Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектральные щелочных металлов

    В низкотемпературном пламени светильный газ — воздух атомные линии излучают щелочные металлы литий, натрий, калий, рубидий, цезий. Для определения калия используют излучение резонансного дублета 766,5 и 769,9 нм (4 51/2—4 Р°1/2.3/2), расположенного на границе видимой и инфракрасной частей спектра. Потенциал возбуждения этих спектральных линий ( в) — 1,62 эВ. Факторы специфичности интерференционных фильтров калия по отношению к излучающим в этих условиях элементам достаточно высоки и достигают нескольких тысяч. Влияние состава анализируемого раствора на интенсивность излучения калия в большой степени зависит от его концентрации и температуры пламени. В пламени светильный газ — воздух ионизация атомов калия незначительно проявляется лишь при его низких концентрациях в растворе порядка 1—2 мкг//мл. Присутствие [c.40]


    Группа щелочных металлов, аммония, магния. В присутствии Li+ (спектральная проба) в центрифугате, полученном после осаждения карбонатов щелочноземельных металлов, [c.73]

    Для улучшения результатов анализа пробы и эталоны разбавляются буферными смесями, являющимися эффективным средством уменьшения влияния состава проб на интенсивность спектральных линий. В качестве веществ для буферных смесей используют соли щелочных металлов, оксиды металлов и др. [c.47]

    В низкотемпературном пламени светильный газ — воздух атомные линии излучают щелочные металлы литий, натрий, калий, рубидий, цезий. Для определения калия используют излучение резонансного дублета 766,5 и 769,9 нм (4251/2—4 Р°1/2,3/2), расположенного на границе видимой и инфракрасной частей спектра. Потенциал возбуждения этих спектральных линий Ев) — 1,62 эВ. Факторы специфичности интерференционных фильтров калия по отношению к излучающим в этих условиях элементам достаточно высоки и достигают нескольких тысяч. Влияние состава анализируемого раствора на интенсивность излучения калия в большой степени зависит от его концентрации и температуры пламени. В пламени светильный газ — воздух ионизация атомов калия незначительно проявляется лишь при его низких концентрациях в растворе порядка 1-—2 мкг//мл. Присутствие 2—4 мкг/мл натрия в растворе, содержащем менее 2 мкг/мл калия, увеличивает интенсивность излучения калия. При более высоких концентрациях калия в растворе влиянием легко ионизующихся примесей можно пренебречь. Кислоты и анионы уменьшают интенсивность спектральных линий калия, причем наибольшее влияние оказывают фосфат-ионы. Предел обнаружения калия составляет 0,05 мкг/мл. [c.40]

    Натрий определяют по спектральным линиям X = 5890—5896 А. Как указано выше, в пламени светильного газа возбуждаются и излучают только атомы щелочных металлов поэтому натрий можно прямо определить в присутствии прочих элементов. Определению натрия, мешают большие количества алюминия, который понижает интенсивность излучения натрия. При определении натрия следует пользоваться светофильтром, который пропускает излучения натрия, и селеновым фотоэлементом, чувствительным в области 4500—7000 А. [c.243]

    В пламени всегда устанавливается тепловое равновесие, поэтому к нему применимы все соображения о возбуждении веществ и интенсивности спектральных линий, которые были сделаны выше. Из-за относительно низкой температуры пламени в нем возбуждаются и имеют большую интенсивность спектральные линии с низкими потенциалами возбуждения. Ионизация даже щелочных металлов в пламени не велика, а других металлов — совсем незначительна. Поэтому многие легко возбудимые линии в пламени имеют очень большую интенсивность и высокую чувствительность. [c.80]


    При рассмотрении спектральной картины электронных переходов атомов щелочных металлов, получаемой на спектрографах с высокой разрешающей способностью, можно обнаружить, что каждая спектральная линия расщепляется на две близко стоящие друг к другу линии . Этот эффект известен в атомной спектроскопии как проявление дублетной структуры спектров щелочных металлов. Он стал одним из важнейших экспериментальных оснований введения представлений об электронном спине. Происхождение трех линий, регистрируемых на ранних приборах с недостаточным разрешением, легко объяснить в рамках одноэлектронной модели атома (рис. 15). [c.80]

    Атомы и молекулы газов при нагревании или при возбуждении их электрической искрой испускают световое излучение с определенными длинами волн. Такой свет, испускаемый атомами и молекулами в указанных условиях, и представляет собой их спектр испускания. На рис. 19.6 приведены спектры испускания щелочных металлов, ртути и неона. Спектры испускания элементов, особенно металлов, позволяют идентифицировать эти элементы, и спектроскопический химический анализ стал важным методом аналитической химии. Прибор, имеющий дифракционную решетку или призму для разложения света на составляющие его волны и для определения длины этих волн, называют спектроскопом. Схема простого спектроскопа приведена на рис. 3.15. При помощи такого прибора немецкий химик Роберт Вильгельм Бунзен (1811 —1899) открыл в 1860 г. рубидий и цезий. Изобретен спектроскоп был всего лишь за год до этого физиком Кирхгоффом, и цезий стал первым элементом, открытым спектральным методом. [c.65]

    Осн. совр. методы определения П. и. фотоэлектронная спектроскопия, фотоионизация, изучение ионно-молекулярных реакций, поверхностная ионизация. Наилучшая точность определения П. и. атомов и простейших молекул достигается при использовании спектроскопич. данных по сходимости серий спектральных линий. Для сложных молекул предпочтительнее фотоэлектронная спектроскопия (достигаемая точность до 0,001 эВ). Следует, однако, иметь в виду, что этот метод в общем случае дает значения вертикальных, а не адиабатического П. и. На П. и. атомов и атомных ионов оказывает влияние, помимо г, экранирующий эффект нижележащих электронных уровней. Минимальные первые П. и. имеют щелочные металлы С8 2,893 В, 5,390 В максимальные-благородные газы Не 24,580 В, Кп 10,745 В. Известные П. и. молекул-это величины от 5 до 20 В (см. табл.). [c.80]

    При анализе глин, гранитоидов и других силикатных пород с различным содержанием основных компонентов кремния, алюминия, железа, кальция и магния и содержанием натрия от 0,5 до нескольких десятков процентов установлено, что кинетика испарения натрия из пробы в дуге переменного тока 5 А, положение градуировочных графиков и точность определения не зависят от валового состава пробы [89]. Не обнаружено также взаимного влияния натрия и калия. При относительно малом содержании щелочных металлов в состав буфера вводят карбонат лития, оксид меди и угольный порошок. При определении натрия в силикатах с содержанием щелочных металлов свыше 8% применяют метод ширины спектральных линий. [c.99]

    Большое значение имеет конструкция распылителя и горелки. Так, при применении распылителей с камерами распыления и комбинированных горелок-распылителей механизм влияния органических растворителей различен. Отмечена неоднозначность результатов влияния органических растворителей на интенсивность спектральных линий натрия, полученных разными авторами в различных экспериментальных условиях [248]. Использована пламенно-фотометрическая установка на основе спектрографа ИСП-51. Сравнивалось влияние метанола, этанола, пропанола, бутанола, муравьиной и уксусной кислот, диоксана, ацетилацетона и водных растворов на эмиссию щелочных элементов в пламени ацетилен—воздух. Отмечено полное соответствие между увеличением скорости распыления раствора, уменьшением вязкости в ряду спиртов и ростом интенсивности спектральных линий натрия. Для кислот изменение интенсивности коррелирует с уменьшением вязкости и увеличением поверхностного натяжения. Все органические растворители практически не изменяют скорость распыления. Сделано предположение, что влияние органических растворителей связано с изменением диаметра капли аэрозоля. Из общей схемы выпадает ацетилацетон. Спирты в зависимости от их концентрации в растворе позволяют повысить чувствительность определения щелочных металлов (натрия) в 4—12 раз. [c.125]

    Бунзен и Кирхгоф сами продемонстрировали эффективность этого метода. В 1860 г., исследуя образец минерала, они обнаружили его в спектре линии, которые не принадлежали ни одному из известных элементов. Начав поиски нового элемента, они установили, что это щелочной металл, близкий по своим свойствам натрию и калию. Бунзен и Кирхгоф назвали открытый ими металл цезием (от латинского саез1и5 — сине-серый), так как в спектре этого металла самой яркой была именно синяя линия. В 1861 г. эти ученые открыли еще один щелочной металл, который также назвали по цвету его спектральной линии рубидием (от латинского гиЬ1с1из — темно-красный). [c.103]


    Для группового концентрирования можио использовать смесь экстрагентов. Например, при анализе галогенидов щелочных металлов высокой чистоты экстрагируют 18 микроэлементов смесью купферона, диэтилдитиокарбамината натрия и триоктил-фосфиноксида, экстракт упаривают на угольном порошке и анализируют эмиссионным спектральным методом. [c.311]

    В дополненпе к орбитальной тонкой структуре, которую можно объяснить с помощью квантового числа /, экспериментально показано, что спектры щелочных металлов имеют дублетную структуру. Оказалось, что спектральные линии, которые когда-то считались единичными линиями, в действительности являются двумя очень близко расположенными друг к другу линиями. Объяснить это с помощью модели Бора — Зоммерфельда было невозможно. В 1925 г. Уленбек и Гаудсмит объяснили это явление тем, что электрон в дополнение к орбитальному движению имеет момент количества движения, обусловленный вращением его вокруг собственной оси, и этому вращению соответствует магнитный момент. Это приводит к новому квантовому числу, называемому спиновым квантовым числом т . Величина спинового момента количества движения равна 1/2 в единицах /г/2л. Положительные и отрицательные значения спина обусловлены его направлением. Например, если спин электрона направлен по часовой стрелке, то он взаимодействует с орбитальным магнитным моментом электрона и дает энергию, отличающуюся от энергии электрона, [c.68]

    Число всех электронных переходов и, следовательно, число линий в спектре элемента определяется числом и размещением внешних электронов. Спектры атомов с малым числом внешних электронов (например, щелочные металлы) имеют мало линий. Атомы со сложно построенными внешними оболочками — особенно элементы побочных подгрупп периодической системы — дают спектры с очень большим числом линий. Линии, принадлежащие определенным элементам, указываются в спектральных атласах (см., например, 121). Схемы термов атомов и изоэлектронных ионов (например, N3, Mg , А . ..) построены аналогично закон смещения Косселя), однако относительное положение соответствующих линий не идентично. Для их различия в случае атомных линий рядом с символом элемента приводят римскую цифру I (например, М 1 285,2 нм), для линий однократно ионизированных частиц (например. А ) приводят римскую цифру И (А1II 167,0 нм) и т. п. [c.184]

    Кирхгоф и Бунзен установили, что спектр каждого металла строго постоянен. Поэтому, обнаружив в спектрах некоторых образцов новые незнакомые линии в красной и голубой областях, они объяснили их появление присутствием примеси неизвестных в то время металлов. Действительно, удалось выделить два новых щелочных металла. Так, с помощью спектрального анализа были открыты рубидий гиЫс1и5 — красный) и цезий (саез из — голубой). [c.28]

    Фракционное испарение пробы из отверстия графитового электрода используют для повышения чувствительности спектрального анализа. При этом специально увеличивают неравномерность испарения составных частей пробы. Выбирая условия для исгшрения анализируемого элемента в наиболее благоприятный момент для его возбуждения, можно значительно увеличить чувствительность определения, Например, поместив образец руды на дно глубокого отверстия в графитовом электроде, удалось добиться медленной отгонки паров ртути, что резко повысило чувствительность ее определения (до 10" %), Обычно ртуть, имеюн ая сравнительно высокийпотенциал возбуждения, быстро улетучивается в первый момент после включения ду[-и вместе со щелочными металлами, и чувствительность анализа очень низкая, В настоящее время метод фракционной дистилляции широко применяют для повышения чувствительности при анализе чистых металлов и сплавов на содержание примесей, В основу метода положено отделение примесей при испарении пробы из отверстия графитового электрода. Условия испарения выбирают так, чтобы основной элемент пробы не поступал в разряд. [c.251]

    Пары щелочных металлов (простые вещества) и сложных соединений ЩЭ имеют характерное окрашивание — карминово-красное, Ыа — желтое, К — фиолетово-розовое, НЬ — беловато-розовое, Сз — фиолетово-розовое. Как известно, окраска пламени возникает в результате температурного возбуждения атома или иона, сопровождающегося перескоком электронов на более высоко лежащие энергетические уровни. Возвращение назад (на основной уровень) сопровождается излучением энергии определенной для данного элемента длины волны или нескольких длин волн (спектр испускания). Кстати, тяжелые щелочные металлы — КЬ и Сз — были открыты спектральным методом, и их названия отражают присутствие в спектрах отдельных характеристичных линий спектр рубидия содержит, кроме других, красную линию (рубидос — красный), цезий — голубую (це-леос — небесно-голубой). [c.12]

    Расщепление уровней, а следовательно, и спектральных линий зависит от квантового числа проекции магнитного момента М./, которое мол<ет принимать 2]+ значение. Схема расщепления уровней термов 51/ , атома щелочного металла в магнитном поле показана иа рис. 17, На этом же рисунке даны разрешенные правилами отбора электронные переходы, приводящие к наблюдаемым экспериментально десяги спектральным линиям. [c.82]

    После ряда открытий, в частности после обнаружения волновых свойств электронов и других микрочастиц, стало ясно, что теория Бора недостаточная. Она потерпела неудачу даже в попытке построения второго по сложности атома — атома гелия, состоящего из ядра и двух электронов. Она не смогла объяснить обнаруженной мульти-плетности (множественности) спектральных линий в атомных спектрах элементов. Например, спектральные линии щелочных металлов оказались дублетами с очень малым отличием длин воли линий, составляющих эти дублеты. Также линии серии Бальмера в спектре водорода не являются единичными и каждая расщеплена на две очень близко расположенные линии. Это объяснили Уленбек и Гоудсмит в 1925 г. допущением у электронов вращательного (веретенообразного)-движения, что обусловливает появление у них, кроме орбитального, еще спинового вращательного момента, а также спинового магнитного момента (спин — от английского to spin — вращаться). Ориентация спинового момента электрона в дйух противоположных [c.62]

    После ряда открытий, в частности после обнаружения волновых свойств электронов и других микрочастиц, стало ясно, что теория Бора недостаточна. Она потерпела неудачу даже в попытке построения второго по сложности атома — атома гелия, состоящего из ядра и двух электронов, и не смогла объяснить обнаруженной мульти-плетности (множественности) спектральных линий в атомных спектрах элементов. Например, спектральные линии щелочных металлов оказались дублетами с очень малым отличием длин, волн линий, составляющих эти дублеты. Также линии серии Бальмера в спектре водорода не являются единичными и каждая расщеплена на две очень близко расположенные линии. Это объяснили Уленбек и Гоудсмит в 1925 г. допущением у электронов [c.76]

    Спектры атомов щелочных металлов, имеющих один электрон на внеш. электронной оболочке, схожи со спектром Н, но смещены в область меньших частот число спектральных линий в них увеличивается, а закономерности в расположении линий усложняются. Пример-спектр Na, атом к-рого имеет электронную конфигурацию ls 2s 2p 3s с легковозбуждаемым внеш. электроном 3s. Переходу этого электрона из состояния Зр в состояние 3a соответствует желтая линия Na (дублет X = 589,0 им и X = 589,6 нм) это-наиб. яркая линия, с к-рой начинается т. наз. главная серия Na. Линии этой серии в спектре испускания соответствуют переходам из состояний Зр, 4р, 5р,. .. в состояние 3s. [c.219]

    Для атомов послед, групп элементов в периодич. системе, обладающих двумя или неск. внеш. электронами, спектры еще более усложняются, что обусловлено взаимод. электроноа Особенно сложны спектры атомов с заполняющимися d- и /-оболочками число линий в таких спектрах достигает мн. тысяч, простых закономерностей в них не обнаруживается. Однако и для сложных спектров можно произвести систематику оптич. квантовых переходов и определить схему уровней энергии. Систематика спектров атомов с двумя и более внеш электронами основана на приближенной характеристике отдельных электронов при помощи квантовых чисел и и / с учетом взаимод. этих электронов друг с другом. При этом приходится учитывать как их электростатич. взаимод, так и спин-орбитальное, что приводит к расщеплению уровней энергии (т.наз. тонкая структура). В результате этого взаимод. у большинства атомов каждая спектральная линия представляет собой более или менее тесную группу линий-мультиплет. Так, у всех щелочных металлов наблюдаются двойные линии (дублеты), причем расстояния между линиями увеличиваются с увеличением порядкового номера элемента. Для щел.-зем. элементов наблюдаются одиночные линии (син-глеты) и тройные (триплеты). В спектрах атомов послед, групп периодич. системы элементов наблюдаются еще более сложные мультиплеты, причем атомам с нечетным числом электронов соответствуют четные мультиплеты (дублеты, квартеты), а с четным числом-нечетные (триплеты, квинтеты). Кроме тонкой структуры в A. . наблюдается также сверхтонкая структура линий (примерно в 1СЮ0 раз уже, чем мультиплетная), обусловленная взаи- [c.219]

    ЦЁНТРЫ ОКРАСКИ, дефекты кристаллич. решетки, поглощающие свет в спектральной области, в к-рой собств. по-шощение кристалла отсутствует. Первоначально термин Ц. о. относился только к т. наз. F-центрам, обнаруженным впервые в 30-х гг. 20 в. в кристаллах галогенвдов щелочных металлов и представляющим собой анионные вакансии, захватившие электрон. В дальнейшем под Ц. о. стали понимать любые точечные дефекты кристаллич. решетки, поглощающие свет вне области собств. поглощения кристалла,- катионные и анионные вакансии, междоузельные ионы (собственно Ц. о.), а также примесные атомы и ионы (примесные Ц. о.). Ц. о. обнаруживаются во многах неорг. кристаллах и стеклах, а также в природных минералах. [c.343]

    Ц. о. могут быть разрушены при наф. (термич. обесцвечивание) или воздействии света, соответствующего спектральной области поглощения самих Ц. о. (оптич. обесцвечивание). Под действием тепла или света один из носителей заряда, напр, электрон, освобождается из захватившего его дефекта и рекомбинирует с дыркой. В кристаллах галогенидов щелочных металлов F-центр обусловливает селективную поло поглощения колоколообразного вида, обычно в видимой области спектра, смещающуюся для кристаллов с одинаковыми анионами (катионами) и разными катионами (анионами) в сторону длинных волн при увеличении ат. м. катиона (аниона). Напр., в Na l F-полоса имеет максимум поглощения в синей области спектра (А, 465 нм) и цвет кристалла - желто-коричневый, в КС1 - в желт -зеленой области (А, 563 нм) и кристалл выглядит фиолетовым. [c.343]

    Для определения примесей в алюминии высокой чистоты применяют главным образом фотометрические методы. Используются также полярографические, спектральные и радиоактивациоиные методы. Щелочные металлы определяют методом пламенной фотометрии. [c.225]

    Методы обнаружения натрия в настоящее время представлены химическими и физическими методами. Реакции обнаружения натрия малоселективны, требуется предварительное выделение натрия вли сопутствующих ионов. Поэтому большинство химических методов применяют после разделения ионов в систематическом ходе анализа. Более перспективны физические методы, основанные на способности солей натрия окрашивать пламя горелки в характерный желтый цвет. Существуют способы устранения влияния других щелочных металлов основа этих методов описана в главе VIII Спектральные методы определения натрия . По чувствительности они также превосходят химические методы. [c.30]

    Растворимость других элементов не определена. Имеются лишь отрывочные данные о концентрациях примесей в порошкообразных люминофорах и монокристаллах халькогенидов. По данным спектрального и масс-спектрометрического анализов установлено, что щелочные металлы (Na, Li) часто встречаются в концентрациях 10" —10" ат. %. Концентрация примеси щелочноземельных металлов примерно такая же, хотя растворимость, например магния, может достигать 20 мол. % при 980° [33]. Переходные металлы и р. з. э. вводили в порошки и монокристаллы в концентрациях до 1 ат. %. Железо обычно содержится пли вводится в количествах от 10" до 10" ат. %, но известно, что его растворимость в сульфиде цинка достигает 40 мол. % (природные минералы — железистые сфалериты). Марганец вводят обычно в количестве 1%, но растворимость его составляет десятки процентов как в ZnS, так и в dS и dSe [34]. [c.35]

    Сурьму в ниобии и пятиокиси ниобия наиболее часто определяют методами спектрального анализа. Ниобий предварительно переводят в пятиокись. Прямые методы [49, 9721 позволяют определять до 1-10- % ЗЬ. Предварительное отделение ЗЬ методом испарения снижает предел обнаружения ЗЬ до 1-10 % [379]. Метод, включающий концентрирование ЗЬ соосаждением с СиЗ [6431, и метод, в котором удаляют Nb экстракцией 60%-ным раствором ТБФ в бензоле в среде 10 М Н2304 [3781, также характеризуются высокой Чувствительностью п-10 % (5г=0,15-н 0,20). Метод инверсионной вольтамперометрии применен для определения ЗЬ > 5-10" % (5г <1 0,26) в ниобатах щелочных металлов и пятиокиси ниобия [290]. Предварительное выделение 8Ь экстракцией в виде диэтилдитиокарбамината позволяет снизить предел обнаружения ЗЬ до 1-10 % [223]. [c.142]

    Цезий был открыт в 1860 г. Р. Бунзеном и Г. Кирхгоффом [1, 2] в воде Дюркгеймского минерального источника (Германия). В спектре солей щелочных металлов, выделенных из минеральной воды, Р. Бунзен и Г. Кирхгофф нашли вблизи голубой линии стронция две неизвестные голубые линии (455,5 и 459,3 нм). Цвет этих спектральных линий и дал повод обоим исследователям назвать новый элемент цезием (слово скз1ипг у древних римлян означало голубой цвет верхней части небесного свода ). Год спустя Р. Бунзен и Г. Кирхгофф открыли еще один неизвестный ранее элемент, названный ими рубидием. Изучая спектр гекса-хлороплатинатов щелочных металлов, осажденных из маточника после разложения одного из образцов лепидолита, Р. Бунзен и Г. Кирхгофф обнаружили две новые фиолетовые линии (420,2 и 421,6 нм), находящиеся между линиями калия и стронция, а также новые линии в красной, желтой и зеленой частях спектра. Среди всех этих линий для индентификации нового элемента исследователи выбрали две линии, лежащие в самой дальней красной части спектра (780,0 и 794,8 нм). По цвету этих спектральных линий новый элемент был назван рубидием (латинское слово гиЫйиз — темно-красный). [c.72]

    Недостатком разделения элементов по подгруппам на основании физических методов исследования является то, что для разных свойств получаются разные варианты таблицы. Так, например, по своим спектральным свойствам водород аналогичен щелочным металлам, а гелий — щелочноземельным. Поэтому оба эти элемента в таблице периодической системы в работах, посвященных спектроскопическим исследованиям химических элементов, помещаются в первой и во второй группах,где по этим свойствам им и надлежит быть. Однако нахождение гелия во второй группе при классификации, учитывающей не спектральные, а какие-либо другие физические свойства, оказывается совершенно неоправданньом. [c.274]

    Определение кобальта спектральным методом после обога-ш,ения экстракцией пирролидиндитиокарбаминатов [637]. Авторы рекомендуют проводить обогащение микроэлементов с селективным отделением железа, алюминия, щелочноземельных и щелочных металлов. Анализируемую пробу переводят в растворимое состояние каким-либо известным методом. К 25 мл раствора пробы в 7 N соляной кислоте прибавляют 1 каплю 30%-ного раствора перекиси водорода и взбалтывают с равным объемом метилозобутилкетона 30 сек. Органический слой содержит около 94% железа в виде хлорида, а также хлориды галлия, олова, ванадия, молибдена и др. Его взбалтывают 1 мин. с 25 мл водного раствора аскорбиновой кислоты для восстановления трех- [c.212]


Смотреть страницы где упоминается термин Спектральные щелочных металлов: [c.350]    [c.434]    [c.281]    [c.219]    [c.57]    [c.52]    [c.239]    [c.89]    [c.89]    [c.447]    [c.76]    [c.219]    [c.392]    [c.238]    [c.114]    [c.312]    [c.8]   
Физическая химия Том 1 Издание 5 (1944) -- [ c.100 ]




ПОИСК





Смотрите так же термины и статьи:

Изучение интенсивностей спектральных линий в спектрах излучения щелочных металлов (определение относительных статистических весов уровней при дублетном расщеплении)

Серии спектральных линий водорода и щелочных металлов

Термы спектральные щелочных металлов

Щелочные металлы спектральные серии



© 2024 chem21.info Реклама на сайте