Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Выделение Th HXi без носителя

    Новейшей конструкцией реактора полимеризации пропилена является реактор с кипящим слоем, в котором катализатор взвешен в потоке газообразного пропилена. Кипящий слой можно освободить от газовых пузырей механическими средствами. Растворитель не применяют, но катализатор вводят в виде суспензии в углеводороде. Нередко катализатор наносят на инертный носитель — полипропилен. Экономические преимущества этого способа полимеризации связаны с отказом от растворителя и непрерывным производством полимера, не требующего центрифуг и другого оборудования для выделения из раствора. Для возвращения пропилена в цикл дистилляция не нужна. Выделяющееся тепло отводится за счет испарения пропилена, который подают в виде жидкости, однако имеются трудности, обусловленные регулированием температуры и слипанием частиц катализатора. [c.204]


    Двухкорпусные выпарные установки широко распространены для упаривания сточных вод с целью выделения из них необходимых компонентов. Они состоят из последовательно соединенных аппаратов, использующих тепло вторичного пара и, следовательно, являющихся более экономичными. Например, для упаривания раствора сульфата натрия в процессе производства алюмосили-катных носителей и катализаторов применяют двухкорпусную установку, состоящую из выпарных аппаратов с выносной греющей камерой и двух теплообменников для предварительного подогрева раствора. Обогрев теплообменников проводят конденсатом свежего и вторичного пара, образующегося в выпарных аппаратах. [c.208]

    Последний частично в виде димера содержится в продуктах коксования каменного угля, а также во фракциях С, пиролиза нефтепродуктов, где его концентрация обычно составляет 10—20%. Для выделения ЦПД из С-фракции его вначале полностью димеризуют, нагревая всю смесь до 80—110 °С в течение 3—4 ч, после чего димер выделяют ректификацией и вновь превращают в мономер пиролизом при 200—400 °С. Гидрирование ЦПД до циклопентена осуществляется в присутствии катализаторов, представляющих собой металлы У1П группы (главным образом N1, а также Рё, Ни и КЬ), на носителе или без него при атмосферном давлении и умеренной температуре (до 50—70 °С). При этом может быть достигнута селективность, близкая к теоретической. Суммарная схема превращений ЦПД выглядит таким образом  [c.386]

    При проведении осадительных операций необходимо строго выполнять условия осаждения, которые часто указаны в методике без объяснения причин. Для примера рассмотрим осаждение фосфата циркония. Эта соль рекомендована во многих руководствах для выделения радионуклидов циркония из-за её низкой растворимости в сильнокислых растворах. Однако при её осаждении из растворов продуктов деления в разбавленной азотной кислоте выделяется лишь около 80% радиоактивного циркония. Добавление в раствор даже следовых количеств фтора приводит к установлению изотопного равновесия между радионуклидами и изотопным носителем, и количество выделенного радиоактивного циркония становится равным количеству выделенного носителя. [c.118]

    Добавка веществ, уменьшающих долю выделенного носителя, приводит в соответствии с законом распределения к уменьшению выделения микрокомпонента. [c.52]

    Для этой цели используют современные процессы швелевания с циркуляцией газа, при которых продукты швелевания быстро выводят из печи. В качестве газа-носителя, который одновременно является и источником тепла, служат главным образом не содержащие кислорода газообразные продукты сгорания с температурой около 650°. Важными преимуществами подобных процессов швелевания являются равномерный подвод тепла к исходной шихте и сравнительно мягкие условия выделения смолы. Одновременно образуется легкогорючий кокс (пламенный кокс). Значительные трудности представляет полное отделение смолы швелевания из больших количеств циркулирующего газа. В настоящее время известны процессы, разработанные фирмами Лурги и Пинч [47]. [c.49]


    На втором этапе при температуре 350-480°С из катализатора выгорает основная масса кокса. При этом кокс, локализованный в области каталитического действия металла выгорает при температуре 375°С, а кокс носителя - при температуре 440-460°С. Платина катализирует окисление, реакция идёт с выделением тепла, поэтому на этой стадии важно не допустить перегрева слоя катализатора и спекания платины. С этой целью концентрация кислорода в циркулирующем инертном газе не должна превышать 1% об. [c.54]

    Флуоресценция почти полностью уничтожается действием на нефть азотной кислоты, галоидов или просто солнечных лучей. Предполагали, что флуоресценция нефтей зависит от взвешенных коллоидных частей — субмикронов. Однако сильный электрический ток 30 тыс. б, пропущенный через флуоресцирующий нефтепродукт, нисколько не уменьшил этого свойства. Зато из кислых гудронов были выделены вещества типа многокольчатых ароматических соединений — хризен и флуорен, которые, по-видимому, являются носителями флуоресценции, так как выделение их из нефтепродуктов уничтожает флуоресценцию, и, наоборот, при прибавлении их к растворителям получаются сильно флуоресцирующие растворы. Флуоресцирующие вещества образуются вновь при перегонке. Установлено также, что при перегонке с некоторым разложением получаются дистилляты с большей флуоресценцией, чем при работах с большим вакуумом .  [c.51]

    У второй, сравнительно небольшой группы катализаторов и носителей поры представляют собой каналы, образовавшиеся за счет выделения газов при сушке, выгорании или растворении компонентов твердого тела. К этой группе относятся активные угли, скелетные катализаторы и возможно некоторые другие системы. [c.174]

    В системе, основанной на БД, прикладные программы обращаются за данными для обработки не к внешним носителям информации, а к программам банка — СУБД, которые организуют поиск, ввод и представление информации соответствующим программам из специально организованных файлов — баз данных (см. гл. 4). При таком способе организации работы с данными обычно говорят о логической форме представления данных для прикладных программ. Альтернативой такому принципу обмена является организация непосредственного обращения программ, обрабатывающих данные, к внешним устройствам. В последнем случае говорят о физической форме представления данных, поскольку при таком обращении необходимо учитывать тип запоминающего устройства, хранящего информацию, принципы -организации файлов и т. д. Вообще понятия логической и физической форм представления данных не являются абсолютными. Многие операционные системы содержат набор средств, обеспечивающих некоторую логическую форму представления данных для прикладных программ, однако эти средства не освобождают программиста от таких функций, как организация данных, их поиск, выделение необходимых элементов данных из записи и др. [c.190]

    Технологическая схема процесса выделения н-парафинов по методу Парекс (ГДР) приведена на рис. 5.19. Процесс разделения осуществляется в паровой фазе при температуре —400 С и давлении 0,5—1,0 МПа. Исходное сырье смешивается с газом-носителем (водород или водородсодержащий газ), испаряется в теплообменнике Т-1 н поступает на адсорбционный блок, состоящий из трех колонн А-1—А-3, заполняемых цеолитом. Процесс поглощения [c.307]

    Следующий оператор по синтаксису представляет собой полное описание структуры базы данных. Всей базе данных присваивается имя Аппараты колонные . Аппараты колонные — это структура, состоящая из одного элемента, который является ключевым массивом с ключом с именем Название . Элементом этого массива является структура, состоящая из двух элементов символьного элемента длиной до 50 символов с именем Название (он является ключом поиска) и ключевого массива Тип . Параметр SEP = YES задает оптимизацию физического размещения данных на внешнем носителе, предписывая выделение данной структуры в отдельные блоки при переполнении дерева данных. Элементом массива Тип является структура, состоящая из двух элементов числа с плавающей точкой размером 4 байта с именем Диаметр (этот элемент является ключом поиска) и элемента с именем Колонна , который сам является структурой. Структура Колонна состоит всего из одного элемента — ключевого массива с именем Характеристики . [c.203]

    О регенерации отработанного катализатора опубликовано мало данных, вероятно, из-за относительно низкой стоимости нового катализатора, необратимости изменений носителя и содержания ванадия. Описано несколько процессов выделения ванадия из катализаторов различного типа. Исключение составляет работа [146], в которой охарактеризован процесс регенерации катализатора после 10 лет использования. Хорошие результаты достигнуты потому, что катализатор не был сильно разрушен. Обычной практикой в США является отправка отработанного катализатора компаниям, которые извлекают соединения ванадия из руд, шлаков или мазута. Отработанный катализатор имеет ограниченную ценность, так как он близок к низкосортной руде, а затраты на транспортировку значительны. [c.270]


    По выходе из колонки газ-носитель вместе с выделенными компонентами поступает в измерительную камеру 9. Поступление газа-носителя в камеру вместе с компонентами смеси приводит к нарушению равновесия мостовой схемы вследствие разности теплопроводностей сред в стандартной и измерительной камерах. В этот момент стрелка регистратора вычерчивает на диаграммной бумаге пик. [c.848]

    В качестве побочных продуктов образуются пропионовый альдегид, ацетальдегид, формальдегид, ацетон, СО, СОа и вода. Катализаторо.м-для этого процесса служит окись меди, нанесенная на непористый носитель (пемзу или карборунд) в количестве 0,5—1,5% (масс.). Позднее был разработан молибдено-кобальтовый катализатор с висмутом и другими добавками. Окисление ведут при 320—350 °С и времени контакта 0,5—1,0 с в присутствии водяного пара, позволяющего улучшить условия выделения акролеина и подавляющего реакции глубокого окисления. Последний эффект достигается также при добавлении в исходную газовую смесь микроколичеств (0,05% от массы пропилена) бромистых или хлористых алкилов. Состав исходной смеси диктуется пределами взрывоопасных концентраций. Соотношение (мольное) пропилен кнслород водяной пар поддерживают равным 4 1 5 или 1 1,5 3, т. е. выше верхнего или ниже нижнего пределов взрываемости. В зависимости от состава газовой смеси процесс ведут с рециркуляцией пропилена или без нее. Реакцию окисления проводят в многотрубчатых контактных аппаратах с солевым теплоносителем. Реакционные газы проходят водную промывку, при этом получают 1,5—2%-ный раствор акролеина в воде,содержащий также побочные продукты реакции — ацетальдегид, пропионовый альдегид й т. д. Акролеин выделяется из водного раствора, ректификацией очищается от ацетальдегида и экстрактивной дистилляцией с водой — от пропионового альдегида. Выход акролеина составляет 67—70% при степени превращения пропилена 50%. [c.207]

    Во всех случаях суммарное содержание серы в гидрогенизатах соответствовало содержанию ее в навеске дибензтиофена в исходной смеси. Для доказательства, что носителем остаточной серы в гидрогенизатах искусственных смесей сераорганических соединений является дибензтиофен, он был выделен из раствора гидрогенизата хроматографированием на силикагеле. При этом было получено кристаллическое вещество, которое после перекристаллизации из спирта образовало игольчатые кристаллы, имевшие температуру плавления 98—98,5° С. Препарат дибензтиофена, взятый для приготовления исходной смеси, плавился при 98—99° С. Таким образом, методом избирательного каталитического гидрирования смесей сульфидов и дибензтиофена удается полностью осуществить гидрогенолиз сульфидов дибензтиофен же остается в неизменном состоянии. [c.407]

    В осадителях, как правило, содержание твердой фазы достигает 30—40%. Выделение последней из жидкого носителя производится на фильтрах, принцип работы и устройство которых описаны в специальной литературе. [c.320]

    В качестве примера рассмотрим активационное определение ртути, цинка, серебра и меди [249]. После растворения образца и стандарта, облученных в идентичных условиях, добавлялись равные небольщие количества носителя. Далее производилась экстракция определяемых элементов раствором дитизона в четыреххлористом углероде. Количество органического реагента, используемого для экстракции, было меньщим, чем это соответствовало стехиометрическим количествам добавленных носителей. Измерение активностей аликвотных частей органической фазы из образца и стандарта позволяло рассчитать содержание определяемого элемента. Аналогичный принцип использовался и при выделении носителей с помощью ионного обмена. [c.134]

    Смесь солей двух радиоактивных изотопов можно разделить, прибавляя к содержащему их раствору нерадиоактнвный изотоп одного из компонентов смеси — изотопный носитель —и переводя этот носитель в малорастворимую твердую фазу. При полном выделении носителя в осадок происходит практически полный переход в твердую фазу и его радиоактивного изотопа. Другой же компонент радиоактивной смеси остается в растворе, если он не способен соосаждаться или адсорбироваться на поверхности раздела фаз. В случае заметной адсорбции второго компонента смеси в раствор приходится добавлять его изотопный носитель, не способный образовывать самостоятельно твердую фазу, что приводит к предотвращению адсорбции и полному разделению смеси радиоактивных изотопов. Такой способ применим для разделения смеси изотопов Ва и °La с использованием в качестве носителя ВаСЬ- [c.120]

    Применение того или иного метода для выделения элементов обусловлено их химическими свойствами. Наиболее широко распространены реакции осаждения специфическими для каждого элемента реагентами, среди которых большое место принадлежит органическим реагентам. Работами В. И. Кузнецова с сотрудниками убедительно показано значительное их преимущество перед неорганическими реагентами [7—9] как в отношении специфичности, так и в значительно меньшем сооса-ждении посторонних элементов. При применении метода осаждения в большинстве случаев более выгодно производить в первую очередь осаждение элемента носителя, а не мишени. В противном случае из-за большого количества элемента мишени (обычно около 1 г) получаются очень объемистые осадки, способные адсорбировать значительные количества носителя. Однако в присутствии больших количеств облучаемых элементов следует иметь в виду возможность неполного выделения носителя. Например, исследование И. П. Алимарина и Ф. И. Павлоцкой [10] показало значительное уменьшение полноты выделения  [c.8]

    Знанне абсолютной активности выделенного изотона, времени его выделения, а также веса введенного и выделенного носителя дает возможность перейти к числу атомов соответствующих нуклидов iVj, содержавшихся во всей анализируемой смеси в некоторый начальный момент времени. Расчет ведется по формуле [c.94]

    В этой главе кратко описано выделение важнейших радиоактивных изотопов, применяемых в качестве меченых атомов, из облученных материалов или естественной смеси радиоактивных элементов. Описываемые методы являются наиболее употреби-мыми и простыми. В литературе освещены лишь наиболее простые случаи выделения осколков деления урана. Многие подробности получения радиоактивных изотопов, такие, например, как условия облучения, выход изотопа, количество добавленного при выделении носителя, вообш,е не описываются. [c.25]

    Цепь начинается [уравнение (33)] с окислительной атаки серной кислоты по третичному водороду, что ведет к выделению двуокиси серы (при разложении иона бисульфата), которое сопровождает изомеризацию углеводородов при помощи этого катализатора [8]. Изомеризация [уравнение (34)] включает перемещение метильной группы вдоль углеродной цепи, что осуществляется весьма легко. Некоторые исследователи [75] считают возможным образование на этой стадии промежуточного циклического иона. При этом может наблюдаться также некоторое увеличение разветвленности в результате образования диметилпентанов, но в гораздо меньшей степени. Цепь развивается за счет перехода третичного атома водорода от молекулы углеводорода к одному из ионов карбония (35). На этой стадии образуется другой ион карбония, который также чувствителен к реакциям изомеризации и развития цепи. Обрыв цепи, по-видимому, сопряжен с реакцией полимеризации носителя цепи с обра-аованием сильно непредельных органических комплексов, которые накапливаются в кислотном слое [33]. [c.38]

    В основе синтеза лежит идея сочетания алюмоплатинового катализатора с катализатором типа Фриделя - Крафтса. В качестве носителя используется 7-оксид алюминия с массовой долей платины до 1%. Перед сублимацией хлорида алюминия алюмоплатиновый катализатор подвергается обработке водородом при 500-650 °С с целью дегидроксилирова-ния поверхности оксвда алюминия и восстановления платины до металлической. Нанесение хлорида алюминия проводится при 180 °С в количестве до 75% к массе платинированного оксида алюминия. Избыток хлорида алюминия удаляется нагреванием при 200 °С. Предполагается, что на поверхности платинированного оксида алюм1шия происходит взаимодействие гидроксильных групп с хлоридом алюмшия с выделением НС1  [c.66]

    Носитель катализатора в виде сферических гранул размером 1—2 мм получают смешением тонкоизмель-ченных порошков окислов алюминия и щелочноземельных металлов (Са, М ) с водным раствором азотной кислоты (30%) в однородную эластичную массу, которую формуют экструзией в цилиндрические гранулы. После сушки дробленные гранулы разделяют на ситах в режиме качения по полотну сит, а выделенную фракцию гранул с диаметром и длиной, приблизительно одинаковыми и равными 1—2 мм, подвергают шлифовке с целью придания цилиндрическим частицам шарообразной формы [c.91]

    Катализатор получают пропиткой керамического носителя соединениями никеля. Носитель содержит глину, модифицированную окислами кальция, магния и прокаленную при температуре 1000—1300° с. При этом глина спекается, сохраняя сравнительно развитую пористую структуру. Активность катализатора за период эксплуатации (200 ч) не изменялась. Выделения углерода и образования алюмоникелевой шпинели не наблюдалось [c.94]

    Наиболее широкое распространение получили п еолиты типов А, X и Y, характеризующиеся соотношением SiOj/AljO и отли (ающиеся строением кристаллической решетки. В частности, с их помощьк осуществляются в промышленном масштабе процессы глубокой осушки и тонкой очистки газов и жидкостей, выделения к-алканов из легких и средних нефтяных фракций цеолиты эффективны в качестве адсорбентов в хроматографическом анализе, для создания глубокого вакуума и т. п. Самой новой областью использования цеолитов является получение на их основе катализаторов и носителей каталитически активных веществ. [c.310]

    Адсорбционные установки с движущимся слоем поглотителя относятся к устансвкам непрерывного действия [12]. Адсорбент перемещается в аппарате плотным слоем под действием силы тяжести, что позволяет организовать непрерывную работу. Эти установки целесообразно прим1 нять для выделения целевого компонента из газа-носителя с исполь- [c.159]

    Приготовление катализаторов нанесением координационных соединений металлов на органические и неорганические носители привлекло внимание ряда исследователей [77, 78]. Оно позволяет сочетать положительные стороны гомогенного (активность и селективность в мягких условиях) и гетерогенного (непрерывность и простота выделения продуктов) катализа. В работах [79, 80] такой метод использован для приготовления активных гетерогенных катализаторов на основе я-комплексов Pd b. [c.138]

    Циклогексан — легко транспортируемая неядовитая жидкость, поэтому понятен интерес к нему как идеальному донору водорода со стороны специалистов, разрабатывающих экономичную водородно-топливную систему. Дегидрирование циклогексана в бензол с выделением водорода осуществляют при температуре 450—500 °С над серебряным или медным катализатором в виде сетки или дисперсного металла на носителе с низкой удельной поверхностью. Реактор представлен на рис. 2. Полного дегидрирования не происходит, и циклогексан частично попадает в ка-тализат. Обычно это не опасно, но если бензол — целевой продукт, то для его очистки требуется специальная дистилляция. Кроме упомянутых выше серебра и меди катализаторами дегидрирования циклогексана являются платина и палладий. [c.151]

    Для получения катализаторов в виде окислов на пористом носителе обычно используют термически нестойкие сопи ряда кислот (HNOз, Н2СО3, СНООН, СНдСООН, С2Н2О4 и т. д.), которые при нагревании разлагаются с выделением окислов. Металлы па носителях получают из окислов восстановлением последних до металлического состояния. [c.130]

    Из нижней части А-1 выходит парообразная смесь депарафинизированного продукта, газа-носителя и небольших количеств аммиака, оставшихся в колонне от предыдущей операции. Эта смесь охлаждается в теплообменнике Т-3 и направляется в промывную колонну—абсорбер К-1- В этой колонне происходит поглощение аммиака циркулирующей водой. Несконденсировавшийся газ-носитель выходит с верха колонны А -7 и возвращается в процесс, а охлажденный депарафинизированный продукт направляется на склад. Выходящая из низа колонн А-2 и Л-З смесь паров аммиака и н-парафинов охлаждается в теплообменнике Т-4, после чего подвергается двойному сепарированию с промежуточным расширением в С-1. Из второго сепаратора (С-2 выводится целевой продукт — выделенная смесь н-парафинов. Насыщенная аммиаком промывная вода из К1 поступает на двухступенчатую отпарку аммиака в колоннах К-2 и К-3. Отогнанный аммиак возвращается на стадию десорбции. После завершения описанного цикла происходит переключение адсорберов по схеме, приведенной выше, и т. д. Процесс осуществляется иа одной загрузке цеолитов в течение 6000— 8000 ч, после чего адсорбент подвергается окислительной регенерации, в результате которой его актнв)юсть полностью восстанавливается. [c.308]

    Разложение хлорорганических соединений на катализаторе приводит к образованию хлористого водорода и нанесению хлора на носитель. Поток нз реактора охлаждают и направляют в сепартор высокого давления 6. Для компенсации расхода водорода на незначительный гидрокрекинг и потери осуществляют подпитку водорода, осушаемого цеолитами в аппарате 5. Циркулирующий водородсодержащий газ из сепаратора б возвращается в реактор. Жидкий продукт, выходящий нз сепаратора 6, стабилизируют в колонне 4, удаляя легкие компоненты, образующиеся в небольшом количестве в результате гидрокрекинга и попадающие с добавочным водородом. Хлористый водород, который выходит вместе с газом стабилизации, нейтрализуется затем в скруббере щелочной промывки. Необходимости в отдельном оборудовании для извлечения и циркуляции образующегося хлористого водорода, в отличие от других процессов, не имеется. После отделения пентана в колонне 5 получают готовый продукт — смесь изопентана (погон колонны /) гексана и его изомеров. Изомеризация фракции j—Се позволяет повысить ее октановое число по исследовательскому методу без ТЭС до 80—83 (без рециркуляции пентана и гексана) и до 91—92 пунктов (с рециркуляцией). Выделение пентана и гексана проводят, используя адсорбцию на молекулярных ситах и ректификацию. [c.90]

    Реакция оксигидрохлорировання протекает в псевдоожиженном слое катализатора — носителя, пропитанного хлоридом меди. Специальная конструкция реактора и условия процесса позволяют изготовить его целиком из углеродистой стали, не опасаясь коррозии. Продукты реакции эффективно извлекаются конденсацией в секции первичного выделения 3 и абсорбцией в секции вторичного выделения 4. Непревращенный хлористый водород вместе с водой реакции [c.409]

    Так как в осрюву конструкции прибора положен объемно-хроматографический метод, идентификация разделенных компонентов происходит по времени их выделения, фиксируемого секундомером. Прибор должен быть прокалиброван. На колонку наносят чистые индивидуальные углеводороды и при проявлении наблюдают время выхода каждого из них и интервал межДу ними. Время выхода компонента отслитывают от момента ввода в колонку газа-носителя. [c.852]

    При выделении углеводородов С4 скорость потока углекислого газа увеличивается до 60 мл1мин. При разделении углеводородов Сд скорость потока газа-носителя составляет уже 80 мл мин. На разделение углеводородов Сд, С4 и Сд требуется 40—50 мин. Объем газа в бюретке отсчитывают каждые 15 сек.,  [c.852]


Смотреть страницы где упоминается термин Выделение Th HXi без носителя: [c.120]    [c.244]    [c.94]    [c.120]    [c.92]    [c.60]    [c.101]    [c.98]    [c.91]    [c.277]    [c.88]    [c.100]    [c.96]   
Иониты в химической технологии (1982) -- [ c.356 , c.357 ]




ПОИСК





Смотрите так же термины и статьи:

Выделение радиоактивного брома с малым количеством носителя

Выделение радиоактивных изотопов без носителей из циклотронных мишеней

Выделение ультрадисперсных частиц металлов на носителях

Замечания к методу выделения франция без носителя при помощи кремневольфрамовой кислоты

Изотопы выделения без носителей из циклотронных мишеней

Кадмий выделение без носителя из циклотронной мишени

Методика 1. Метод выделения франция без носителя из облученного на циклотроне тория, основанный на соосаждении с кремневольфрамовой кислотой

Ниобий как носитель при выделении кремни

Носители кривая выделения

Р у д е н к о. Выделение радиоактивных изотопов без носителя экстракцией органическими растворителями



© 2025 chem21.info Реклама на сайте