Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Насыщенные углеводороды свойства

    В т. III этого капитального труда, являющемся логическим продолжением первых двух томов, излагаются процессы превращения углеводородов изомеризация насыщенных углеводородов, хлорирование и фторирование парафинов и нафтенов, нитрование, полимеризация виниловых углеводородов, получение полиэтилена и его свойства, химия натуральных и синтетических каучуков, гидрогенизация, оксо-реакции, алкилирование и т. д. [c.552]


    В это же время Штаудингер и Фрич гидрировали каучук в присутствии платиновой черни, в отсутствии растворителя, под давлением 93— 102 ат, при температурах 270—280° в течение 10 час. Никель действует так же, как и платина, но гидрирование идет не столь быстро и полно. Полученный ими гидрокаучук представлял бесцветную, прозрачную, твердую массу он не обладал эластическими свойствами исходного каучука и имел химические свойства насыщенных углеводородов. При пиролизе гидрированного каучука образовались олефины, из которых [c.218]

    Ванадий относится к группе тяжелых металлов, отравляющих катализаторы, однако исследования era свойств показали, что наличие на алюмосиликатном катализаторе небольшого количества ванадия (0,0003—0,003%) повышает индекс активности почти на 3 пункта. В результате степень превращения сырья увеличивается по сравнению с исходным катализатором за счет увеличения выхода бензина. Увеличение выхода бензина не отражается на коксо- и газообразовании, отношение бензин кокс повышается. Добавление малых порций ванадия способствует образованию определенного количества ненасыщенных углеводородов, которые инициируют крекинг насыщенных углеводородов и тем самым увеличивают степень превращения сырья и выход бензина. Содержание ванадия ограничивается содержанием непредельных углеводородов в реакционной смеси. С увеличением количества непредельных углеводородов скорость крекинга насыщенных углеводородов уменьшается, так как на активных центрах катализатора адсорбируются в первую очередь непредельные углеводороды. Получающиеся при дегидрировании непредельные углеводороды крекируются и образуют в несколько раз больше кокса, чем парафиновые углеводороды. Кокс экранирует активные центры катализатора, в результате чего активность резко уменьшается. [c.23]

    Мы уже упоминали, что соединения, содержащие только углерод и водород, называются углеводородами те из них, в которых все атомы углерода образуют четыре простые связи с другими атомами, носят название насыщенные углеводороды, парафины или алканы. Слово парафин происходит от греческого выражения низкая реакционная способность , а химические свойства парафинов значительно отличаются от свойств силанов и азотоводородов. [c.282]

    Металлы, обладающие дегидрирующими свойствами, способствуют образованию непредельных углеводородов из парафиновых углеводородов. Последние под действием кислотной части катализатора быстро образуют карбоний-ионы, которые могут, с одной стороны, претерпевать дальнейшее превращение с образованием обычных продуктов крекинга, с другой — могут отнимать ионы водорода от парафиновых углеводородов, превращая их в карбоний-ион. Оба направления способствуют ускорению расщепления парафиновых углеводородов. В зависимости от природы металла, присутствующего на поверхности катализатора, и его концентрации ускорение образования непредельных углеводородов может привести к самым различным результатам. Если металл является слабым дегидрирующим агентом и содержится в небольшом количестве в катализаторе, то образуется определенное количество непредельных углеводородов, которые инициируют крекинг насыщенных углеводородов тем самым увеличивается степень превращения сырья и возрастает выход бензина. [c.175]


    Более широко распространены методы, использующие различия физических свойств ароматических и насыщенных углеводородов, Так, для определения содержания ароматических углеводородов в узких бензиновых фракциях часто используют определение критических температур растворения в анилине (метод анилиновых точек), основывающийся на лучшей растворимости ароматических углеводородов в анилине. [c.132]

    При получении бензинов путем термического и каталитического крекинга нефтяного сырья в них, кроме парафиновых, нафтеновых и ароматических углеводородов, содержатся также олефиновые углеводороды, образующиеся в результате расщепления крупных молекул насыщенных углеводородов. Помимо расщепления парафиновых углеводородов при крекинге происходит дегидратация нафтенов с образованием ароматических углеводородов. Если состав бензинов прямой перегонки всецело зависит от состава исходной нефти, то состав бензинов крекинга в значительной степени определяется условиями проведения процесса. Определяющим параметром термического крекинга является температура. При каталитическом крекинге углеводородный состав получаемого бензина зависит также и от фракционного состава сырья и свойств катализатора. [c.65]

    Химические свойства насыщенных углеводородов [c.37]

    Для расчетов избыточных термодинамических свойств бинарных смесей, в частности смесей насыщенных углеводородов с поля р ными растворителями, может быть использована решеточная модель растворов Баркера, Теория Баркера основана на использовании квазикристаллической модели раствора  [c.26]

    НАФТЕН Ы (циклопарафины) — алициклические насыщенные углеводороды с пяти- и шестичленными кольцами, по химическим свойствам близки к парафиновым углеводородам. Н. входят в состав нефти, являются источником получения ароматических углеводородов (каталитический крекинг). Наибольшее практическое значение имеет циклогексан для синтеза капролактама, ади-пиновой кислоты и других соединений, используемых в производстве синтетического волокна. [c.171]

    В какой-то мере выбор сорбента может быть предсказан заранее. На практике в первую очередь нужно исходить из свойств разделяемых соединений их растворимости (гидрофильность, гидрофобность), содержания и характера функциональных групп. Насыщенные углеводороды адсорбируются слабо или совсем не адсорбируются. Введение двойных связей, особенно сопряженных, увеличивает адсорбционную способность соединений. Функциональные группы еще в большей степени усиливают способность вещества к адсорбции. Адсорбционная способность функциональных групп увеличивается в следующем порядке  [c.62]

    Соединения (I) и (И), как это видно из их структур, относятся к насыщенным углеводородам и, следовательно, для них характерен одинаковый набор химических свойств. Поэтому можно утверждать, что введение метильной группы не оказывает принципиального влияния на свойства, поскольку исходное соединение (I) было углеводородом и после введения метильной группы вновь образовался углеводород. [c.308]

    Химические свойства. Как уже было указано, предельные, или насыщенные, углеводороды — это вещества, трудно вступающие в реакции при обычных температурах. Для всех углеводородов гомологического ряда метана характерна неспособность к реакциям присоединения. При определенных условиях они вступают в реакции замещения, в результате которых атомы водорода их молекул замещаются другими атомами или группами и образуются производные углеводородов. При энергичном воздействии температур или химических реагентов молекулы углеводородов разлагаются с разрушением углеродного скелета. [c.52]

    Физические свойства. Алициклические насыщенные углеводороды имеют более высокие температуры кипения и плавления, чем нециклические с тем же числом атомов углерода (табл. 16.5). Они не растворяются в воде, но растворяются в неполярных органических растворителях. [c.249]

    Анализ показывает, что в случае ациклических систем индекс Винера можно использовать для характеристики степени ветвления и степени компактности графа, а в случае циклических систем — степени цикличности. Например, в работе [69] степень цикличности МГ, содержащего циклы, определяется как обратная величина индекса Винера. Индексы Винера нашли широкое применение для построения корреляционных соотношений тина структура — свойство, например, нри оценках термодинамических характеристик насыщенных углеводородов [69, 70], в газохроматографическом анализе [71], при расчете физико-хнмических св ойств полимеров [72, 73], при математическом моделировании роста кристаллов и распределения вакансий [74, 75]. [c.40]


    Состав молекулы полиэтилена и ее строение в значительной мере предопределяют физико-химические свойства полиэтилена это насыщенный углеводород прямолинейного строения молекулярного веса 15 ООО и выше. [c.765]

    Из рентгеноструктурного анализа кристаллических гексаалкильных производных бензола следует, что все шесть атомов углерода цикла лежат в одной плоскости и присоединенные к ним алкильные группы находятся в той же плоскости. Эти данные также исключают формулу Ладенбурга. Межатомные расстояния, определенные рентгеноструктурными методами, не соответствуют формуле, имеющей пара-связь (формула Дьюара). Расстояние между атомами углерода в пара-положении значительно больше (2,80А), чем длина связи в каких-либо известных соединениях. Расстояние между атомами углерода в насыщенных углеводородах составляет 1,54А, нормальная длина олефиновой С = С-связи равна 1,ЗЗА. Так как связь необычной длины (2,80А) должна привести к ослаблению взаимодействия и, следовательно, к повышению активности системы, формула, включающая такую связь, несовместима со свойствами бензола. [c.125]

    Потенциалы ионизации я-электронов меньше аналогичных величин для а-электронов и в больших молекулах ароматических углеводородов могут не превышать 6 эВ. Именно низкая энергия возбуждения со связывающей л-орбитали на разрыхляющую молекулярную л -орбиталь ответственна за поглощение этими соединениями в видимой и близкой ультрафиолетовой областях спектра. Более того, сравнительно слабая связь я-электронов ненасыщенных углеводородов является причиной их большей реакционной способности по сравнению с насыщенными углеводородами. Многие интересные физические и химические свойства ненасыщенных углеводородов обусловлены наличием я-электронов, и теория я-электронов Хюккеля основана на предположении, что при объяснении различий между такими молекулами (например, этиленом и бензолом) можно большей частью игнорировать а-орбитали. Поэтому в дальнейшем будем рассматривать только молекулярные орбитали, получающиеся из атомных 2/ лг-орбиталей каждого ненасыщенного атома углерода. [c.192]

    ФИЗИЧЕСКИЕ СВОЙСТВА НЕКОТОРЫХ НАСЫЩЕННЫХ УГЛЕВОДОРОДОВ [c.177]

    Необычайным для насыщенного углеводорода свойством является способность. метилциклопентана нитроваться с образованием мононитропроизюдного. [c.893]

    Корреляционные методы позволяют использовать полученные данные для расчета термодинамических свойств углеводородов с более высоким молекулярным весом. Если в гомологическом ряду насыщенных углеводородов увеличивается длина боковой цени, то постепенно изменение термодинамических свойств, вызываемое добавлением группы СНг, становится приблизительно постоянным. Это видно из табл. УП-1, в которой приводятся термодинамические характерпстики углеводородов различных гомологических рядов. Различные исследователи [11 —13] в большом [c.372]

    Трансфера,бельность — переносимость из одной молекулы в другую, структурно родственную, ряда молекулярных свойств. К примеру, длины связей С—С и С—Н во всех насыщенных углеводородах с точностью до 0,5 % постоянны, а энергии атомизации алканов с точностью до 2 % равны сумме средних энергий разрыва всех связей С—С и С -Н, [c.206]

    Углеводороды являются важнейшей составной частью любой нефти. И хотя содержание их в различных нефтях далеко не одинаково от 30—40 до 100% (в газовых конденсатах), все же в среднем до 70 мас.% всех нефтей составляют углеводороды. История развития такой научной дисциплины, как химия нефти,— это фактически история развития химии углеводородов. Начало исследований по химии нефти было положено известным немецким химиком К. Шор-леммером, обнаружившим в нефтях Пенсильвании (США) и-бутан, к-пентан и к-гексан. Успех работы во многом был связан с тем, что ранее Шорлеммер выполнял работы по синтезу нормальных алканов в лаборатории своего учителя А. Вюрца. Спустя 20—25 лет русский химик В. В. Марковников, исследуя отечественные (бакинские) нефти, пришел к выводу о том, что основными углеводородами в этих нефтях являются уже не алифатические, а циклические — насыщенные углеводороды ряда циклоиентана и циклогексана, названные им нафтенами. И здесь Марковникову помогли его более ранние работы по синтезу и исследованию свойств циклоалканов, выполненные в лаборатории А. М. Бутлерова. Таким образом, еще в конце прошлого столетия были заложены методологические осно вы химии нефти, т. е. синтез модельных углеводородов с последующим нахождением их в нефтях. Тогда же были сформулированы и первые представления о химической классификации нефтей, предполагающей деление нефтей на два основных класса парафиновый и нафтеновый. [c.7]

    Интересно, что при нагреве нефтей сохраняется постоянное соотношение между отдельными группами насыщенных углеводородов во фракции 200—430° С, что хорошо согласуется со свойствами различных нриродных нефтей единого генезиса. Особенность эта связана с большей прочностью связей С—С в кольцах, чем в алифатических [c.228]

    При действии избытка 100%-ной серной кислоты при комнатной температуре нормальные первичные спирты превращаются в алкипсерные кислоты, не образуя диалкил сульфатов [8], но после длительного стояния от кислоты отслаивается сложная смесь углеводородов, относящихся главным образом к парафиновому ряду. При этерификации первичных изоспиртов с разветвленными цепями, включая изобутиловый,. изоамиловый и оптически активный амиловый спирты, кроме сложных эфиров, получаются соединения, обесцвечивающие бромную воду. Наибольшее количество этих соединений отмечено при этерификации изо-бутилового спирта. При действии серной кислоты вторичные и третичные спирты сначала превращаются главным образом в сложные эфиры, которые при стоянии в присутствии избытка серной кислоты образуют углеводороды. Маслянистый слой, медленно отслаивающийся от серной кислоты, содержит большой процент насыщенных углеводородов [9]. Водород, необходимый для их образования, освобождается путем диспропор-ционирования типа сопряженной полимеризации [10], в результате которого получаются циклоолефины, остающиеся в кислом растворе. Из цетилового спирта получается вещество с т. пл. 50°, обладающее свойствами парафинового воска. Цикло-гексанол превращается в высококинящие углеводороды [11]. Кислый сульфат, приготовленный из трифенилкарбинола [8], представляет собой сильно диссоциированную кислоту, судя по его низкому молекулярному весу в растворе сернох кислоты. Он разлагается водой, регенерируя трифенилкарбинол. [c.8]

    В этот период химики интересовались изучением входящих в состав нефти соединений нефть являлась загадкой и, не преследуя часто непосредственных практических целей, химики изучали химически инертные углеводороды, из которых состояла нефть. Наряду с большим числом работ, которые сейчас уже не представляют интереса из-за ошибочной методики, несовершенства приборов и т. д., среди исследований этого периода встречаются классические работы, явившиеся крупнейшим вкладом в науку. Это, прежде всего, исследования русских химиков Менделеева, Морковникова, Зелинского и многих других. Их. труды дали правильное представление о составе легких фракций нефтей они открыли, что в нефтях, наряду с парафинами, присутствуют также насыщенные углеводороды другого рода с иными свойствами, они выделили их, дали им название нафтенов и всесторонне изучили их свойства, строение и превращения. [c.168]

    Хотя все нефти состоят главным образом из насыщенных углеводородов, они зачастую очень сильно различаются по своему химическому составу даже в тех случаях, когда их добывают из разных пластов одного и того же месторождения. Это объясняется тем, что образовавшиеся вначале жирные кислоты различным образом изменялись под влиянием окружающей среды. Щелочные минералы могли способствовать циклизации нли образованию кетонов (ср. стр. 218), глины, обладающие кислыми свойствами, — наоборот, могли вызывать изомеризации. Декарбоксилирование жирных кислот могло протекать как под влиянием бактерий, так и чисто химическим путем. Высокая температура, очевидно, вызывала различные реакции расщенления давление также имело значение для дальнейших превращений. [c.84]

    ГОМОЛОГИЧЕСКИЕ РЯДЫ - группы родственных органических соединений с одинаковыми химическими свойствами н суммарными формулами, отличающимися между собой на одну или больше групп СНа. Например, гомологический ряд насыщенных углеводородов (метана) имеет общую формулу Си Щп+2- метан СН4, этан СгН , пропан СдНв, бутан С4Н10 и др. Для членов определенного Г. р. химические реакции обусловлены наличием общей функциональной группы. Физико-химические свойства соединений Г. р. закономерно изменяются с увеличением молекулярной массы. [c.79]

    Связи С—Н в ацетилене, образованные sp-гибридными орбиталями, сильно отличаются по своим свойствам от связей С—Н в насыщенных углеводородах, возникающих из 5р -орбиталей. Так, например, водород в ацетилене довольно легко замещается на металл, в часиюсти, при пропускании С2Н2 в растворы, содержащие Си+, выпадает осадок ацетилида меди U2 2. [c.173]

    Непредельные углеводороды (каучуки) [11]. Химические свойства высокомолекулярных непредельных углеводородов сходны со свойствами низкомолекулярных ненасышенных углеводородов. При гидрировании непредельных полимеров в присутствии катализаторов образуются насыщенные полимеры — гидрокаучуки. Высокомолекулярные гидрокау-чуки по физико-механическим свойствам близки к исходному полимеру, но по химическим свойствам соответствуют насыщенным углеводородам. [c.250]

    Изомеры положения имеют одинаковую химическую формулу и являются соединениями одного класса, например насыщенными углеводородами, кислотами или галогеннроизводными углеводородов они обладают близкими химическими свойствами. Эти изомеры [c.74]

    Для циклоалканов характерны все химические свойства насыщенных углеводородов реакции замещения, отщепления (дегидрирование), разложения и окисления. В отличие от алканов для циклоалканов возможны реакции присоединения. Например  [c.465]

    Неподвижные жидкие фазы. Известно несколько сотен НФ для ГЖХ. Основным требованием к НФ является обеспечение желаемого разделения. Выбор НФ часто проводят эмпирически, руководствуясь инфор- мацией о свойствах соединений, присутствующих в пробе. Анализируемые вещества должны растворяться Б НФ, иначе время удерживания будет очень малым и разделение не будет достигнуто. Как правило, неполярные вещества хроматографируют на неполярных углеводородных или силоксановых НФ. Типичными неполярными фазами являются насыщенный углеводород нормального строения (сквалан) СзоНег и сило-ксаны е общей формулой [c.621]

    Физические и химические свойства фторуглеродов очень интересны, но еще мало исследованы. Плотность жидких фторуглеродов в 2—3 раза выше плотности соответствующих насыщенных углеводородов. Плотность при 20 полностью фторированного пентана 1,62, гексана 1,70, гептана 1,73, декана 1,83 и т. д. Температуры кипения фторуглеродов [27], начиная с пентфорана, как правило, ниже, чем соответствующих углеводородов (см. табл. Vni.ll). [c.500]

    При выборе холодильных агентов паровых холодильных машин руководствуются свойствами агентов, а также их стоимостью и доступностью. Наибольшее распространение в качестве холодильных агентов промышленных холодильных установок разделения природных газов получили аммиак, углеводороды (пропан, этап, этилен), а также фреоны — фтор-хлорнроизводные насыщенных углеводородов. Их основные свойства приведены в табл. 6 и 7. [c.73]

    Галоидные соединения насыщенных углеводородов СпНзп+з, полученные путем замены атомов водорода атомами фтора, хлора, бро ма ((. НжРуСиВги), чрезвычайно мно-гсчисленны, что позволяет получить широкий спектр их свойств. Числа [c.41]

    Из раствора смеси нескольких веществ в органическом растворителе можно выделить отдельные компоненты, используя различие их химических свойств. Это достигается встряхиванием такого раствора в делительной воронке с водным раствором кислоты, если, например, желают отделить амины, или водным раствором соды или щелочи, если нужно отделить вещество кислого характера. Концентрированные кислоты, например серную, применяют для отделения насыщенных углеводородов от ненасыщенных, тиофена от бензола, спиртов и эфиров OY хлоралканов и т. д. Эту операцию обычно выполняют так же, как и обычную экстрак-дию. Разница заключается в том, что данная операция основана на проведении химической реакции, а не на различной растворимости вещества в разных растворителях (как при простой экстракции). [c.109]

    Исследовались каталитические свойства многочисленных сильных кислот фтористого водорода, фтористого бора, галоидсульфоновых кислот, этансульфоновой кислоты и др. Однако ббльшая часть экспериментальных данных, используемых для выяснения механизма изомеризации насыщенных углеводородов, была получена с применением хлористого и бромистого алюминия, серной кислоты и алюмосиликатов. Поэтому рассмотрение реакций изомеризации, катализируемых сильными кислотами, будет ограничено реакциями, протекающими на перечисленных четырех катализаторах. По тем же причинам обсуждение изомеризации в присутствии гидрирующих катализаторов на кислотных носителях будет ограничено реакциями, протекающими в присутствии платины на содержащей галоид окиси алюминия, никеля на алюмосиликатах и алюмомолйбденового катализатора. [c.88]

    Алюмосиликаты, обычно применяемые в качестве катализатора крекинга, могут использоваться в более мягких условиях как катализатор изомериза-ции насыщенных углеводородов [41]. Были детально изучены изомеризация и рацемизация (4-)-3-метилгексана [9]. По каталитическим свойствам алюмосиликаты напоминают серную кислоту, поскольку в их присутствии может происходить передача гидридного иона только от третичного углерода тре тичному. [c.99]


Смотреть страницы где упоминается термин Насыщенные углеводороды свойства: [c.325]    [c.62]    [c.458]    [c.327]    [c.206]    [c.112]    [c.92]    [c.237]    [c.137]   
Химия органических лекарственных препаратов (1949) -- [ c.12 ]




ПОИСК





Смотрите так же термины и статьи:

Насыщенные углеводороды



© 2025 chem21.info Реклама на сайте