Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Давление паров органических растворителей

    Электролитическая ионизация. Степень ионизации. Константа ионизации. Изучение разбавленных растворов показало, что все их общие свойства (понижение давления пара, изменение температур замерзания и кипения, величина осмотического давления) изменяются пропорционально числу частиц растворенного вещества . Эта формулировка представляет собой обобщенный закон разбавленных растворов Рауля — Вант-Гоффа. Эта общая закономерность оказалась справедливой для растворов органических веществ в воде и для растворов в органических растворителях. При исследовании водных растворов солей, кислот, оснований было обнаружено, что изменение соответствующего свойства в зависимости от состава раствора значительно превышает ожидаемую величину. Например, понижение температуры замерзания моляльного раствора Na l превышает почти в два раза криоскопическую постоянную для воды (3,36° вместо 1,86" ). Это свидетельствует о том, что число частиц в водных растворах кислот, оснований и солей не соответствует молярной концентрации раствора. [c.255]


    При оценке растворимости газа в жидкости, обладающей большим давлением пара (растворы газов в жидком аммиаке, жидком воздухе, во многих органических растворителях, а также в воде при высокой температуре), расчет следует проводить по уравнению (4.42). [c.99]

    Более глубокий вакуум (2—4 мм остаточного давления) легко достигается при помощи масляных насосов. Масляный насос необходимо защищать от попадания в него паров органических растворителей, воды и кислот. Пары летучих органических веществ поглощаются маслом, загрязняют его и [c.37]

    Если препарат содержит органические растворители, частично растворяющие сжатый газ, внутреннее давление в упаковке меняется с температурой гораздо сильнее. Колебания давления зависят от растворимости газа и давления пара органического растворителя. Например, если применяемые жидкости хорошо растворяют сжатый газ, [c.110]

    НОМОГРАММА ДЛЯ ОПРЕДЕЛЕНИЯ ДАВЛЕНИЯ ПАРОВ ОРГАНИЧЕСКИХ РАСТВОРИТЕЛЕЙ, КИПЯЩИХ ВЫШЕ 200° С [c.48]

    Исторически этот закон был открыт эмпирическим путем на основании измерений давления пара различных органических растворителей над растворами. Рауль предложил для него следующую формулировку, равносильную уравнению (У.16) относительное понижение давления пара растворителя равно мольной доле, растворенного вещества  [c.92]

    Формамид обладает необычной диэлектрической постоянной (110), существенно превосходящей диэлектрическую постоянную воды. Этот растворитель находится в жидком состоянии в удобной для работы области температур (2,5-193 °С) и имеет низкое давление паров при комнатной температуре. По вязкости он превосходит ДМФ (3,3 сП по сравнению с 0,80 сП для ДМФ). В отличие от ДМФ формамид лишь эпизодически применялся в качестве растворителя электролитов, причем область рабочих потенциалов в формамиде оказалась уже, чем в ДМФ. Более высокая диэлектрическая постоянная вообще не дает особых преимуществ формамиду перед ДМФ, так как диэлектрическая постоянная последнего также достаточно велика, чтобы обеспечить адекватную проводимость растворов. В основном с помощью формамида можно варьировать условия опыта путем изменения определенных свойств растворителя. Формамид - хороший растворитель для различных неорганических соединений, включая хлориды, нитраты и сульфаты ряда переходных и щелочноземельных металлов. Подобно воде, формамид растворяет более полярные органические соединения и смешивается с водой он очень гигроскопичен и легко гидролизуется с образованием уксусной кислоты и аммиака. Формамид использовался и качестве растворителя при полярографии на КРЭ некоторых переходных элементов и ряда органических соединений. [c.21]


    По одному патенту (пат. ФРГ 1110144) в качестве абсорбента предложено применять раствор сернистого ангидрида в концентрированном водном органическом нейтральном и стабильном поглотителе, который играет одновременно роль катализатора и реакционной среды для взаимодействия сероводорода с сернистым ангидридом, ведущего к образованию элементарной серы, диспергированной в абсорбенте и легко выделяемой любыми обычными методами. Для получения хороших результатов важно, чтобы давление паров органического поглотителя при 20° С не превышало 10 мм рт. ст. и растворимость его в воде была пе ниже 5% вес. Согласно патентному описанию можно применять любой нейтральный, стабильный и инертный органический растворитель, содержащий два гетероатома (в том числе не менее одного атома кислорода или серы) и не более двух смежных гидроксильных групп. Присутствие гетероатомов обеспечивает достаточную растворимость сернистого ангидрида растворители, содержащие более двух гидроксильных групп, нестабильны. Поступающий в абсорбер поглотитель должен содержать 96—99% органического растворителя. Небольшое количество воды способствует протеканию реакции образующаяся при реакции вода должна сразу удаляться, что и является одной из функций органического растворителя. Хорошие результаты дают гликоли (диэтилен-, триэтилен-, полиэтиленгликоль), их простые и сложные эфиры. Описанный метод допускает многочисленные изменения, в частности в методах введения ангидрида. [c.318]

    Для поддержания испарения в закрытом сосуде создают внутри него перепад давления паров растворителя. Это может быть сделано путем помещения в указанный сосуд какого-нибудь вещества, поглощающего пары используемого растворителя, как это делается в обычном эксикаторе, в который для поглощения водяных паров помещается концентрированная серная кислота или обезвоженный хлористый кальций. Если же вещество, поглощающее пары, трудно подобрать (например, пары органических растворителей) или если стремятся к повышенной чистоте при кристаллизации, так как поглотители паров сами испаряются и их пары поглощаются раствором, то можно организовать местный боковой подогрев кристаллизатора. На удаленных от него стенках сосуда идет конденсация паров, и конденсат в простейшем варианте этой методики стекает на дно сосуда (рис. 3-3, б). [c.84]

    В случае использования перегретого водяного пара довольно просто решается вопрос улавливания выделяющихся паров органических растворителей или токсичных газов. При сушке же воздухом возникает проблема очистки отработанных газов, чтобы не загрязнять атмосферу вредными веществами. В процессе сушки образуются перегретые пары воды или органических жидкостей, тепло которых легко использовать, так как при их конденсации коэффициенты теплообмена велики, и теплоутилизатор получается несложным и недорогим. Начиная с температур водяного пара выше 200° С значительно интенсифицируются внешний и внутренний тепло- и массообмен. Поскольку в настоящее время освоены новые теплообменные аппараты с промежуточным твердым теплоносителем, для сушки можно использовать перегретый пар с температурами до 1000° С при атмосферном давлении. [c.293]

    Способы обеспечения безопасности. При выборе мероприятий по обеспечению пожаровзрывобезопасности следует иметь в виду, что наличие вакуума не является гарантией безопасности процесса. Как показывает эксперимент (см. гл. 1), негорючесть аэровзвесей достигается при давлении порядка 1—1,5 кПа, негорючесть паров органических растворителей — при давлении 0,7—0,8 кПа, поэтому в зависимости от особенностей технологического процесса вакуум-сушилки необходимо защищать либо системами активной взрывозащиты, либо мембранами. [c.117]

    Анализ водных растворов органических веществ вызывает особые трудности в газовой хроматографии, так как растворитель из-за своего дипольного характера и связанных с зтим адсорбционных эффектов по отношению к материалу твердого носителя очень медленно выходит из колонки. Возникающие на хроматограмме очень плоские и характеризующиеся сильным образованием хвостов пики воды очень часто перекрывают пики других компонентов . Отделение или обогащение органических веществ до газохроматографического анализа путем перегонки или экстракции приводит к значительной потере времени, а во многих случаях к ухудшению выхода имеющихся соединений или к дополнительному загрязнению этих веществ. Превращение растворенных соединений в кристаллические производные также не всегда оказывается возможным, так как очень часто соответствующие реакции проходят неколичественно, а образующиеся соединения по причине их относительно низкого давления пара оказываются непригодными [c.272]

    Дегазация каучука методом сброса давления. Удаление органических растворителей из каучука этим методом зависит от давления в рабочем пространстве аппарата. При организации непрерывного процесса емкость, в которую производится выброс раствора каучука, наполняется парами растворителя, от давления которых будет зависеть минимальная концентрация растворителя в каучуке после сброса давления. [c.307]


    Относительное понижение давления пара не зависит от природы растворителя и растворенного вещества и от температуры. В табл. 3.2 приводятся результаты, полученные Раулем при изучении растворов органических веществ в эфире при 18°С. [c.112]

    При необходимости горячая вода и пар могут быть заменены парами органического растворителя. Процесс плавления и выделения сульфата натрия в твердую фазу рекомендуют вести при 40—45 °С при добавлении 9—50% (от массы мирабилита) органического растворителя. Соответственно выход продукта составляет 37—97%. Перед методом плавления — выпаривания рассматриваемый метод обладает, кроме других, тем преимуществом, что в нем можно вести процесс при атмосферном давлении без необходимости использования выпарных аппаратов с тяжелыми греющими камерами. [c.229]

    Для сушки растворов, из которых испаряются органические растворители, применяется предварительное нагревание его при давлении до 100 ат с последующим распылением в вакуумную камеру. Дополнительное тепло вводится в камеру за счет подачи перегретых паров органического растворителя. В этом случае удается интенсифицировать процесс сушки и полностью вернуть в технологический цикл ценный растворитель (рис. 116). [c.235]

    Давление паров органических веществ можно определять методом газовой хроматографии двумя способами. В первом способе используют зависимость удерживаемого объема от давления пара на неполярных растворителях для гомологических рядов Графики зависимости логарифмов удельных удерживаемых объёмов (У ) [c.230]

    Растворитель обладает большим давлением пара. Если газ растворяется в жидкости, обладающей большим давлением пара (сюда относятся растворй газов в жидком аммиаке, жидком воздухе и др., во многих органических растворителях, а также в воде при высокой температуре), то расчет следует производить по уравнению (IX, 9). [c.276]

    ДЛЯ газохроматографического анализа. Если же растворитель можно отделить или подвергнуть превращению до анализа, водные растворы органических веществ могут быть исследованы непосредственно газовой хроматографией. Предшествующее превращение растворенных соединений в производные с более высоким давлением пара по сравнению с исходными продуктами можно с успехом использовать для выделения растворенных веществ из раствора с их последующим газохроматографическим анализом. [c.273]

    Опыт показывает, что при растворении в данном растворителе какого-нибудь вещества равновесное давление пара растворителя понижается. Количественную связь между понижением давления пара и составом раствора открыл в 1887 г. Ф. Рауль. В отличие от своих предшественников он исследовал не только растворы кислот, щелочей и солей, но также растворы органических соединений, применение которых позволило исключить из рассмотрения усложнение картины, вызываемое диссоциацией солей и кислот. В 1882 г. Рауль определил Тзам около 30 органических веществ в водных растворах. Он показал, что независимо от природы веществ растворение одного моля вещества в 1 кг растворителя (воды) приводит к понижению точки замерзания на одну и ту же величину (1,85°С). Затем Рауль заменил воду бензолом, в котором он растворял целый ряд органических соединений. Оказалось, что все они показывали в бензоле одинаковое молярное понижение Т зам рЗВ-ное 5,2 °С. От измерений точек замерзания Рауль перешел в 1886 г. к определениям давления паров неводных растворов. Это привело его к открытию эмпирического закона, который был впервые опубликован в 1887 г. в работе Об упругости пара эфирных растворов . [c.112]

    В качестве растворителя этилендиамин особенно интересен для катодного восстановления неорганических соединений. Важно то, что этилендиамин весьма схож с аммиаком. Так, например, в нем могут образовываться растворы электронов, а ртуть может служить электронным электродом. По сравнению с аммиаком этилендиамин находится в жидком состоянии в более удобной для работы области температур (11-117°С) и имеет относительно низкое давление паров при комнатной температуре (-10 мм). Несмотря на низкую диэлектрическую постоянную (12), этилендиамин растворяет с одинаковым успехом как органические, так и многие неорганические соединения, особенно перхлораты и нитраты. Подобно аммиаку, этилендиамин не совсем подходит для проведения реакции электролитического окисления, однако для восстановительных процессов он вполне пригоден. Так, в этой среде можно исследовать полярографическое восстановление ионов щелочных металлов от лития до цезия и аммония [c.24]

    Проверяют на герметичность водой или органическим растворителем. Затем в воронку наливают раствор и экстрагент. Придерживая правой рукой воронку и указательным пальцем этой руки пробку, несколько раз взбалтывают смесь, следя, чтобы рукоятка крана была сверху. Затем воронку поворачивают пробкой вниз и открывают кран для выравнивания давления в воронке с атмосферным. Эти операции повторяют два-три раза, пока пространство над раствором в воронке не будет насыщено парами растворителя и давление не перестанет повышаться. Об этом свидетельствует отсутствие характерного шипения при открытии кра  [c.25]

    Обезжиривание можно производить щелочным раствором, содержащим поверхностно-активные вещества, или растворителем жиров, содержащим эмульгирующие агенты, - эмульсионным очистителем. Другой способ - обезжиривание паром высокого давления - паровое обезжиривание. Наконец, можно упомянуть обезжиривание с использованием летучих органических растворителей, например уайт-спиритом, трихлорэтиленом или перхлорэтиленом. Обезжириваемое изделие обрабатывают с помощью щеток, путем погружения или разбрызгивания обезжиривающего агента или, при индустриальной обработке поверхности, путем подвешивания в конденсирующихся парах трихлорэтилена или перхлорэтилена. Однако органические растворители, будучи вредными для здоровья, частично утратили свое значение. [c.85]

    При использовании водоструйного насоса между прибором и насосом помещают предохранительную склянку (см. рис. 264), в которую поступает вода при случайном снижении давления в водопроводной системе. Между водоструйным насосом и предохранительной склянкой иногда помещают предохранительный вентиль, который при обратном токе воды запирает вход в систему. Работа с масляным или диффузионным насосом требует применения более сложной дополнительной аппаратуры. Чаще всего применяют фильтрующее устройство, которое представляет собой U-образные трубки или колонки, наполненные осушительными агентами. В качестве таковых применяют обычные водоотнимающие средства (хлористый кальций, безводный перхлорат магния, пятиокись фосфора и т. д.), а также гранулированное едкое кали или натронную известь, связывающие двуокись углерода и пары кислот кроме того, можно использовать некоторые адсорбенты, чаще всего гранулированный активированный уголь. Несмотря на эти меры предосторожности, никогда не следует забывать о возможном загрязнении масла насоса летучими веществами, особенно органическими растворителями. Поэтому перед вакуумной перегонкой с масляным насосом все летучие вещества тщательно удаляют под вакуумом водоструйного насоса. При перегонке в высоком вакууме, особенно в вакууме диффузионного насоса, применяют более совершенное предохранительное устройство — вымораживающий карман (см. гл. XXI), заполненный охлаждающей смесью (ацетоном или этиловым эфиром с сухим льдом либо, лучше, жидким воздухом). В качестве источника вакуума чаще всего используют водоструйный или масляный насос. Высокий вакуум применяют лишь в специальных случаях, например при молекулярной перегонке. Тем не менее предохранительное вымораживающее устройство рекомендуется применять также и при вакуумной перегонке на всех больших работающих длительное время колонках. В противном случае система неизбежно загрязняется летучими продуктами перегонки, что приводит к снижению вакуума. [c.264]

    Растворимость постоянных газов в полимерах довольно мала, чтобы повлиять на деформацию и перестройку структуры полимера Так, растворимость азота в натуральном каучуке составляет всего около 0,01 вес.%, что соответствует концентрации приблизительно в одну молекулу азота на 5500 звеньев цепной молекулы полиизопрена. Действительно, неоднократно экспериментально показывалось, что в пределах подчинимости закону Генри коэффициент растворимости газов и паров сохраняется постоянным независимо от давления Однако при сорбции легко конденсируемых паров коэффициент сорбции может существенно зависеть от концентрации или давления паров сорбируемого вещества. Хорошие растворители могут сорбироваться полимерами в больших количествах, что приводит к искажению структуры полимера, в частности к его пластификации, изменению морфологии кристаллических образований и релаксации напряжений. Для сорбции неполярных паров органических растворителей полиэтиленоми другими неполярными полимерами выведено полуэмпирическое уравнение изотермы абсорбции [c.49]

    Ниридин - единственный ароматический растворитель, пригодный для электрохимических целей. Он, безусловно, представляет собой достаточно сильное основание, которое способно образовывать с ионами металлов льюисовские кислоты - основные аддитивные соединения. Хотя пиридин имеет довольно низкую диэлектрическую постоянную (12), он весьма универсальный растворитель. В нем растворимы многие соли, причем их растворы обладают низким сопротивлением. Ниридин находится в жидком состоянии в области температур от -41 до +115°С и характеризуется умеренно низким давлением паров при комнатной температуре. Но вязкости он подобен воде и растворяется в ней в любых пропорциях. Ниридин использовался в качестве среды для электролитического окисления и восстановления неорганических и органических соединений на ртутном, платиновом и графитовом электродах. Из пиридиновых растворов были электроосаждены следующие элементы Ы, Ка, К, Си, Ag, Mg, Са, Ва, 2п, РЬ и Ге [1]. Имеются некоторые указания на образование растворов электронов в пиридине [2.  [c.27]

    Десорбцию растворителя из угля производят острым водяным паром. Однако и за границей, и у нас были попытки вести десорбцию растворителя другими способами, применяя различные вещества в качестве теплоносителей. Например, с применением вместо водяного пара нагретого паза или газовых смесей применение перегретого водяного пара или перегретого пара органических растворителей отделения растворителя электрическим током, подогревая уголь путем пропускания тока через растворы солей или жидкости ведение десорбции растворителя в ва кууме водяным паром, вводимого под небольшим давлением соединения рекуперации смесей с одновременным разделением на отдельные компоненты. В современных рекупер ационных установках подобные методы фракционированного выделения почти не применяются все компоненты отгоняются из угля водяным паром одновременно, а затем смесь разделяется ректификацией. [c.30]

    При винилироваиии при низком давлении (12 атм) ацетилен перед вводом в реактор предварительно насыщают парами органического растворителя. [c.233]

    Дальнейшее деление может быть проведено на основе других характерных свойств соединений. Так, в классе углеводородов можно произвести деление на соединения насыщенные и ненасыщенные, эфиры можно разделить по характеру цепей, прямых или разветвленных, амины—по числу радикалов. Физико-химические свойства растворителей (температура кипения, давление пара, теплота испарения, критические температура и давление, вязкость, плотность, поверхностное натяжение, рефракция, криоскопическая и эбулио-скопическая постоянные) в виде обобщенных формул или отдельных данных указаны в руководстве Вейсбергера Органические растворители [117]. [c.18]

    Используемые органические растворители должны обладать способностью эффективно и по возможнос1и избирательно извлекать экстрагируемое вещество из водного раствора, мало растворяться в воде и мало растворять воду, не гидролизоваться, иметь малое давление насыщенного пара при обычных температурах — быть нелетучими и достаточно высо-кокипящими (температура кипения при атмосферном давлении должна быть выше 50 °С). Их гшотность по возможности должна максимально [c.241]

    Электролитическая ионизация. Огеиень и константа ионизации. Изучение разбавленных растворов показало, что все их общие свойства (понижение давления пара, изменение температур замерзания и кипения, величина осмотического давления) изменяются пропорционально числу частиц растворенного вещества. Такие свойства называются коллтативными. Эта общая закономерность оказалась справедливой для растворов органических веществ в воде и для растворов в органических растворителях. При исследовании водных растворов солей, кислот, оснований было обнаружено, что изменение соответствующего свойства в зависимости от концентрации раствора значительно превышает ожидаемую величину. Например, понижение температуры замерзания моляльного раствора Na l превышает почти в два раза криоскопическую постоянную для воды (3,36° вместо [c.152]

    Безводный сульфат кальция—химически нейтральный осушитель, жадно поглощающий воду. Его преимуществом является очень малая растворимость в органических растворителях. Поглощая воду, сульфат кальция переходит в полугидрат—2 aS04-H20, у которого способность поглощать воду очень мала, так что практически сульфат кальция поглощает воду только в количестве 10% от своего веса. Он применяется для быстрой сушки жидкостей, так как давление пара его гидрата очень мало даже при температуре 100° (температура разложения 2 aS04-HgO равна 230—240°). Им пользуются для обезвоживания ряда растворителей, например этилового и метилового спиртов, ацетона и др., которые можно просто перегонять над этим осушителем. [c.116]

    Диметилформамид (диэлектрическая постоянная 37) хорошо растворяет большое число полярных и неполярных органических соединений. Он также должен хорошо растворять многие неорганические перхлораты, особенно щелочных и щелочноземельных металлов, иодиды щелочных и щелочноземельных металлов и хлористый литий. Остальные хлориды растворимы умеренно растворимы и нитраты, но они разлагаются. Особый интерес к ДМФ был проявлен со стороны полярографистов, так как в нем можно измерять потенциалы полуволн ряда активных металлов, чего нельзя сделать в водных растворах, а также вследствие лучшего по сравнению с водой поведения капельного ртутного электрода в ДМФ при высоких катодных потенциалах [4]. ДМФ находится в жидком состоянии в удобной для работы области температур (от -61 до +153°С). Имеет низкое давление паров при комнатной температуре. Это обстоятельство облегчает обращение с растворителем в открытых сосудах, но осложняет процесс перегонки. ДМФ можно использовать в качестве среды в аб-сорбциодной спектроскопии в видимой и ближней ультрафиолетовой областях спектра (ниже 270 нм). ДМФ сильно раздражает кожу, глаза и слизистую обо-лочку. Вдыхание паров с концентрацией 1 10 % ДМФ представляет опасность для жизни животных. [c.15]

    Метанол широко используется в препаративной электрохимии, например для проведения реакции анодного декарбоксилирования и анодного метоксили-рования. Эпизодически растворитель применялся также при полярографии на КРЭ. Метанол не пригоден в качестве растворителя для вольтамперометрии на платиновом микроэлектроде или кулонометрии при контролируемом потенциале на том же электроде. Метанол находится в жидком состоянии в удобной для работы области температур (от -98 до +64 °С). Имеет весьма высокое давление паров и достаточно высокую диэлектрическую постоянную (33). Максимальная допустимая концентрация составляет 2 10 %. Хотя по своему поведению метанол похож на воду, он сильнее растворяет различные органические соединения. Метанол подходит как растворитель для ультрафиолетовой спектроскопии поглощение наблюдается при 210 нм. Главное применение метанола связано с тем, что он хорошо растворяет сильноосновные электролиты КОН, NaOH, КОМе и NaOMe. Для растворения очень неполярных соединений используются смеси метанола с бензолом. [c.37]

    Перегонка является одним из самых распространенных методов очистки и выделения органических веществ. Помимо простой перегонки прн атмосферном давлении существуют перегонка в вакууме, перегонка с водяным паром, дробная перегонка, перегонка на колонках, Все они достаточно широко используются в лабораторной практике. Однако начинающий химик-экспериментатор в первую очередь сталкивается с необходимостью выделить син-тезировапиое им вещество из раствора, полученного при извлечении продукта реакции из водной среды органическим растворителем. В этом случае он имеет дело с разделением двух веществ (растворителя и продукта реакции), которые достаточно сильно различаются по температурам кипения, т. е. с простой перегонкой. [c.9]

    Жидкая фаза мембраны должна быть нерастворимой в воде и иметь низкое давление паров, так как в случае высокой растворимости или летучести органического растворителя, растворенный в нем ионит будет выделяться в виде твердой фазы, что ведет к потере электродной функции. Растворитель, даже если он почти не смешивается с водой и имеет низкую летучесть, должен также обладать высокой вязкостью для предотвращения его диспергирования в анализируемом растворе, иначе мембрана не будет иметь достаточную долговечность. Указанным требованиям отвечают многие органические растворители, обладающие сравнительно большой молекулярной массой и низкой диэлектрической проницаемостью деканол, диоктилфенилфосфат, дифениловый эфир, дибензиловый эфир, о-нитрофенил-н-октиловый эфир и др. Следует заметить, что требования, которым должен удовлетворять растворитель, не всегда можно определить однозначно, поскольку природа растворителя оказывает заметное влияние на перенос ионов через границу раздела водный раствор/органическая фаза. [c.202]

    В последние годы разработаны методы очистки газа растворами алканоламинов в органических растворителях (или в смесях воды и органического растворителя). Кроме более низких теплоемкостей, давления насыщенных паров и теплоты испарения, преимуществом органических растворителей является то, что при абсорбции под давлением они сами начинают поглощать СОа (за счет физической абсорбции), причем десорбция этой части растворенного газа достигается лишь сбросом давления. [c.236]


Смотреть страницы где упоминается термин Давление паров органических растворителей: [c.309]    [c.364]    [c.337]    [c.327]    [c.54]    [c.229]    [c.110]    [c.261]    [c.194]    [c.135]    [c.64]   
Краткий справочник химика Издание 6 (1963) -- [ c.191 ]

Справочник по производству хлора каустической соды и основных хлорпродуктов (1976) -- [ c.375 ]

Краткий справочник химика Издание 7 (1964) -- [ c.191 ]




ПОИСК





Смотрите так же термины и статьи:

Давление растворителя

Растворители давление паров

Растворители органические



© 2025 chem21.info Реклама на сайте