Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Силикаты мышьяка

    Взвешенные частицы анализируют на содержание ионов фтора, нитратов, сульфатов и аммиака, а также мышьяка, бериллия, висмута, кадмия, хрома, кобальта, меди, железа, свинца, марганца, молибдена, никеля, селена, олова, ванадия и цинка. Улавливаются и анализируются также асбест, бор, силикаты. [c.100]

    Неорганические полимеры. К этому классу относится большинство природных силикатов и алюмосиликатов, а также поликислоты фосфора, мышьяка, ванадия и других элементов. [c.122]


    Способность к образованию тройных комплексов встречается у ограниченного числа элементов, что способствует улучшению избирательности данной реакции. Наиболее часто фосфору в природных объектах сопутствуют кремний и мышьяк, также образующие гетерополикислоты. Однако гетерополикислоты этих элементов образуются при различной кислотности среды и в разных модификациях. Например, мышьяковая гетерополикислота образуется в 0,6—0,9 М растворе минеральной кислоты, кремневая гетерополикислота — в слабокислом растворе (pH =1,5—2,0 и pH = 3,0—4,0). Молибденовая гетерополикислота всегда образуется в а-форме, которая при рН=1,0 переходит в более устойчивую р-форму. В случае кремния реакционноспособной является только его мономерная форма силикат-ионы. Различную устойчивость гетерополикислот широко используют при определении этих элементов в смеси. Для разделения и концентрирования гетерополикислот применяют экстракцию их органическими растворителями, молекулы которых имеют электронодонорные атомы азота или кислорода (кетоны, спирты, амины), что позволяет определять меньшие, чем в обычной фотометрии, количества фосфора. [c.67]

    Мягкие кислоты связывают мягкие основания за счет ковалентных связей, жесткие кислоты связывают жесткие основания за счет ионной связи с образованием устойчивых соединений. Это обстоятельство используется в практических целях. В частности, она объясняет, почему алюминий встречается в природе в виде оксида, гидроксида и силикатов, кальций —в виде карбоната медь, ртуть — в виде сульфидов. Металлы переходных элементов VIH группы периодической системы, как мягкие кислоты, катализируют реакции, в которых принимают участие умеренно мягкие основания (оксид углерода). Другие более мягкие основания (соединения мышьяка и фосфора) служёт каталитическими ядами, так как они образуют более прочные соединения с этими металлами и блокируют их активные центры. Этим же объясняется ядовитость СО для человека. СО образует с Ре (II) гемоглобина крови более устойчивое соединение, чем кислород. Аналогичную роль играют ионы тяжелых металлов (РЬ +, Hg + и др.), которые, взаимодействуя с SH-группами физиологически важных соединений, выключают их функцию. [c.287]

    В зависимости от того, построены ли макромолекулы неорганических полимеров из атомов одного или различных элементов, они называются соответственно гомоцепными и гетероцепными полимерами. Представители первых—селен и теллур цепочечного строения, а также модификации черного фосфора и мышьяка, имеющие слоистые решетки (гл. IV, 5). Типичные гетероцепные полимеры — аморфные двуокись кремния и поликремниевая кислота, природные и синтетические силикаты, полифосфорные кислоты, полифосфаты  [c.392]


    Запишите формулы нижеперечисленных веществ, пользуясь сведениями о ионных зарядах из табл. 3.1 хлорид калия, оксид меди(1), бромид мышьяка, сульфат олова(П), нитрат железа(1П), силикат алюминия, фосфат аммония, гидроксид магния, арсенат меди(П), нитрид кальция. [c.53]

    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]

    Отделение мышьяка экстракцией в виде диэтилдитиокарбамината используется при его определении в металлическом цинке и кадмии высокой чистоты [240], биологических материалах (волосах, зубах, ногтях) [55], металлическом галлии [66, 238, 284, 286, 288], силикатах 869], продуктах переработки нефти [861]. [c.128]

    В патентной литературе последнего времени имеются сообщения о проведении нитрования азотной кислотой в газовой фазе в присутствии катализаторов Норман Леви [148] пропускал смесь парафинов с азотной кислотой при 300—450°через реакционную камеру с катализатором, состоявшим яз соединений мышьяка или сурьмы, смешанных с силикатами Оптимальная [ конверсия получена при отношении парафинов к азотной кислоте 0,5 1 и времени контакта 1—5 сек [c.281]

    Силикаты, фосфор, мышьяк, железо [c.162]

    Дегидрогенизация и полимеризация углеводородов 1 1 Кислые или основные соединения, например окись магния и окись алюминия окис, магния и фтористый натрий, нагретые до 870° каталитически действующие кислые соединения могут применяться также силикаты кислоты, образуемые металлами VI группы окислы висмута, олова, свинца, сурьмы, кобальта, мышьяка, ванадия, фосфора, бора эти катализаторы представляют собой твердые и устойчивые вещества 3210 [c.368]

    К силикатам принадлежат горные породы, огнеупорные материалы, стекла, цементы, глазури, зола горючих материалов, известняки, наждак и др. Все эти материалы обычно содержат кремниевую кислоту, окись алюминия, окислы железа, титана, марганца, магния, кальция, натрия, калия, серный ангидрид, двуокись углерода, фтор, хлор. Эти компоненты не всегда присутствуют одновременно. Содержание их в анализируемых пробах бывает различным, однако некоторые из них, например титан, марганец, фосфорный ангидрид, содержатся в небольших количествах. Помимо обычных составляющих, силикаты содержат и другие менее распространенные элементы бор, барий, цинк, олово, свинец, сурьму, мышьяк, бериллий, цирконий, литий, а также небольшие количества хрома, никеля. [c.447]

    Фосфат в промышленных водах, обычно содержащийся в небольших количествах, определяют в форме синего гетерополисоединения, так как этому методу не мешают значительные количества силиката. Трехвалентное железо, пятивалентный мышьяк, нитрат и таннин должны отсутствовать. Если в анализируемой воде содержатся нитриты, то рекомендуется добавлять к реагенту сульфаминовую кислоту [12]. Органически связанный фосфор окисляют небольшим количеством хлорной кислоты [25]. [c.23]


    В стеклообразное состояние склонны переходить вещества, способные образовать полимеры как простые по структуре (сера, селен, окись бора , сульфиды, селениды и теллуриды мышьяка и др.), так и содержащие сложные анионы цепочечной и слоистой структуры (силикаты, бораты, фосфаты и др.). [c.155]

    Мышьяк относится к числу сравнительно мало распространенных элементов. Среднее его содержание в земной коре оценивается в 2-10 % [53]. Это типичный халькофильный элемент. Встречается главным образом в виде сульфидов, арсенидов, сульфоар-сенидов, сульфосолей и арсенатов, реже — в виде окислов, окси-хлоридов, арсенитов и силикатов. Мышьяк преимущественно находится в арсенидах и сульфоарсенидах Ге, N1 и Со, реже — Си и РЬ в сульфосолях РЬ, Си, Ag и Т1 в арсенатах Ка, Mg, Са, Ва, В1, А1, п, РЬ, N1, Со, Мп, Ге, Си, и. Иногда встречается самородный мышьяк [356]. [c.7]

    Черновую медь плавят в отражательных нефтяных или газовых печах и окисляют продуванием воздуха. Образующаяся закись меди растворяется в металле и передает свой кислород другим примесям. В результате сера удаляется в виде сернистого газа. Железо в виде закиси шлакуется, образуя силикат с кислой футеровкой печи. Цинк и свинец частично испаряются, частично шлакуются в форме силикатов. Мышьяк, сурьма и висмут частично улетучиваются и ошлаковываются, но значительная доля их, особенно сурьмы, остается в меди. Очень плохо удаляется также никель, окись которого растворима в меди. Серебро и золото полностью остаются в меди. [c.436]

    Экстракционная фосфорная кислота, получаемая разложением природных фосфатов серной или соляной кислотой, содержит значительные количества примесей (сульфаты, хлориды и фосфаты железа, алюминия, кальция и магния, фториды, силикаты, мышьяк, свинец и др.), поэтому при производстве кормового преципитата ее необходимо очищать от фтора и некоторых других вредных примесей. Для этого осаждение преципитата нужно проводить в две ступени с промежуточным фил-ьтрованием осадков. В первой ступени получается преципитат-удобрение, загрязненное примесями, во второй — более чистый кормовой продукт. [c.349]

    Фосфат в флуориметрических методах давно известен в качестве мешающего иона, это его свойство было использовано для аналитических целей. В работе [165] использовали свойство фосфора гасить люминесценцию комплекса алюминия с морином. Многие ионы мешают определению, некоторые из них можно отделить предварительным выпариванием анализируемого раствора с хлорной кислотой или с помощью ионного обмена. Киркбрайт, На-райянасвари и Вест [166] попытались реализовать потенциально высокую чувствительность спектрофлуориметрии, оставив при этом селективность определения фосфата, достигнутую в более ранних работах. Им удалось этого добиться следующим образом. Фосфат превращают в молибдофосфорную кислоту, которая, в свою очередь, взаимодействует с основным красителем родамином Б с образованием ионного ассоциата. После экстракции избытка красителя хлороформом ионный ассоциат молибдофосфата и родамина Б экстрагируют смесью 4 1 по объему хлороформа и бутанола и измеряют флуоресценцию этого раствора при 575 нм, длина волны возбуждающего света 350 нм. Изучение влияния на определение фосфора [37] посторонних ионов показало, что метод отличается высокой селективностью. Не мешают определению большие концентрации силиката. Мышьяк(П1) и ванадий (V) могут присутствовать в 25- и 59-кратном избытке по отношению к фосфору. Метод применим для определения 0,04—0,6 мкг Р. При изучении природы комплекса было показано, что соотношение родамина Б и молибдофосфата в ионном ассоциате составляет 3 моля на 1 моль. Это позволяет предполагать, что образуется незаряженный комплекс типа [РЬВ+]з[РМО -]. [c.466]

    Если высушенную при комнатной температуре над пятиокисью фосфора смесь, состоящую из 30% изобутана и 70% н-бутана и двуокиси азота (молярное соотношение углеводород КОг= 1 2), пропустить один раз над мышьяковистокислым натрием или силикатом бора с добавкой мышьяка или сурьмы при температуре 200° и времени реакции 120 сек., то за один проход можно достигнуть 45% превращения, а выход В пересчете на израсходованную смесь бутана составит 90%. При этом получают 60% 7-нитроизобутана, 20% 2-нитробутана и 20% ,5-динитробутана. Это первый случай, когда газофазное нитро-ванпе бы.ло осуществлено при такой иизко11 температуре, что можно было уловить динитросоединения (Норман Леви) [79]. Во многих других лабораториях эти наблюдения не подтвердились [80]. [c.282]

    Катодные ингибиторы влияют на скорость катодной реакции коррозионного процесса. К ним относятся активные восстановители, связывающие кислород и уменьшающие его содержание в растворе ( например, сульфид натрия или гидрозин), защищающие вещества, уменьшапцие поверхность катода за счет образования пленок труднорастворимых соединений ( например, Са(НСО ) или п ЗОц ), а также вещества, затрудняющие катодную реакцию коррозии металла ( катионы тяжелых металлов, например, вИсмута и Мышьяка), Ингибиторы смешанного действия замедляют как анодцую, таи и катодную реакции процесса корроаии. К этой группе ингибиторов относятся полифосфаты и силикаты. [c.53]

    СТЕКЛО (обыкновенное, неорганическое, силикатное) — прозрачный аморфный сплав смеси различных силикатов или силикатов с диоксидом кремния. Сырье для производства стекла должно содержать основные стеклообразующие оксиды 510а, В Оз, Р2О5 и дополнительно оксиды щелочных, щелочноземельных и других металлов. Необходимые для производства С. материалы — кварцевый песок, борная кислота, известняк, мел, сода, сульфат натрия, поташ, магнезит, каолин, оксиды свинца, сульфат или карбонат бария, полевые шпаты, битое стекло, доменные шлаки и др. Кроме того, при варке стекла вводят окислители — натриевую селитру, хлорид аммония осветлители — для удаления газов — хлорид натрия, триоксид мышьяка обесцвечивающие вещества — селен, соединения кобальта и марганца, дополняющие цвет присутствующих оксидов до белого для получения малопрозрачного матового, молочного, опалового стекла или эмалей — криолит, фторид кальция, фосфаты, соединения олова красители — соединения хрома, кадмия, селена, никеля, кобальта, золота и др. Общий состав обыкновенного С. можно выразить условно формулой N3,0-СаО X X65102. Свойства С. зависят от химического состава, условий варки и дальнейшей обработки. [c.237]

    Фотометрические методы определения мышьяка в виде мышья-ковомолибдеповой сини находят широкое применение. Они используются для определения мышьяка в его соединениях [529], железе, чугуне и стали [48, 540, 666, 698, 773, 785, 790, 885, 917, 943, 949, 952, 996, 1131-1133, 1147], ферросплавах [217, 702, 703, 1203], меди и медных сплавах [158, 195, 197, 216, 515, 562, 815, 886, 952, 1043, 1133, 1209, 1210], рудах и продуктах медного и свинцово-цинкового производства [21, 81], железных рудах [652, 822, 949, 1108], свинце [158, 264, 627, 695, 886, 926, 952, 990, 1133], серебре и его сплавах [1070], Вольфраме и его рудах [1203], олове [307, 585, 661, 1208], сурьме [91, 197, 198, 264, 284, 837, 886, 894, 952, 956], висмуте [265, 764], цинке [158, 627, 926, 952], ниобии и ванадии [284], галлии [284, 2881, индии [284, 289, 430], таллии [284, 287], кремпии [284, 872], германии ]б99, 700, 872], селене [637, 1016, ИЗО], теллуре [758], хроме и его окислах [198, 216], алюминии [144], кадмии [158], олове [886], молибдене и его окислах [459], никеле [402, 562], боре [893], уране [661, 760, 849, 928], минералах [415, 869, 994], пиритах и пиритных огарках [302, 491], фосфорной [940, 941], азотной [892], серной [939] и соляной [197, 452] кислотах, природных водах [785, 942, 993], дистиллированной воде [452], фосфатах [942] и фосфорсодержащих продуктах [980, 1091], силикатах и силикатных породах [869, 942, 964, [c.61]

    Метод пламенной фотометрии широко применяется в аналитической практике для определения кальция при клинических анализах крови [22,166,171,213, 561, 784, 1649] и других биологических объектов [482, 561, 1520], при анализе почв [226, 428, 467, 969], растительных материалов [7, 225, 466, 993, 1522], сельскохозяйственных продуктов [52, 306], природных вод [15851, морской воды [594, 791]. Метод находит применение при определении кальция в силикатах [67], глинах [6, 59], полевом шпате [637], баритах [67], рудах [164, 1136, 13981, а также в железе, сталях, чугунах [326, 1149], ферритах [949], хромитовой шихте [70], основных шлаках [1045], мартеновских шлаках [988], доменных шлаках [1510], силикокальции [1012], керамике [395]. Описаны методы пламенной фотометрии для определения кальция в чистых и высокочистых металлах уране [201, 12011, алюминии [1279], селене [1454], фосфоре, мышьяке II сурьме [1277], никеле [1662], свинце [690], хроме [782] и некоторых химических соединениях кислотах (фтористоводородной, соляной, азотной [873]), едком натре [235], соде [729], щелочных галогенидах [499, 885], арсенатах рубидия и цезия [316], пятиокиси ванадия [364], соединениях сурьмы [365, 403], соединениях циркония и гафния [462, 1278], солях цинка [590], солях кобальта и никеля [1563], карбонате магния [591], ниобатах, тантала-тах, цирконатах, гафнатах и титанатах лития, рубидия и цезия [626], стронциево-кальциевом титанате [143], паравольфрамате аммония [787]. [c.146]

    Сера. Пирит FeSo и халькопирит uFeSj разлагают соляной кислотой с добавкой хлората натрия, при этом сульфидная сера окисляег- я до сульфатной. Для окисления сульфидной серы до сульфатной применяют бром в смеси с соляной или азотной кислотой или с метанолом применяют также азотную кислоту с добавкой иодида калия или винной кислоты. Хлорная кислота в смеси с азотной хорошо разлагает и окисляет сульфиды. Избирательно растворяются в аммиаке с пероксидом водорода реальгар и аурипигМент (сульфиды мышьяка), в то время как сульфиды железа и ртути не растворяются. Элементарную серу в породах растворяют в сероуглероде или четыреххлористом углероде, а иногда раствором сульфида натрия (с образованием тиосульфата). Для определенпя серы в углях и разложения сульфидов применяют спекание со смесью Эшка (смесь карбоната натрия и оксида магния 1 2). Силикаты спекают со смесью оксида цинка и карбоната натрия (7 3) при 800—850 С. [c.19]

    В неорганическом анализе дистилляционными методами отделяют мышьяк, сурьму и олово в виде галогенидов, хром — в виде Сг02СЬ, осмий и рутений — в виде тетраоксидов. При определении кремния в силикатах его отделяют в виде 51р4. Серу в форме сульфитных и сульфидных ионов обычно выделяют в виде ЗО2 и Н2З после подкисления анализируемого раствора. Галогены можно отогнать из водного раствора в виде свободных элементов (часто после селективного окисления) и галогеноводородов. Из трудно-плавящихся веществ примеси металлов можно выделить в элементарном виде нагреванием при высокой температуре. Наоборот, в легколетучих веществах, (например, кислотах) содержание металлов определяют после полного или частичного отделения основного вещества дистилляцией. Примером использования рассматриваемых методов для очистки веществ служит дистилляция воды — стандартная операция в практике аналитических лабораторий. Методом сублимации можно хорошо очистить иод или некоторые органические соединения (например, 8-гидроксихинолин). [c.80]

    Мышьяк определяют по окраске молибденовой сини, образующейся при восстановлении арсекомолибдата аммония (44]. Количество мышьяка В О бразце не должно превышать 0,03 г. Его восстанавливают. до трехвалентного (Состояния и перегоняют в виде хлорида с целью отделения от нелетучих мешающих веществ. Дистиллят затем выпаривают досуха с азотной кислотой, вводимой для окисления мышьяка до Аз . Остаток обрабатывают раствором, содержащим сернокислый гидразин и молнбдат аммония, и нагревают для завершения реакции образования молибденовой сини. Фотометрическое измерение проводят с красным светофильтром. Описанную реакцию можно применять также для определения фосфата, силиката и германата, а также арсената. [c.55]

    Главной составной частью серного колчедана является двусер -нистое железо РеЗа- Природный колчедан обычно содержит от 25 до 52 % серы. Основные его примеси — это сернистые соединения меди, цинка, мышьяка, селена, теллура, никеля, кобальта, соли кальция и магния, силикаты. [c.388]

    Максимумы светопоглощения экстрактов в изобутаноле находятся при 625 и 725 ммк. Оптимальные пределы концентрации фосфора составляют 0,2—1,5 мкг1мл. Определению не мешают ионы ацетата, бромида, карбоната, хлорида, цитрата, бихромата, фторида, йодата, нитрата, нитрита, оксалата, перманганата, сульфата, аммония, алюминия, бария, трехвалентного висмута, кадмия, кальция, трехвалентного хрома, двухвалентного кобальта, двухвалентной меди, двухвалентного железа, трехвалентного железа, двухвалентного свинца, лития, магния, двухвалентного марганца, двухвалентного никеля, калия, серебра, натрия, четырехвалентного тория, уранила и цинка. Концентрация ионов трехвалентного мышьяка, йодида и роданида не должна быть выше 50 мкг/мл, а концентрация силиката или четырехвалентного олова — выше 25 мкг/мл. Опре- [c.15]

    Фосфорномолибденовая кислота экстрагируется селективно, и ионы силиката, арсената и германата не мешают, в то время как при обычном методе определения по образованию фосфорномолибденовой кислоты названные ионы мешают определению. Уэйдлин и Меллон [26] исследовали зкстрагируемость гетерополикислот и установили, что 20%-ный по объему раствор бутанола-1 в хлороформе селективно извлекает фосфорномолибденовую кислоту в присутствии ионов арсената, силиката и германата. Предложенный ими метод позволяет определить 25 мкг фосфора в присутствии 4 мг мышьяка, 5 мг кремния и 1 мг германия. Более того, при экстракции удаляется избыток молибдата, поглощающего в ультрафиолетовой области. Измерение оптической плотности экстракта при 310 ммк обеспечивает увеличение чувствительности метода. Для получения надежных результатов необходимо строго контролировать концентрацию реагентов. Определению не мешают ионы ацетата, аммония, бария, бериллия, бората, бромида, кадмия, кальция, хлорида, трехвалентного хрома, кобальта, двухвалентной меди, йодата, йодида, лития, магния, двухвалентного марганца, двухвалентной ртути, никеля, нитрата, калия, четырехвалентного селена, натрия, стронция и тартрата. Должны отсутствовать ионы трехвалентного золота, трехвалентного висмута, бихромата, свинца, нитрита, роданида, тиосульфата, тория, уранила и цирконила. Допустимо присутствие до 1 мг фторида, перйодата, перманганата, ванадата и цинка. Количество алюминия, трехвалентного железа и вольфрамата не должно превышать 10 мг. [c.20]

    Имеются работы, предусматривающие отделение силикатов и других мешающих примесей [1—6] алюминий отделяют растворением в щелочи или осаждением 8-орто-оксихинолином (методика № 9) сульфаты осаждают в виде Ва804 (методики №38, 67, 79) хроматы, арсенаты и фосфаты часто осаждают в виде серебряных солей [4—7], так как AgF прекрасно растворим в воде, а хромат, арсенат и фосфат серебра практически нерастворимы фосфат и мышьяк осаждают карбонатом цинка [8]. Фторси-ликат из шлама извлекают раствором хлорида аммония (методика № 84). [c.31]

    Вхождение гидроксильного аниона в небольшом количестве в решетку цепочечного силиката, роговую обманку [0Н2][31402д]2 ведет к удвоению чистой цепочки, превращению ее в ленту. Когда катион небольшого размера и с большим зарядом соединяется с легкополяризующимся крупным анионом, почти всегда образуются слоистые структуры. Примером служат сульфиды мышьяка (аурипигмент АзгЗз) и молибдена (молибденит МоЗг). [c.17]


Смотреть страницы где упоминается термин Силикаты мышьяка: [c.125]    [c.282]    [c.384]    [c.211]    [c.42]    [c.168]    [c.255]    [c.251]    [c.23]    [c.77]    [c.508]    [c.251]    [c.355]    [c.215]    [c.438]    [c.618]    [c.429]    [c.149]   
Фотометрический анализ методы определения неметаллов (1974) -- [ c.143 ]




ПОИСК





Смотрите так же термины и статьи:

Силикаты



© 2025 chem21.info Реклама на сайте