и бутана, концентрация бутилена в бутане, получаемом в качестве дистиллата, не превышает 3—4%, а бутилены получаются со степенью чистоты 95—98%. [c.325]

    Для того чтобы осуществить циркуляцию непрореагировавшего бутана, необходимо его отделить от образовавшихся бутиленов, водорода и продуктов побочных реакций. Газ сжил ают до 13 ат и охлаждают водой выделившуюся при этом тяжелую фракцию (углеводороды С.5 и выше) используют для извлечения из газа проти-воточной абсорбцией в колонне -фракции затем ее выделяют из раствора ректификацией и конденсацией паров. Отделить бутан от бутиленов непосредственно ректификацией не удается вследствие близости температур кипения. Но при введении в смесь водного ацетона (80% ацетона+20% воды) летучесть бутиленов уменьшается вследствие их лучшей растворимости в ацетоне по отношению к летучести бутана и последний отделяется ректификацией под давлением 7 ат. Этот способ разделения веществ называется экстрактивной перегонкой. Раствор бутиленов в ацетоне из первой ректификационной колонны поступает во вторую отгонную колонну, в которой ректификацией пары бутиленов отделяются от ацетона. Выход бутиленов на прореагировавший бутан составляет 70% от теоретического количества. [c.267]

    Насыщенный экстрагент выводится с нижней части колонны, проходит теплообменник 2 и поступает в колонну экстрактивной ректификации 3. В последней в паровой фазе выделяются насыщенные углеводороды, вода и незначительное количество бензола. Смесь паров конденсируется в холодильнике 4, после чего конденсат поступает в сепаратор 5. Из сепаратора углеводороды в качестве нижнего орошения выводятся в нижнюю часть экстракционной колонны 1. Легкие насыщенные углеводороды растворяют в себе более высококипящие насыщенные углеводороды, вытесняя их из экстрагента, и тем самым делают экстракт более чистым. [c.82]

    Представляет интерес применение экстрактивной ректификации для выделения бутадиена из смесей углеводородов С4. Эта важнейшая проблема по обеспечению сырьем промышленности синтетического каучука была решена в нефтехимической промышленности с помощью метода экстрактивной ректификации. Бутадиен получают при последовательном каталитическом дегидрировании бутана и бутиленов, причем в результате образуется смесь, состоящая из большого количества компонентов. Перед разделением смеси углеводородов С4 происходит отгонка низкокипящих примесей (углеводородов Сз), производимая, как и последующая экстрактивная ректификация, под давлением 8 ат. Концентрат дегидрирования бутана состоит преимущественно из бутиленов и бутана, а концентрат дегидрирования бутиленов содержит бутадиен-1,3, бутилены, бутан и некоторое количество изосоединений. [c.100]

    Большое число патентов посвящено разделению кислородсодержащих соединений с близкими температурами кипения. Смесь этанола, изопропанола, метилэтилкетона, метилпропил-кетона и этилацетата может быть разделена путем экстрактивной ректификации с использованием в качестве разделяющего агента светлого масла , представляющего собой смесь углеводородов с температурами кипения 200—270° [335]. Этим же методом можно выделять опирты С]—из смесей с другими кислородсодержащими соединениями, имеющими не более 5 атомов углерода [336]. В присутствии углеводородов понижается относительная летучесть кислородсодержащих соединений в следующем порядке спирты, кетоны, альдегиды, эфиры, слож,ные эфиры [335]. Отсюда вытекает возможность отгонки путем екстрак- [c.284]

    Вторая стадия процесса заключается в выделении и очистке бутадиена, а также регенерации непревращенных н-бутиленон с целью возвращения их в стадию дегидрирования. Принципиальная схема второй стадии процесса изображена на рис. 101. Получающаяся при дегидрировании н-бутиленов смесь углеводородов компримируется и из нее удаляются водород и низкокипящие примеси аналогично тому, как это делается в первой стадии процесса. Затем в колонне / с 40 тарелками производится отгонка углеводородов Сз от С4. При этом углеводороды С4 освобождаются также от основной доли метилацетилена. Хотя температура кипения последнего значительно выше, чем пропана, эти два вещества образуют положительный азеотроп, содержащий при давлении 22,6 ата 16 мол.% метилацетилена. Это благоприятствует отгонке последнего. Кубовая жидкость колонны 1 отбирается в промежуточную емкость, из которой поступает в колонну 2, представляющую собой комбинацию двух последовательно соединенных колонн, имеющих по 50 тарелок каждая. В колонне 2 в качестве дистиллата отбирается бутадиен, бутилен-1, часть бутилена-2 н н-бутана, а также более летучие углеводороды, а в качестве кубовой жидкости — бутилены-2, часть н-бутана, ацетилены и высококипящие примеси. Назначение этой операции заключается в предварительном концентрировании бутадиена с целью уменьшения количества смеси, подаваемой в колонну для экстрактивной ректификации, проводимой с водным фурфуролом как разделяющим агентом. [c.292]

    Бутан-бутиленовая фракция предварительно нагревается в теплообменнике 1 за счет циркулируемого в лроцессе водного ацетона. Отсюда смесь углеводородов С4 поступает в колонну 2 для экстрактивной ректификации при помощи водного ацетона. Колонна имеет 71 тарелку, в кубе ее поддерживается давление около 8,5 ати и температура 124°. Верхний продукт представ- [c.96]

    Смесь к-бутана и транс- и цис-жзомеров бутена-2, остающуюся в кубе колонны предварительной ректификации, также разделяют экстрактивной перегонкой, сначала удалив в депентаиизаторе высококипящие примеси. При этом верхним продуктом является к-бутаи, тогда как оба изомера бутена-2 удерживаются фурфуролом. В отнар-ной колонне фурфурол освобождают от растворенных углеводородов и затем снова направляют в колонну для экстрактивной перегонки. [c.197]

    Растворитель для экстрактивной ректификации должен иметь достаточно высокую температуру кипения, чтобы компоненты, полученные с растворителем в виде одной фазы, можно было легко отделить от него при помощи перегонки. Он должен хорошо растворять разделяемые компоненты, чтобы не требовалось чрезмерно большого отношения растворитель смесь и не образовывалось двух жидких фаз (расслаивание) на тарелке. При экстрактивной ректификации моноциклических ароматических углеводородов в качестве растворителя применяют фенол, крезолы, фурфурол, анилин и алкилфталаты. [c.207]

    Растворители с меньшей растворяющей способностью и, как правило, с большей селективностью — сульфолан, ди-, три- и тетра-этилеигликоль, диметилсульфоксид, смесь Л -метилпирролидона с этиленгликолем — применяются в промышленности как экстрагенты аренов. Преимущество процесса экстракции состоит в возможности совместного выделения аренов (>е—Са из фракции катализата риформинга 62—140°С, в то время как при проведении экстрактивной ректификации необходимо предварительное ее разделение на узкие фракции — бензольную, толуольную и ксилольиую. Последнее необходимо в связи с тем, что, как вытекает из (5.2), летучесть углеводородов в процессе экстрактивной ректификации определяется не только значениями коэффициентов активности, но и давлением насыщенного пара. Поэтому высококипящие насыщенные углеводороды, например Са—Сд, и в присутствии растворителя могут иметь летучесть меньшую, чем беизсл. [c.70]

    Схемы азеотропной и экстрактивной ректификации на примере разделения смеси парафиновых и ароматических углеводородов при-ведепы на рис. 5. 3 и 5. 4. При азеотропной ректификации разделяемая смесь вместе с разделяющим агентом поступает в среднюю часть ректификационной колонны 1, с верха которой отбирается смесь разделяющего агента с парафиновыми углеводородами (ректификат). В остатке, с низа кoJЮнны, отбирают менее летучие компоненты ароматический углеводород с небольшим содержанием разделяющего агента [c.166]

    При производстве ксилолов как из каменноугольного, так и из нефтяного сырья первоначально получают сложную смесь продуктов, в которой кроме ксилолов присутствуют ароматические, циклоалкановые и парафиновые углеводороды. На первой стадии выделяют смесь, состоящую из трех изомеров ксилола и этилбензола,—технический ксилол. При переработке каменноугольного сырого бензола, содержащего очень мало парафиновых и циклоалкановых углеводородов, технический ксилол выделяют простой ректификацией. Из продуктов же переработки нефти, обладающих сложным компонентным составом, ксилольную фракцию выделяют ректификацией в присутствии третьего компонента (экстрактивная или азеотропная ректификация) или жидкостной экстракцией. Про- [c.247]

    Перегонка в присутствии третьего компонента, в частности, экстрактивная ректификация, чаще применяется для выделения индивидуальных углеводородов. Для получения из продуктов переработки нефтяного сырья смеси углеводородов (технического ксилола) в настоящее время применяется в основном экстракция в сочетании с вторичной ректификацией экстракта. На отечественных заводах в качестве экстрагента широко используют диэтиленгликоль, обеспечивающий извлечение ксилолов не менее 95% от потенциала с минимальным содержанием парафиновых и циклоалкановых углеводородов. Для повышения выхода ксилолов (суммы) и улучшения технико-экономических показателей применяют более эффективные экстрагенты, например, М-метил-иирролидон или смешанные экстрагенты (в частности, смесь диэтиленгликоля и М-метилпирролидона) [7]. [c.248]

    Ка>1 дый агрегат для экстрактивной перегонки состоит из колонны со 100 тарелками, которая разделена на две колонны (секции) по 50 тарелок. Смесь веществ, подлежащих ра делетпо, вводят в жидком виде на тарелку, расположенную вблизи ][ижнего конца первой секции. Селективный растворитель поступает в ту ке колонну на несколг.ко тарелок ни ке ее верха он отбирается из куба отнарной колонны, в которой от фурфурола отгоняют поглощенные им легкокипящие углеводороды. Перетекая сверху вниз, с тарелки иа тарелку, растворитель извлекает из разделяемой смеси мепее летучий компопеит. Поскольку в фу])фурол переходят так ке небольшие количества второго, более летучего комиоиента, растворитель из первой секции поступает на верхнюю тарелку второй секции, в которой происходит дополнительная ректификация. При этом от фурфурола вместе с подавляю- [c.197]

    Исходное сырье поступает в узел экстракции 1, из которого выходит выделенная смесь изоамиленов, а также отработанная Сб-фракция, возвращаемая на нефтеперерабатывающий завод. Изоамилены направляются на установку дегидрирования 2. По одному из патентов фирмы, на дегидрирование может непосредственно направляться фракция С5 крекинга, если она не содержит нафтеновых углеводородов [116]. Об установке дегидрирования известно только то, что она во многом аналогична промышленным блокам дегидрирования к-бутенов и используются те же катализаторы. Процесс дегидрирования разработан фирмой Доу. Контактный газ проходит узлы закалки 3 и абсорбции-десорбции 4, по-видимому, также аналогичные описанным выше, и поступает на блок экстрактивной ректификации 5. Здесь продукт делится на три основных потока изопрен-сырец, возвратные изоамилены и пипериленовую [c.142]

    На рис. 51 изображена технологическая схема процесса фирмы БАСФ. Характерной особенностью процесса БАСФ является сочетание процесса экстракции (система жидкость— жидкость) с процессом абсорбции (система газ — жидкость), применяемым для повышения качества продуктов. Как и многие другие технические процессы экстракции, рассматриваемый метод содержит также ряд элементов процесса экстрактивной ректификации. Сырье поступает в среднюю часть основной экстракционной колонны 1. Экстрагент (НМП, содержащий 5—10% воды) подается в верхнюю часть этой колонны и движется противотоком к сырью. В колонне 1 происходит отделение пентанов и амиленов от всех остальных непредельных углеводородов. На-сьпценная фаза экстракта из низа колонны направляется в верхнюю часть ректификационной колонны 2. Назначением этой колонны является рекзппе-рация экстрагента с одновременным фракционированием экстрагированных углеводородов на три потока смесь изопрена с пентан-амиленовой фракцией, направляемую в рецикл, изопрен-концентрат и смесь ЦПД с пипериленом. Последние два потока подвергаются дополнительному концентрированию в газовой фазе в скрубберах 3 ж4. В первом из этих скрубберов происходит поглощение пиперилена [c.239]

    Другое существенное упрощение возникает в связи с поддержанием в процессе экстрактивной ректификации высокой концентрации разделяющего агента. В гл. П было показано, что изменение коэффициентов относительной летучести компонентов заданной смеси в зависимости от их относительного содержания определяется двумя факторами степенью неидеальности заданной смеси и концентрацией разделяющего агента, разбавляющего эту смесь и, благодаря этому, уменьшающего относительное влияние взаимодействия молекул компонентов заданной смеси. С увеличением концентрации разделяющего агента коэффициент относительной летучести компонентов исходной смеси все в меньшей степени зависит от их относительного содержания и в этом отношении смесь все больше приближается к идеальной. Благодаря этому при больших концентрациях разделяющих агентов в расчет могут приниматься средние значения коэффициентов относительной летучести, зависящие от концентрации разделяющего агента в жидкости и не зависящие от соотношения количеств исходных веществ в смеси. Связанная с этим допущением погрешность тем меньше, чем меньше степень неидеальности заданной смеси. При разделении, например, таких близких к идеальным смесей, как смеси углеводородов, это положение оправды- [c.294]

    В процессах азеотропной и экстрактивной ректификации все возрастающее применение аходят комбинированные разделяющие агенты. Чаще всего одно из веществ, входящих в состав такого комбинированного разделяющего агента, ограниченно смешивается с одним или несколькими компонентами заданной смеси. Как было показано выше, ограниченная взаимная растворимость является проявлением больших положительных отклонений от идеального поведения. Поэтому добавка вещества, ограниченно смешивающегося с компонентами заданной смеси, позволяет повысить селективность разделяющего агента. В процессах азеотропной ректификации это позволяет, кроме того, упростить регенерацию разделяющего агента. В процессах экстрактивной ректификации применение таких комбинированных разделяющих агентов, помимо благоприятного влияния на селективность, позволяет понизить температуру кипения кубовой жидкости, что имеет существенное значение, если температуры кипения компонентов заданной смеси и разделяющего агента сильно различаются. Так, применяемый для разделения смесей углеводородов С4 фурфурол при атмосферном давлении кипит при 161°С, а его смесь с 4 вес.% воды — при 102° С. Использование фурфурола с добавкой воды сильно облегчает технологическое оформление процесса экстрактивной ректификации, обеспечивая возможность применения в качестве теплоносителя водяного пара, а в качестве хладагента для конденсации — воды. [c.319]

    Охлажденный до 50—40° С и очищенный от катализатор-ной пыли контактный газ подвергается двухступенчатому компремированию. После И ступени сжатия газ поступает в холодильник для конденсации углеводородов фракции С5. Несконденсированная часть контактного газа направляется в абсорбционную колонну для улавливания углеводородов С4 и С5. Насыщенный абсорбент подвергается десорбции. Десорбированные углеводороды С4 и Сз присоединяют к конденсату и направляют на ректификацию. Конденсат ректификуют от основной массы легких (С2—Сз—С4) и тяжелых (Сб и выше) углеводородов. Полученную изопентан-изоами-леновую смесь разделяют методом экстрактивной дистилляции с применением в качестве растворителя безводного диметилформамида (ДМФА). [c.92]

    Для быстрого проведения процесса во избежание усиления побочных реакций крекинга применяется катализатор — оксид хрома на носителе — оксиде алюминия активатором служит оксид калия. При оптимальной температуре 580°С и атмосферном давлении равновеспе достигается за 2 сек с превращением 40% н-бутана в бутилены. Катализатор постепенно покрывается коксом и теряет свою активность. Применяется процесс с кипящим слоем пылевидного катализатора, который сходен с процессом каталитического крекинга нефтепродуктов. В установку для дегидрирования также входят трубчатая печь для нагревания бутана, реактор и регенератор (оба с кипящим слоем катализатора). Выходящий из реактора контактный газ освобождается в циклоне от пыли катализатора, затем постепенно охлаждается в котле-утилизаторе и в скруббере, орошаемом водой. Для того чтобы осуществить циркуляцию непрореагировав-шего бутана, необходимо его отделить от образовавшихся бутиленов, водорода и продуктов побочных реакций. Газ сжимают до 1,3-10 н/ж и охлаждают водой выделившуюся при этом тяжелую фракцию (углеводороды s и выше) используют для извлечения из газа противоточной абсорбцией в колонне С4-фракции затем ее выделяют из раствора ректификацией и конденсацией паров. Отделить бутан от бутиленов непосредственно ректификацией не удается вследствие близости температур кипения. Но при введении в смесь ацетонитрила H3 N (побочного продукта в производстве акрилонитрила) летучесть бути-ленов уменьшается вследствие их лучшей растворимости в ацетонитриле по сравнению с летучестью бутана, который удаляется ректификацией. Этот способ разделения называют экстрактивной ректификацией. Раствор бутиленов из первой ректификационной колонны поступает во вторую, отгонную колонну, в которой ректификацией пары бутиленов отделяются от менее летучего ацетонитрила. Выход бутиленов на прореагировавший бутан составляет около 70%. [c.237]

    Смеси углеводородов (катализаты), получаемые при дегидрировании изопентана в изопрен, представляют собой сложную смесь парафиновых, моноолефииовых и диолефиновых углеводородов С5 нормального и изостроения. Для их разделения наибольшее значение получил метод экстрактивной дистилляции ректификации), с применением в качестве селективного растворителя диметилформамида. Разделение углеводородов происходит на тарельчатой колонне с большим количеством тарелок (до 120). [c.182]


Смотреть страницы где упоминается термин Ректификация смесей углеводородов экстрактивная: [c.197]    [c.72]    [c.94]    [c.264]    [c.70]    [c.73]    [c.91]    [c.68]    [c.328]    [c.70]    [c.38]    [c.96]   
Производство изопрена (1973) -- [ c.133 , c.233 ]




ПОИСК







© 2025 chem21.info Реклама на сайте