Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярная ориентация структура

    Исследование утомления вискозного волокна показало, что с последним можно работать в гораздо более узкой области деформации, чем с капроновым. При этом во время процесса динамического утомления отмечается развитие двух противоположных явлений с одной стороны, растет молекулярная ориентация структуры волокон, способствующая росту их сопротивления разрыву и, с другой стороны, их молекулярный вес уменьшается, что снижает прочность материала. [c.191]


    На стадии формования или на последующих стадиях переработки в полимере могут происходить существенные структурные изменения (например, изменение надмолекулярной структуры, развитие молекулярной ориентации), которые могут быть результатом целенаправленного воздействия, предпринимаемого для улучшения физических и механических характеристик полимера. Связь между процессами формования и изменением структуры имеет большое практическое значение. Понимание этой связи помогает выбирать оптимальный технологический процесс. [c.32]

    Изложенное показывает, что ниже температуры стеклования трудно ожидать перестройки структуры, поскольку полимерные цепи практически неподвижны. Поэтому любая молекулярная ориентация, имеющаяся в стеклообразном состоянии, сохраняется практически неизменной до тех пор, пока полимер не нагревают до температуры стеклования. Замороженные деформации, присутствие которых приводит к анизотропии механических характеристик полимера в стеклообразном состоянии, являются следствием молекулярной ориентации, возникающей при деформации или течении полимеров при температуре, превышающей температуру стеклования. [c.68]

    Сферолитовая структура (рис. 2-14) состоит из агрегатов частичек со сферической симметрией сферолитов размером 0,5— 5 мкм, морфологически весьма сходных со сферолитами полимеров. Для них характерно беспорядочное расположение центров формирования фрагментов с хорошо выраженной молекулярной ориентацией. Центральный участок сферолитов имеет слоистое строение, однако типичным для них является радиальный характер структуры (рис. 2-14, а). Столбчатые структуры располагаются радиально относительно включений, состоящих из первичной а -фракции, нерастворимой в хинолине. На рис. [c.58]

    Влияние молекулярной ориентации более или менее четко заметно для полимеров только при малых напряжениях сдвига, когда процесс перестройки надмолекулярной структуры еще слабо развит, и для олигомеров, когда молекулярная масса столь мала, что не образуется пространственной надмолекулярной структуры. Существенное проявление высокоэластической составляющей деформации наблюдается в возникновении нормальных напряжений. Хотя они и сопоставимы по значению с тангенциальными, влияние те.х и других на физические свойства вязкого потока полимерной системы существенно различно. Тангенциальное напряжение вызывает вязкое течение и приводит к разрушению надмолекулярной структуры полимеров, тогда как нормальное напряжение приводит лишь к небольшому изменению гидростатического давления в потоке и практически его влияние на изменение структуры и вязкость полимерной системы несущественно. Уменьшение вязкости в процессе течения, наблюдаемое при относительно больших напряжениях, может быть объяснено изменением исходной надмолекулярной структуры полимера, если установлено, что его молекулярная масса при этом остается неизменной. [c.166]


    Прочность зависит от времени действия нагрузки, температуры и других факторов, а также от структуры полимера, наличия различных дефектов и других особенностей структуры, нанример молекулярной массы, молекулярной ориентации и т. д. Полимеры обладают как общими для твердых тел, так и специфическими [c.280]

    Теоретическая прочность существенно зависит от структуры полимера и, в частности, от степени молекулярной ориентации. Для предельно ориентированного полимера при малых молекулярных массах, когда разрушение идет не за счет разрыва химических связей, а путем относительного сдвига полимерных цепей и преодоления межмолекулярных сил, теоретическая прочность зависит от молекулярной массы. При больших молекулярных мас сах разрушение происходит путем разрыва полимерных цепей. Расчеты прочности последних сделаны пока для полиэтилена и капрона [5]. Для этих полимеров в предельно ориентированном состоянии теоретические прочности в направлении ориентации соответственно равны 3,52-Ю и 3,00-10 МН/м2, а в поперечном направлении — 0,26-10 МН/м (для капрона). [c.282]

    Можно выделить два направления использования результатов измерений в поляризованном свете 1) поиск связи моментов перехода с молекулярной ориентацией в кристаллах с известной структурой  [c.221]

    Можно выделить два направления использования результатов измерений в поляризованном свете 1) поиск связи моментов перехода с молекулярной ориентацией в кристаллах с известной структурой 2) определение структуры кристаллов или полимеров на основании дихроичных отношений. В одной из таких работ методом НПВО в поляризованном свете было проведено отнесение частот в ИК-спектрах монокристаллов стеариновой кислоты и ее дейтерированного ( 35) аналога [196]. Для дальнейшего ознакомления с поляризационным методом можно обратиться к литературе [35, 161]. [c.221]

    ВЛИЯНИЕ МОЛЕКУЛЯРНОЙ МАССЫ, СТРУКТУРЫ И МОЛЕКУЛЯРНОЙ ОРИЕНТАЦИИ НА ПРОЧНОСТЬ ПОЛИМЕРОВ [c.127]

    Структура полимерного материала оказывает сильное влияние на прочность. Для пространственно-структурированных полимеров (например, резин) главным структурным фактором является степень поперечного сшивания (число поперечных связей в пространственной сетке), а также структуры, образуемые активными наполнителями. Для твердых полимеров одним из главных структурных факторов, резко повышающим прочность, является ориентация цепей, сохраняющаяся неопределенно долгое время из-за заторможенности релаксационных процессов в твердых полимерах. Влияние молекулярной ориентации на прочность специфично только для полимерных материалов. На этом свойстве основываются процессы получения синтетических волокон, пленочных материалов, ориентированного органического стекла. [c.127]

    В последнее время важное значение придается влиянию надмолекулярных структур на механические свойства полимеров. Полимеры, обладающие после синтеза определенной структуро и свойствами, могут приобрести иной комплекс свойств при перестройке их надмолекулярных структур. Прочность ориентированных полимеров зависит не только от совершенства молекулярной ориентации, но и от характера надмолекулярной структуры. Большое разнообразие надмолекулярных структур позволяет получить многообразие свойств в пределах каждого физического состояния полимера кристаллического, стеклообразного и высокоэластического. [c.127]

    Молекулярная ориентация изменяет структуру полимера в процессе его вытяжки или высокоэластической деформации. Ввиду исключительно большого влияния ориентации на прочность полимеров этот вопрос рассматривается специально в следующих разделах. [c.134]

    Каргиным и Козловым с сотр. показано, что кристаллические волокнообразующие полимеры характеризуются разнообразием надмолекулярных структур. Поэтому прочность кристаллических волокон зависит не только от молекулярной ориентации, но и от характера надмолекулярной структуры . [c.139]

    Наиболее часто используемая модель для непредельной адсорбции — это так называемая адсорбция хвостом вверх (рис. 5.20, а). В данном случае электростатические или химические силы заставляют концевую группу (голову) связываться с поверхностью особым образом, а хвост молекулы фактически принимает асимметричную ориентацию. В зависимости от особенностей структуры концевой группы (головы) и типа специфического взаимодействия с поверхностью, адсорбция может быть либо хвостом вперед , как показано на рис. 5.20, а, либо молекулы ПАВ расположены под углом (рис. 5.20, А). Для катионных ПАВ с прямыми цепями, как правило, наблюдают связывание, изображенное на рис. 5.20, а. Если движущими силами адсорбции являются гидрофобные, как в случае взаимодействия хвоста ПАВ с гидрофобной частью поверхности, следует ожидать молекулярной ориентации, изображенной на рис. 5.20, с, [c.172]


    Фибриллярная структура характерна не только для натуральных и искусственных волокон. Электронно-микроскопические исследования различных синтетических волокон показывают большое сходство строения их поверхности со строением поверхности вискозных волокон. Очевидно, на образование фибриллярной структуры оказывает влияние молекулярная ориентация и усадка при получении волокон из расплава [15, 20]. Особенности химического строения также влияют на рельеф поверхности синтетических волокон. Нанример, на поверхности найлона обнаружены сферолиты (рис. II 1.9, в). [c.102]

    Брандт [181 доказал справедливость подобной трактовки явления. Наряду с исследованием газопроницаемости высокоориентированных пленок, он оценивал изменение кристалличности, плотности полимера, относительного количества пустот и молекулярной ориентации. Последние две величины определяли рентгенографически при малых углах рассеяния. Результаты показали, что изменению проницаемости при ориентации полимера соответствует изменение относительного количества пустот. Так, например, растяжение на 170% образцов аморфного поливинилбутираля не вызывает заметного изменения коэффициентов проницаемости, диффузии и сорбции, количество пустот при этом не меняется. Холодная вытяжка полиэтилена на 297% приводит к уменьшению пустот в образце и значительному снижению коэффициентов Р, О и 8. Наоборот, при ориентации найлона-66 возрастает количество пустот и увеличиваются эти коэффициенты. При этом эффект разрыхления структуры перекрывает противоположно действующий эффект увеличения кристалличности. Ориентация полипропилена на 500% не изменяет значительно коэффициентов сорбции и проницаемости хотя наблюдается разрыхление структуры, уменьшение кристалличности и снижение скорости диффузии. Изменение энергии активации диффузионного процесса в результате ориентации находится в пределах 14,7— 23,5 кДж/моль. [c.70]

    Теоретическая прочность существенно зависит от структуры полимера и, в частности, от степени молекулярной ориентации. Для предельно ориентированного полимера при малых молеку- [c.16]

    Сопоставление результатов рентгеноструктурного анализа с данными изотермического нагрева и ДТА позволило заключить, что в образцах ПП, закристаллизованных при наличии молекулярной ориентации, существует по крайней мере два типа структур, имеющих с-текстуру. Структура I типа аналогична микрофибриллярной структуре обычных ориентированных образцов. Она составляет 85—90% от общей массы и плавится при 175 °С. Структура II типа, по мнению авторов, представляет собой КВЦ. [c.61]

    Таким образом, процесс кристаллизации из расплава при молекулярной ориентации можно рассматривать как бикомпонентную кристаллизацию, при которой, как и в случае образования волокнистых структур при кристаллизации из растворов, на начальной стадии происходит формирование кристаллов пакетного типа. Любопытно, что вначале сам автор [34] придерживался мысли о том, что упоминавшееся выше первоначальное снижение напряжения в образце при постоянном удлинении связано с образованием пакетных кристаллов [30, 38]. Однако в силу описанных выше причин автор и на этот раз заколебался и изменил свою точку зрения. Вполне возможно, что экспериментальные данные, согласно которым кристаллизация полиэтилена даже при высоких степенях ориентации приводит к образованию лишь незначительного количества пакетных кристаллов, задержали признание достоверности явления бикомпонентной кристаллизации [37]. ]Иожет показаться странным, что при обсуждении природы явления складывания макромолекул в заключении к данному разделу автор даже не воспользовался данными о преимущественном образовании складчатых кристаллов в таких условиях, однако у него есть на это свои причины. [c.208]

    Этот- случай изображен на рис. 1П.54, б. Рост такого зародыша будет сопровождаться уменьшением размеров петель, что приведет к образованию складчатой структуры (рис. 111.54, в). В случае же молекулярной ориентации отдельные макромолекулы будут деформироваться и приобретать форму эллипсоида, как показано на рис. 111.54, г, и поэтому вполне естественно, что появление участков, в которых возможно образование микро-зародышей кристаллизации, подобных показанным на рис. П1.54, б, будет ускоряться (см. рис. П1.54, д). [c.217]

    Складчатая структура макромолекул полиэтилена, образующих монокристаллы [1], вначале воспринималась как нечто уникальное, однако, как было показано в предыдущих разделах, по мере накопления данных и проведения последующих исследований становилось все более очевидным, что явление складывания цепей является наиболее характерной особенностью кристаллизации полимеров. Было обнаружено вначале для полиэтилена, а затем для большого числа других кристаллизующихся полимеров, что при кристаллизации из раствора или расплава, как правило, наблюдается складывание макромолекул. Более того, явление складывания макромолекул является доминирующим механизмом при кристаллизации и в таких специфических условиях, как при молекулярной ориентации [2] или же в поле сдвиговых напряжений [3—5]. [c.270]

    Отдельные кристаллы состоят из элементарных ячеек, простейших упорядоченных элементарных объемов, пространственное повторение которых образует монокристалл. Таким образом, элементарная ячейка позволяет судить о том, как молекулы упаковываются в кристалл. Элементарная кристаллографическая ячейка полиэтилена имеет орторомбическую пространственную структуру (рис. 3.3). Это означает, что такая ячейка может быть охарактеризована размерами трех взаимно перпендикулярных осей а, Ь и с, имеющихТразличную длину. Ось с совпадает с направлением осей, складывающихся в единичный кристалл молекул полиэтилена. Таким образом, при одноосном растяжении мерой молекулярной ориентации может быть величина угла, образованного кристалло-графической осью" с направлением растяжения. В поликристал-лических структурах приходится определять среднее значение этого угла для всего ансамбля имеющихся кристаллитов (единичных [c.48]

    Переработка литьем под давлением предоставляет большие возможности для управления надмолекулярной структурой полимеров, поскольку, варьируя параметры процесса заполнения формы, можно в широком диапазоне изменять характер течения расплава. Кроме того, при литье под давлением достигается интенсивный перенос тепла по крайней мере дтя молекул, расположенных у поверхностей формующей полости. Иными словами, вероятность замораживания молекулярной ориентации, вызванной течением, наиболее высока вблизи поверхностных слоев изделия и наиболее низка в середине издепия, следствием чего является образование слоистых структур. [c.538]

    В физике твердого тела для различных классов кристаллов наблюдаются сверхсостояния (сверхпроводимость, ферромагнетизм и сверхпластичность для металлов, сегнетоэлектрическое состояние для диэлектриков), для квантовой жидкости (гелия) наблюдается сверхтекучесть. Полимеры обладают своим сверхсостоянием, которое называется высокоэластнческим состоянием. Высокоэластическое состояние объясняется не только структурой полимерных молекул или макромолекул, но и свойством внутреннего вращения, известным для простых молекул в молекулярной физике. Теория высокой эластичности основывается на применении конформ анионной статистики макромолекул, которая является развитием статистической физики в физике полимеров. Аморфные полимеры по структуре сложнее, чем низкомолекулярные вещества, но в их ближнем порядке примыкают к строению жидкостей. Релаксационные и тепловые свойства расплавов полимеров и жидкостей во многом аналогичны (процесс стеклования, реология). Кристаллические полимеры по своему строению похожи на твердые тела, но сложнее в том отношении, что наряду с кристаллической фазой имеют в объеме и аморфную фазу с межфазными слоями. По электрическим свойствам полимеры — диэлектрики и для них характерно электретное состояние, по магнитным свойствам полимеры — диамагнетики, а по оптическим свойствам они характеризуются ярко выраженным двойным лучепреломлением при молекулярной ориентации. При этом все полимеры обладают уникальными механиче- [c.9]

    Кристаллические полимеры имеют две степени молекулярной ориентации—в кристаллитах она может быть очень высокой, н os 6 достигает 0,95 и даже 1, тогда как в аморфных областях os e не превышает 0,6—0,7. Однако эта величина выше, чем для полностью аморфного образца. Этот факт является важным, поскольку объясняет большую прочность ориентированных кристаллических структур, при учете того, что разрушение последних происходит по проходным цепям, т. е. по а.чорф-ным областям. [c.66]

    Рассмотрим теперь структуры, возникающие в ориентированных кристалло-аморфных полимерах. Наиболее характерной из них является структура с морфологией типа шиш-кебаб, впервые обнаруженная при кристаллизации полимеров в текущем растворе, а затем наблюдавшаяся при кристаллизацип в самых разных условиях с обязательным, однако, условием наличия факторов, вызывающих одноосную молекулярную ориентацию полимерных цепей. Эта структура, четко обнаруживаемая с помощью электронной микроскопии (рис. XVI. 1), характеризуется наличием центральной области — фибриллярной нити, на которой имеются своеобразные наросты. Сначала думали, что центральная нить представляет собой однородное образование, фибриллярный зародыш типа КВЦ, но затем Келлер обнаружил, что она сама может иметь структуру типа шиш-кебаб и состоять из более тонкой нити КВЦ, окру- [c.368]

    Модель структуры углей малой степени зрелости показана на рис. 48. Она включает два способных к обмену карбоксилат-иона, способных о6()азовать координационную связь с переходным металлом. С ним связаны координационно молекулы воды. Группы ОН— образуют водородную связь также с молекулами воды, поэтому внутренняя влага зтих углей составляет около 8 %. Они имеют молекулярно-пористую структуру, в микропоры которой проникают молекулы мальгх размеров. В их макромолекуле нет предпочтительной ориентации, поэтому такой уголь изотропен во всех направлениях, сильно окислен, не спекается и имеет низкую теплоту сгорания. [c.119]

    Прочность волокон меняется в широких пределах от 10 до 100 кгс1мм . Закристаллизованные, но не ориентированные волокна имеют низкую прочность. Прочность волокон определяется главным образом степенью молекулярной ориентации, так как волокна некристаллического и кристаллического строения в ориентированном состоянии имеют примерно ту же прочность. В пределах одного и того же состояния (кристаллического или аморфного) прочность волокон, имсюш,их ОДл-наковый химический состав и степень вытяжки, может отличаться из-за ра.элнчнй в надмолекулярной структуре  [c.69]

    Анализ экспериментальных данных приводит к выводу, что при разрыве энергия рассеивается не только вблизи вновь обра зующихся поверхностей, но во всем объеме. При этом рассеивающаяся энергия не пропорциональна площади новых поверхностей, и поэтому формулу Гриффита даже при замене поверхностного натяжения на характеристическую энергию раздира для резии применять нельзя. Кроме того, теория Гриффита, развитая им для хрупких материалов, не учитывает влияния молекулярно ориентации и изменений структуры резины при растяжении. [c.242]

    Критика представлений Зисманадана в работе [10]. Зисман считает, что основной причиной адгезии является наличие силового поля молекул твердой поверхности, которое притягивает молекулы адгезива, и что действие силового поля при этом не зависит от изменений, происходящих в объеме последнего, если они не сопровождаются изменениями плотности или молекулярной ориентации на границе раздела. Однако именно в случае полимеров такие изменения в объеме происходят, поэтому нельзя переносить данные о термодинамической работе адгезии для жидкого адгезива на тот же адгезив после отверждения. Кроме того, для полимеров, как уже было сказано, действие поверхностных сил не ограничивается непосредственным контактом молекулярных слоев с поверхностью, а распространяется от поверхности на значительные расстояния. Таким образом, изменение структуры граничного слоя, происходящее при отверждении или удалении растворителя, оказывает влияние на адгезию. [c.14]

    Структура длинных цепеобразных молекул целлюлозы, выведенная на основании химических данных, полностью подтверждается рентгеновским анализом. Подвергнутые действию монохроматических рентгеновых лучей, волокна целлюлозы дают резкие диффракционные пятна (рис. 1), свидетельствуюш,ие о высокой степени молекулярной ориентации (см. стр. 280). Два глюкозных остатка, расположенных так, как показано в вышеприведенной формуле целлюлозы, имеют размеры точно равные 10,3 А вдоль оси волокна. Нерастворимость целлюлозы и отсутствие термопластичности должны быть приписаны высоким силам кохезии между цепями. Эти свойства могут быть до известного предела изменены этерификацией. Чем больше этерифи-цирующая группа, тем ниже температура, при которой обнаруживается термопластичность. Подобным же образом сопротивление на разрыв волокон сложного эфира тем ниже, чем больше замещаюш ая группа. [c.162]

    При растяжении таких аморфных полимеров,-как полиметилметакрилат, полистирол и закаленный полиэтилентерефталат, молекулы располагаются преимущественно вдоль направления растяжения. В полиметилметакрилате и полистироле такая молекулярная ориентация обнаруживается оптйческими методами, но картина рентгеновской дифракции не показывает каких-либо признаков трехмерной упорядоченности. Поэтому данную структуру следует рассматривать как слегка вытянутый перепутанный войлок (рис. 1.8, б) и называть ориентированной аморфной, но [c.18]

    В заключение этой главы заметим, что практически ничего не было сделано в отношении попыток предложить систематическую молекулярную интерпретацию поведения полимеров, описываемого методом мультиинтегрального представления. Некоторые предварительные данные в этом направлении были получены Хэдли и Уордом [25], которые показали, что нелинейные эффекты, наблюдаемые при растяжении полипропиленовых волокон, в сильной степени зависят от степени молекулярной ориентации и, возможно, морфологической структуры материала. Результаты, полученные для образцов различного молекулярного веса, оказались в целом подобными, хотя абсолютные значения податливостей в сильной степени снижались при увеличении молекулярного веса полимера. [c.208]

    Структура была определена как псевдогексагональная [35], так как отношение двух резких линий близко к значению 1,732, что характерно для отношения юоМпо в гексагональной структуре (см. табл. 4). Дальнейшее подтверждение наличия гексагональной структуры следует из существования слабо проявляющейся в одном случае третьей резкой линии, которая может быть идентифицирована как (210). Диффузное меридиональное рассеяние в области 4,1—4,5 А приписывается кк1) рефлексам, уширенным благодаря вращательному и продольному разупорядочению. Резкие линии удивительно нечувствительны к температуре и изомерному положению атома хлора. Заслуживает внимания тот факт, что молекулярная ориентация сохраняется при нагревании образца от кристаллического состояния до температуры значительно выше [c.329]

    Кристаллизация полимеров с образованием шиш-кебабов в условиях, где роль растягивающего поля не так очевидна (ультразвуковой метод, кристаллизация в парах растворителя), привела к появлению различных теорий, отрицающих необходимость предварительного распрямления макромолекул в кристаллизующемся растворе. Нагасава, например, пришел к заключению, что при кристаллизации раствора в сдвиговых полях растут обычные КСЦ по механизму винтовой дислокации, а структура типа шиш-кебаб возникает лишь из-за деформации винтового кристалла под действием сдвига. Однако недавние работы [68, 71] убедительно показывают, что кристаллизация с образованием шиш-кебабов происходит в условиях молекулярной ориентации. Мэклей [71] прикреплял микроскопическую сетку ребром к поверхности внутреннего вращающегося цилиндра, перемешивающего переохлажденный раствор полимера. Он получал на ней шиш-кебабы даже при очень медленном перемешивании, при котором в отсутствии сетки не воз- [c.54]

    В реальности бикомпонептной кристаллизации при молекулярной ориентации автора окончательно убедили следующие экспериментальные результаты (для нолиэтилентерефталата) [39]. Кристаллизацию ПЭТФ из расплава проводили при различных значениях скорости сдвига, задаваемых с помощью ротационного вискозиметра, и затем исследовали образующиеся структуры [39]. Термограммы нагревания таких образцов показаны на рис. III.48. [c.208]

    О влиянии физической структуры полиамидов на скорость их гидро- гтиза высказывались совершенно противоположные взгляды. Так, например, советские исследователи [40] считают, что не обязательно учитывать разное строение аморфных и кристаллических областей в полиамидных волокнах, изучавшихся ими, равно как и не обязательно учитывать влияние этого фактора на гидролиз. Они, однако, считают, что молекулярная ориентация этих волокон оказывает существенное влияние на скорость гидролиза. Полученные ими экспериментальные результаты по гидролизу полиамидных волокон (состав которых не указан) в 0,05 н. и 0,1 н. серной кислоте при 96 и 101° (волокна испытывали в трех разных формах в виде невытянутой нити и нити, вытянутой в 2 и 4 раза по сравнению с первоначальной длиной) хорошо согласуются с предложенными Ротиняном и Дроздовым [41 ] уравнениями [c.17]

    Известно, что при кристаллизации из 1%-ного раствора в изотропном состоянии образуются структуры, обычно называемые снопоподобными (при относительно низких температурах) или аксилатами (при более высоких температурах) [6]. Поэтому структурные особенности, наблюдаемые на рис. 4, также объясняются влиянием сдвига на зародышеобразование, в сильной степени инициируемое молекулярной ориентацией. Аналогичные эффекты наблюдали Бланделл и Келлер [7] при самопроизвольном зародышеобразовании. В рассматриваемом случае следует также принять во внимание эффект фракционирования при кристаллизации [8]. [c.94]

    Электронные микрофотографии показывают, что в полимере, закристаллизованном при сдвиге, происходит фибриллизация в направлении течения. Поверхность пленки показана на рис. 17. На снимке видны ла.мели, развивающиеся перпендикулярно направлению сдвиговых деформаций и уложенные вдоль нанравления сдвига. Как указывалось выше, можно принять, что текстура такого типа образовалась вследствие кристаллизации в условиях, когда имеет место молекулярная ориентация, степень коюрой различна для разных элементов структуры. На некоторых типичных образцах были проведены измерения рассеяния рентгеновских лучей под малыми углами. Во всех исследованных образцах наблюдались меридиональные рефлексы, хотя и довольно диффузные. Угловое расстояние между ними соответствует величине большого периода порядка 140— 160 А. Рассмотрение картины дифракции рентгеновских лучей под большими углами указывает, что при повышении скорости сдвига в процессе кристаллизации происходит некоторое изменение ориентации макромолекул по отношению к оси фибриллы, а именно при высоких скоростях с осью фибриллы совпадает ось с кристалла, а при низких скоростях сдвига происходит некоторый сдвиг в сторону оси а. Другими словами, каждый дуговой рефлекс (200), который для образцов, полученных при высоких скоростях сдвига, расположен на экваторе, расщепляется на два, несколько отстоящих от экватора, для образцов, сформованных при более низких [c.109]


Смотреть страницы где упоминается термин Молекулярная ориентация структура: [c.72]    [c.281]    [c.168]    [c.201]    [c.56]    [c.259]    [c.117]    [c.310]   
Разрушение эластомеров в условиях, характерных для эксплуатации (1980) -- [ c.19 ]




ПОИСК





Смотрите так же термины и статьи:

Молекулярная ориентация

Структура молекулярная



© 2025 chem21.info Реклама на сайте