Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метод изменения давления или состава

    Методы определения ККМ основаны на резком изменении физико-химических свойств растворов ПАВ (например, поверхностного натяжения а, мутности т, эквивалентной электропроводности У., осмотического давления л, показателя преломления п). На кривой зависимости свойство — состав в области ККМ обычно появляется излом (рис. VI. 6). Одна из ветвей кривых (при более низких концентрациях) на рис. VI. 6 описывает свойства системы в молекулярном состоянии, а другая — в коллоидном. Абсциссу точки излома условно считают соответствующей переходу молекул в мицеллы, т. е. критической концентрацией мицеллообразования. Очевидно, что при ККМ существует весьма незначительное число мицелл. Ниже приводится краткое описание некоторых методов определения ККМ. [c.302]


    Скорость химической реакции является функцией концентраций реагирующих веществ и температуры со — ==/(С, Т). Основные "методы определения со —динамический и статический. По первому методу смесь веществ подается в камеру, в которой поддерживается постоянная, достаточно высокая температура Т. Из камеры смесь выводится с возможно большей скоростью, чтобы быстро охладить ее — закалить , т. е. сохранить концентрации реагентов, достигнутые при Т. Зная время пребывания смеси в камере, начальные концентрации и состав закаленной смеси, определяют со. В статических методах определяют изменения концентраций в зависимости от времени при протекании реакций в замкнутых камерах либо путем быстрого отбора проб и их анализа, либо по измерениям физических свойств, зависящих от концентраций. Так, если реакция 2С0 (г)+02(г) = ==2С02(г) идет в замкнутом сосуде, то это сопровождается уменьшением общего давления, по величине которого можно найти й. Часто скорости реакций находят из измерений теплопроводности, коэффициента преломления, электропроводности и т. п., которые связаны с концентрациями. [c.232]

    Физико-химический анализ основан на изучении зависимости между химическим составом и какими-либо физическими свойствами системы (плотность, вязкость, растворимость, температура плавления, температура кипения и др.) с применением геометрического метода изображения полученных результатов. Найденные опытным путем данные для нескольких состоянии системы наносятся в виде точек на диаграмму состав—свойство , на оси абсцисс которой откладывается состав системы, на оси ординат — свойство. Сплошные линии, проведенные через эти точки, отображают зависимость свойства от состава системы н позволяют устанавливать соотношение любого произвольно взятого состава системы с исследуемым свойством. Плавный ход сплошных линий соответствует постепенному увеличению или уменьшению исследуемого фактора (состава, температуры, давления и т. п.), не влекущему за собой изменения качественного состава системы. Резкие перегибы и пересечения линий указывают на превращения и химические взаимодействия веществ. Анализ линий и геометрических фигур на диаграмме состав—свойство позволяет судить о характере химических процессов, протекающих в системе, а также устанавливать состав жидкой и твердой фаз, не прибегая к разделению системы на составные части. [c.272]


    Перегонка при различных давлениях. Выше уже указывалось па изменение состава азеотропной смеси под влиянием изменения давления, под которым производится перегонка. В некоторых случаях этот принцип может быть использован для выделения разделяющего агента из гомогенной азеотропной смеси. Иа рис. 22 приведена идеализированная схема на трех последовательно соединенных колонн, иллюстрирующая этот метод. Смесь, содержащая по 50 частей компонентов А и В, разделяется путем непрерывной перегонки с добавлением 50 частей разделяющего агента Е. Чистый компонент В отбирается со дна колонны К-1, работающей при давлении Р . Азеотропная смесь из колонны К-1 содержит по 50 частей А и Е. Эта смесь перегоняется в колонне К-2 при давлении Р , где получается азеотропная смесь, содержащая 80% А и 20% Е. Эти величины, отнесенные к исходным продуктам, соответствуют 50 частям А и 12,5 частям Е. Со дна колонны К-2 отбираются 37,5 частей Е, которые поступают обратно в колонну К-1. Азеотропная смесь, выходящая из колонны К-2, поступает в колонну Я-<3, работающую при давлении Рд, где получаемая азеотропная смесь имеет тот же состав, что и азеотропная смесь из колонны К-1. По отношению к исходным продуктам эта смесь содержит 12,5 частей А и 12,5 частей Е. Она вводится обратно в виде сырья в колонну К-2. Са дна колонны К-3 отбираются 37,5 частей чистого компонента А. Берг с соавторами [5] описали подобный процесс с применением двух колонн, предназначенный для восстановления изобутанола из азеотропной смеси изобутанола с этилбензолом, образующейся при очистке стирола. [c.126]

    Основная задача экспериментального изучения химического равновесия — определение состава равновесной смеси. Для этого необходимо, сохраняя внешние условия постоянными, проследить за изменением состава реагирующей смеси с течением времени, пока состав не перестанет изменяться. Постоянство температуры осуществляется с помощью термостатов. Постоянство давления обеспечивается маностатом. Во избежание изменений равновесного состава в ходе его измерений применяют физико-химические методы анализа, позволяющие анализировать смесь без нарушения установившегося равновесия. Особенно удобны электрохимические и спектральные измерения (электрическая проводимость, [c.251]

    В работе [35] на примере разработки оптимальной схемы деметанизацни газов пиро пиза описано применение этого метода. В табл. П.З приведены исходные данные по процессу состав сырья, получаемых продуктов, температуры и давления. На рис. П-25 показаны принципиальные технологические схемы процесса, иллюстрирующие последовательность синтеза в качестве первоначального варианта (схема а) была принята обычная схема полной колонны с парциальным конденсатором при температуре хладоагента (этилена) минус 100 °С. Далее для конденсации и охлаждения верхнего продукта наряду с хладоагентом был использован дроссельэффект сухого газа (схема б). Затем исходное сырье охлаждали до температуры минус 62 С (схема в) н подвергали последовательной сепарации с подачей в колонну нескольких сырьевых потоков (схемы гид). Затем организовали промежуточное циркуляционное орошение в верхней частн колонны (схема е) и, наконец, — рецикл пропана с подачей его в промежуточный сырьевой конденсатор (схема ж). Соответствующие изменения температурного режима и стоимостные показатели процесса приведены в табл. П.4. Как видно, наибольшие затраты в простейшей схеме падают на потери этилена с сухим газом и на хладоагент, а по мере усовершенствования схемы эти статьи затрат существенно уменьшаются и становятся соизмеримыми с остальными элементами затрат для оптимальной схемы ж. [c.129]

    Хромато масс спектрометрия в последнее время приобрела большое значение в органической геохимии Этот метод используется для определения состава органического вещества осадков и его изменения под влиянием различных факторов биологической активности, катализируемых минералами молекулярных превращений, температуры и давления Состав органического вещества осадков часто может служить показателем условий седиментации [c.158]

    Например, если состав бинарного азеотропа изменяется с изменением давления, то при наличии заметного сдвига в составе азеотропа бинарную смесь можно разделить, используя комплекс из двух колонн, работающих при разных давлениях (рис. VII, 14). Данные по разделению реальных бинарных смесей указанным методом приведены, например, в работах [98, 124, 125]. Расчет величины рецикла и выбор оптимального варианта обвязки потоковыми линиями колонн комплекса изложены в работах [68, 88]. [c.204]

    На практике химические газофазные процессы обычно осуществляются непрерывно в проточных реакторах в так называемых динамических условиях. В отличие от рассматривавшихся до СИХ пор закрытых (статических или замкнутых) систем, в которых реакции протекают при постоянном объеме, в открытых (проточных) системах процессы протекают при постоянном давлении. Статический метод позволяет проследить в течение одного опыта зависимость скорости процесса от концентрации реагирующих веществ в широком интервале их изменений и потому особенно пригоден на начальной стадии исследования кинетики процесса. Динамический метод позволяет быстрее накапливать продукты реакции и при установлении стационарного состояния, когда состав выходящей из реактора смеси продуктов становится постоянным, получать пов-торимые кинетические данные, значительно более надежные, нежели единичная точка на кинетической кривой опыта в статических условиях. [c.251]


    Для разделения азеотропных смесей перегонкой существует ряд методов . С целью разделения можно вводить третий компонент (например, бензол), способный в свою очередь давать с одним из компонентов разделяе.мой смеси азеотроп, кипящий значительно ниже выделяемого вещества. Состав азеотропов с изменением давления очень сильно изменяется или вообще азео-тропная точка исчезает. Поэтому, как правило, перегонку азеотропных смесей осуществляют путем фракционирования при двух различных давлениях. [c.134]

    Число первичной гидратации электролитов, т. е. число молекул воды в первичной оболочке, может быть определено, например, методом измерения сжимаемости раствора. В нем предполагается, что молекулы воды, находящиеся в первичной гидратной оболочке, максимально сжаты под действием сильного электрического поля иона (явление электрострикции). Поэтому при увеличении давления сжимается только остальная часть растворителя (вторичная оболочка и свободный растворитель). Изменение коэффициента сжимаемости раствора по сравнению с чистым растворителем позволяет определить долю воды, не вошедшей в состав первичной гидратной оболочки электролита. [c.163]

    Для экспериментального изучения свойств нефти в залежи потребовалось разработать специальные методы отбора и анализа проб в связи с тем, что физико-химические свойства нефти в залежи под давлением отличаются от свойств нефти, извлеченной на поверхность земли. При выходе нефти на поверхность меняется ее состав в связи с изменением давления и температуры выделяются растворенные газы, выпадают твердофазные компоненты. [c.41]

    Явление образования азеотропных смесей имеет очень важное практическое значение, поскольку ограничивает возможности разделения смесей путем ректификации, так что разделение азеотропных смесей требует применения специальных методов. Одним из таких методов является изменение давления с целью смещения состава азеотропа. В связи с этим приобретает важное значение вопрос о влиянии температуры и давления на состав тройных азеотропов. Термодинамически строгое решение этого вопроса дано в работе [122]. Вывод основывается на анализе условий фазового равновесия в форме й[л = ф". [c.296]

    Состав азеотропа изменяется при изменении давления, причем в интервале технологически приемлемых давлений смесь остается азеотропной. В этом случае для разделения рассматриваемых смесей может быть применен метод, основанный на принципе перераспределения концентраций между областями ректификации, сущность которого и будет рассмотрена ниже. [c.204]

    Вязкостное натекание часто применялось в простых анализах [821]. Преимущество этого метода заключается в том, что состав образца в баллоне напуска не изменяется во времени, так что для анализа может быть использована значительная часть образца, от факт играет важную роль при исследовании малых количеств. Однако следует отметить, что значительное изменение давления образца в течение регистрации масс-спектра нежелательно, так как это приводит к необходимости внесения поправки в высоту каждого пика. Таким образом, всегда, когда это возможно, работают с большим баллоном напуска. Обычно при анализе смеси избегают давлений в баллоне, соответствующих промежуточному режиму натекания между вязкостным и молекулярным, так как в этих интервалах давлений установить условия натекания гораздо труднее. Для получения масс-спектров индивидуальных соединений условия натекания не играют никакой роли. [c.138]

    При публикации результатов термического анализа рекомендуется приводить следующие данные название всех веществ — исследуемого образца, эталона и вещества для разбавления способ получения всех веществ с указанием предыстории, предварительной обработки и чистоты величины средней скорости линейного изменения температуры во всем температурном интервале, включая исследуемый процесс характеристики атмосферы над образцом (давление, состав газа и т. д,) размеры, форма и материал тиглей для образца масштаб абсциссы в единицах времени или температуры методы идентификации промежуточных и конечных продуктов точная репродукция всех подлинных записей без каких-либо изменений направления и формы кривых термоанализа (ДТА. ТГ, ДТГ и т. д.) приводить результаты идентификации по возможности каждого термического эффекта с дополнительными подтверждающими данными массу образца и степень его разбавления характеристику аппаратуры с указанием материала термопар и местоположением дифференциальной и измеряющей температуру термопар. [c.36]

    Относительно небольшое число неорганических соединений, сплавов и или смесей испаряются без изменения состава. Обычно составляющие твердого тела или жидкости имеют различные давления паров. По этой причине состав паров и, следовательно, состав конденсата будет отличаться от состава исходного материала в испарителе. В принципе такое изменение состава при переходе в газообразное состояние может быть предсказано из термодинамики. В действительности, однако, для количественного описания сложных процессов, происходящих при испарении, обычно бывает недостаточно основных термохимических данных. По этой причине для определения экспериментальных условий, необходимых для создания пленок желаемого состава, более надежно пользоваться информацией, полученной из опыта. Так как непосредственное испарение в этих случаях не приводит к желаемому результату, были разработаны специальные методы, такие как реактивное испарение, испарение из двух источников и метод вспышки. Эти методы позволяют контролировать состав пара безотносительно к различию в летучести его составляющих эти методы являются единственными для приготовления некоторых пленок, представляющих значительный практический интерес. [c.89]

    Оптимальная траектория, которую мы нашли, применив метод динамического программирования, соответствует минимальному времени движения только в выбранном классе траекторий, проходящих через конечное число точек. По мере уменьшения размеров ячеек сетки оптимальная траектория, полученная нашим методом, будет приближаться к истинному минимуму для непрерывного случая. Эта техника почти идеально приспособлена для вычислений на машине, и изменение величины шага сетки для определения минимального времени и получения траектории давление — состав— время производится очень легко. [c.158]

    Поскольку эта реакция протекает без изменения объема и ее равновесие не зависит от давления, данный метод применяют при любых давлениях, допустимых в промышленной практике, не включая в исходные данные давление в качестве режимного показателя. При этом снижается точность расчета, так как на состав получаемого газа оказывает влияние и реакции, протекающие с изменением объема. Однако полученные результаты расчетов иллюстрирует лишь характер изменения показателей газификации жидких топлив с различным отношением С Н, а вычисленные количественные соотношения между этими показателями справедливы только для принятых в расчетах условий теплового режима газификации, состава дутья и выхода сажи. В других условиях количественные соотношения отдельных показателей будут иными. К.Полем и Г.Мартенсом [б]предложен метод расчета для процессов газификации жидких топлив, протекающих при любых температуре, давлении и составе дутья. Авторы исходят из того предположения, что состав получаемого газа в этих процессах удовлетворительно определяется равновесием реакций [c.115]

    Основными характеристиками белка служат аминокислотный состав и молекулярный вес. Надежное и достаточно точное определение молекулярного веса макромолекул — довольно сложная задача. Методы определения молекулярного веса, обычно используемые для небольших молеку,л, в частности эбулиоскоиический (повышение точки кипения) и криоскопиче-ский (понижепие точки замерзания), так ке как и метод, оспованный на изменении давления пара растворителя над раствором, малопригодны или даже вовсе не пригодны для макромолекул из-за очень большой величины этих последних, а также из-за их неустойчивости. Нанример, для того чтобы точка замерзания водного раствора белка с молекулярным весом 10 ООО [c.59]

    Научная деятельность посвящена обоснованию экспериментального метода в физике и химии и развитию атомистической теории. Исследования в области физики привели его к открытию (1662) закона изменения объема воздуха с изменением давления, который независимо был открыт французским физиком Э. Мариоттом (закон Бойля — Мариотта). Занимался изучением звука, света, электричества, теплоты. Основные же исследования посвятил становлению химии как науки. В результате экс-перимеитального весового изучения процессов обжига металлов, горения, сухой перегонки древесины, превран1ения солей, кислот и щелочей ввел понятие анализа соста- [c.65]

    Полуавтоматический прибор ЛАЗ-68 (рис. 1.68) предназначен для определения температуры застывания нефтепродуктов в лабораториях межцехового контроля нефтеперерабатывающих заводов. В состав прибора входят следующие блоки электронный, измерительный, питания, автоматический потенциометр КСП4. В основу действия прибора положен метод определения момента потери подвижности охлаждаемого слоя нефтепродукта созданием циклического изменения давления по [c.75]

    Программа расчета давления системы и состава жидкой фазы по составу паровой фазы и температуре аналогична ранее рассмотренной программе DEW Т, с той разницей, что роли давления и температуры поменялись. В программе DEW Р, где состав паровой фазы является исходной информацией, расчет весьма чувствителен к изменению давления. Поэтому упрощения, принятые в программе BUBL Р, здесь недопустимы. Метод с двумя итерационными циклами (см. главу V) эффективен и в данном случае. [c.107]

    Обычно в состав аппаратуры входят приборы, нзме ряющие количестно израсходованного водорода В зависимости от применяемого давления это измерение осуществляется объемным или манометрическим методом. При объемном методе (давление, близкое к нормальному) измерения осуществляют газовой бюреткой (см рнс 8, стр 218). При манометрическом методе для этой цели служит резервуар для водорода, снабженный манометром, контролирующим изменение давления во [c.325]

    Давление в системе измеряли при помощи ртутного манометра 6 и специального манометра 7 с краном-компенсатором 8. В тех опытах, когда требовалось более точное измерение постоянства или величины изменения давления (исследование полимолекулярной адсорбции методом перепуска), дополнительно использовали масляный манометр 9, причем плотность масла найдена равной 0.85, так что точность измерений по масляному манометру составляла примерно 0.03 мм рт. ст. Масло для манометра предварительно прогревали при вакуумной откачке. Смесь избранного состава выдерживали определенное время в реакторе, а затем вымораживали в ловушку 10 и анализировали. Алкалиметрическим титрованием определяли суммарное количество кислот СН3СООН + НС1, а затем аргентометрически — количество катализатора — соляной кислоты. Поскольку известны уравнения реакции и начальный состав смеси, анализ давал содержание каждого из реагентов и продуктов в суммарной смеси в данный момент времени. [c.340]

    Синтетический метод состоит в том, что в замкнутый объем помещают взвешенное количество исследуемых жидкости и газа и путем изменения температуры и давления системы находят их значения, при которых двухфазная система переходит в однофазную. Метод этот не нуждается в отборе шроб на анализ, так как состав системы известен по загрузке исходных веществ. Наступление однофазного состояния обычно наблюдают визуально. Для этого исследуемую систему помещают в запаянную ампулу, изготовляемую из молибденового стекла, а ампулу — в воздушный термостат, где осуществляется ее постепенный нагрев. Применение метода ограничено температурой и давлением, которые может выдержать стекло. Аналитические методы исследования делятся на динамические, статические и циркуляционные. [c.26]

    Преимуществом метода является утилизация 60—40%> добываемого газа с самого начала разработки залежи и растворение выпавшего в пласте конденсата в закачиваемом газе. Объем и состав нагнетаемого в пласт газа целесообразно выбирать таким образом, чтобы изменение состава пластовой смеси обеспечивало несколько возможно большее снижение давления начала конденсации жидких УВ в пласте. В табл. 67 приводится сравнение результатов, получающихся при разработке месторождения Уинфол на истощение, а также при возвращении в него 60 и 100% отбираемого газа. [c.116]

    На этом принципе основаны методы разделения некоторых газообразных углеводородов при помощи абсорбции в водном растворе моновалентных солей. Методы, в которых в качестве абсорбирующей среды используются водные растворы медных солей, в корне отличаются от методов абсорбции газообразных углеводородов олеофиль-ны.ми средами, — в первом случае не протекают химические реакции, а только образуются физические смеси отдельных химических компонентов. Комплексы представляют собой однородные вещества, состав и физические свойства которых могут быть определены. На рис. 119 [122] представлены кривые изменения давления диссоциации медных комплексов бутиленов и бутадиена в зависимости от температуры, для сопоставления приведена кривая давления диссоциации бутадиена. [c.301]

    Кривая равновесия у—х показывает связь между концентрацией жидкости л и соответствующей концентрацией пара у, находящегося в состоянии равновесия с жидкостью. Следовательно, кривая равновесия является основой для расчета числа теоретических ступеней разделения по графическому методу Мак-Кэба и Тиле [771, который успешно и широко применяется благодаря своей простоте. На рис. 43 в ряду П1 представлены кривые равновесия для смесей различных типов. Для смесей взаимно нерастворимых компонентов кривая равновесия представляет собой прямую линию (тип 1), которая пересекает диагональ в одной точке, называемой азеотропной. В этой точке составы пара и жидкости одинаковы обогащение паров легколетучим компонентом при более высокой концентрации жидкости х уже невозможно напротив, в этой области концентраций пар содержит меньше легколетучего компонента, чем жидкость. При перегонке смесей взаимно нерастворимых компонентов (тип 1) или смесей только частично растворимых компонентов (тип 2) дистиллят имеет один и тот же состав в широком интервале изменения концентрации легколетучего компонента в кипящей жидкости и только в непосредственной близости от концентраций О и 100% появляются промежуточные составы дистиллята. Для смесей с максимумом на кривой давления паров при концентрации жидкости выше азеотропной (тип 3), а для смесей с минимумом на кривой давления паров при концентрации жидкости меньше азеотропной (тип 5) пары содержат меньше легколетучего компонента, чем исходная жидкость состава л . Для смесей типа 4 характерна форма кривой равновесия у —х, свойственная идеальным смесям, для которых у всегда больше х. [c.76]

    Катц и Барр использовали высокую активность однофтористого хлора, трехфтористого хлора и фтора при разработке аппарата для титрования газа газом. При помощи этого аппарата авторам удалось определить состав смеси трехфтористого хлора и фтора, титруя ее этиленом в присутствии фторида натрия и определяя изменения давления во время реакции. Они смогли получить достаточно точные результаты, но сам метод имеет много ограничений. [c.75]

    Методы измерения скоростей реакций. Приемы, применяемые для изучения кинетики реакций, весьма разнообразны. Здесь рассмотрены основные методы измерения скорости тепловых реакций, т. е. реакцпй в системах, обменивающихся с окружающей средой энергией лишь в форме передачи тепла. При использовании статического метода реакцию ироводят в замкнутом сосуде при постоянной темп-ре. Состав системы изменяется со временем, и о скорости реакции судят по изменению состава, определяемого анализом, илп по изменению давления, если последнее зависит от состава. Применяют также измерения к.-л. другого свойства реагирующей смесп, зависящего от состава. [c.281]

    Более универсальным является метод поиска течей, основанный на локальном обдувании снаружи корпуса пробным газом (или промыванием пробной жидкостью) и наблюдении изменения давления внутри системы с помощью теплового манометра (термопарного) или термометра сопротивления. Когда пробное вещество попадает в площадь течи, состав газа внутри вакуумной системы быстро изменяется, что отражается на показаниях манометра. Как оказалось, для поиска течи этим способом пригодны быстро проникающие в небольшие поры газы, такие как водород, гелий, двуокись углерода и бутан. Теплопроводность этих газов отличается от того же паралтетра обычных остаточных газов настолько, что их попадание в систему вызывает заметное изменение показаний манометра [327]. [c.312]

    Когда объем паровой фазы значительно превышает объем жидкой фазы, то для насыщения расходуется уже значительное количество легкоиспаряющихся углеводородов, при этом состав жидкой фазы меняется. В состоянии насыщения паровая фаза находится в равновесии с жидкостью уже измененного состава. Давление насыщенных паров здесь отличается от давления насыщенных паров, определенного при небольшом объеме паровой фазы. Иными словами, с увеличением отношения паровой фазы к жидкой найденное давление насыщенных паров будет уменьшаться (рис. 6). В связи с этим величины давления, полученные по методу Рейда, обычно на 60—80 мм рт. ст. ниже значений, определенных по методу Валявского—Бударова. [c.40]

    Кривая равновесия характеризует связь между концентрацией жидкости Хв и соответствующей концентрацией пара у в состоянии равновесия. Кривая равновесия является, следовательно, основой для расчета числа теоретических тарелок графическим методом Мак-Кэба и Тиле [63], который благодаря своей простоте наиболее часто применяется на практике. В табл. П/4, ряд III (приложение) приведены кривые равновесия для смесей различного типа. В случае нерастворимых веществ кривая равновесия представляет собой прямую линию (тип 1), пересекающую диагональ в точке, которая называется особой точкой. В этой точке концентрация паров равна концентрации жидкости обогащение паров нижекипящим компонентом при более высокой концентрации жидкости хв уже невозможно наоборот, пары в этой области концентраций жидкости содержат меньше нижекипящего компонента, чем жидкость. Состав дистиллата для смесей взаимно нерастворимых или ограниченно растворимых веществ в широких пределах изменения концентраций остается постоянным, и только вблизи концентраций О и 100% появляются промежуточные составы (смеси типа 1 и 2). Для смесей с максимумом давления паров концентрация пара ниже концентрации исходной жидкости Хв наблюдается на кривой выше особой точки (тин 3), а для смесей с минимумом давления паров — ниже особой точки (тип 5). Для смесей типа 4 характерна форма кривой, свойственная идеальным смесям, в которых у всегда больше Хв- [c.80]

    Преимущества метода подвода элюента сверху наглядно проявляются при применении ТСХ-пластинок с подложками из алюминиевой фольги или других непрозрачных материалов и при проведении разделения элюентом с гра-диетгтом состава (разд. 3.3.6). Однако в отличие от предыдущего способа с помощью этого метода над поверхностью сорбента нельзя получить насыщенной парами растворителя газовой атмосферы. Фронт растворителя распространяется от центра, в который подают элюент, к периферии. Чтобы добиться симметричности разделения в радиальном направлении, систему тщательно герметизируют, располагают ее строго горизонтально, исключают влияние теплопередачи и после предварительного разделения повторно приводят систему в состояние равновесия. Состав элюента подчас изменяется в процессе разделения. Это объясняется тем, что элюент обычно состоит из различных компонентов с различными давлениями насыщенных паров, причем для достижения величины парциального давления каждому из компонентов требуется определенное время. Изменение состава элюента не оказывает отрицательного в.таяпия па результаты разделения, проводимого с учетом этой особенности (разд. 3.3.6). [c.72]

    Система уравнений (21.19) — (21.21) решается численно. В результате определяются изменения со временем концентрации воды и метанола в капле, их температуры и радиуса капель. Входящие в уравнения теплофизические свойства газовой и жидкой фаз могут быть определены с помощью методов, приведенных в [9]. Расчеты проводились для различных зна-чет й давления, начальных температур капли и газа и исходной концентрации метанола в растворе ингибитора. Состав газа, используемый в расчетах, зависит от р, Т и должен предварительно определяться с помощью уравнений парожидкостного равновесия. Так, для р = 8 МПа и Г = 313 К имеем следующий состав (% мольные) Л = 0,81 СО, = 0,22 СН4 = 96,97 С2Нб=1,74 СзН8 = 0,16 г-С4 = 0,07 П-С4 = 0,03. [c.542]


Смотреть страницы где упоминается термин Метод изменения давления или состава: [c.1180]    [c.59]    [c.123]    [c.153]    [c.80]    [c.66]    [c.67]    [c.326]    [c.154]    [c.149]   
Электрические явления в газах и вакууме (1950) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Изменение давления, метод



© 2025 chem21.info Реклама на сайте