Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определяемый минимум реакции

Рис. 18.7. Аналогия между изменением потенциальной энергии камня, скатывающегося с холма (а), и изменением свободной энергии в самопроизвольной реакции (б). Положение равновесия в случае а определяется минимумом потенциальной энергии, которой может обладать система. Положение равновесия в случае б определяется минимумом свободной энергии, которой может обладать система. Рис. 18.7. <a href="/info/721956">Аналогия между</a> <a href="/info/351602">изменением потенциальной энергии</a> камня, скатывающегося с холма (а), и <a href="/info/12282">изменением свободной энергии</a> в <a href="/info/219151">самопроизвольной реакции</a> (б). <a href="/info/21083">Положение равновесия</a> в случае а <a href="/info/432341">определяется минимумом</a> <a href="/info/4400">потенциальной энергии</a>, которой может <a href="/info/72870">обладать система</a>. <a href="/info/21083">Положение равновесия</a> в случае б определяется <a href="/info/962479">минимумом свободной энергии</a>, которой может обладать система.

    Это можно объяснить тем, что гидроксид-ион фактически не участвует в реакции, а точнее - в той стадии, которая определяет скорость реакции в целом. А именно эту скорость измеряют экспериментально. Таким образом, реакция состоит как минимум из двух стадий  [c.208]

    В результате мы пришли к выводу, что для повышения концентрации частиц в переходном состоянии способный к комплексообразованию катализатор, как минимум, должен связываться с субстратом. Далее, если комплексообразователь обеспечивает благоприятное для активации окружение, то это приводит к дополнительному ускорению. Концентрационный профиль (рис. 12.3) иллюстрирует взаимосвязь между различными частицами и ясно показывает концентрации активированных молекул в переходном состоянии, которые и определяют скорость реакции [2]. [c.303]

    Когда две молекулы сталкиваются друг с другом, в результате соударения может произойти такая перегруппировка их атомов, что образуются две новые молекулы, т.е. произойдет реакция. Однако столкновение молекул завершается реакцией, как правило, в том случае, если эти молекулы имеют некоторый минимум энергии, достаточный для разрыва определенных связей в реагентах, так как только при этом условии могут образоваться новые связи. Этот минимум энергии — так называемая энергия активации — и определяет скорость реакции. Именно необходимостью наличия этого минимума энергии объясняется чрезвычайно сильное влияние температуры на скорости реакций. [c.150]

    В результате теплового движения ионов Н3О+ изменяется и расстояние между минимумами обеих потенциальных кривых, следствием чего должны быть непрерывные колебания высоты и ширины барьера. Эти соображения приводят к окончательному выводу о том, что форма барьера должна быть неодинаковой для различных протонных переходов. Однако статистически можно определить скорость реакций, как результат этих элементарных процессов, вводя эффективный потенциальный барьер определенной формы и определенных размеров. Следует отметить, что более правильным оказывается расчет для непрерывного, а не для квантового распределения энергии. Если такое толкование справедливо, то приведенные выше значения энергий активации следует рассматривать как статистические средние значения энергий всех протонов (соответственно, дейтронов), которые взаимодействуют с эффективным потенциальным барьером. С другой стороны, найденные здесь параметры барьера следует рассматривать как параметры некоторого эквивалентного барьера, который аппроксимирует вероятную форму эффективного барьера, т. е. позволяет статистически определить средние значения колеблющихся параметров истинного барьера. [c.38]


    Определена чувствительность реакции открытия урана открываемый минимум равен Зт в 1 мл, предельное разбавление 1 3,3-105, [c.65]

    Здесь А й В обозначают возбужденные молекулы А и В с критической энергией Е. При этом А является любой формой активных частиц, которые могут возникнуть при активации молекул А при дезактивации возбужденных частиц А могут образоваться только молекулы А. Возбужденные молекулы В определяются аналогично . Эту схему можно представить в виде диаграммы потенциальной энергии, как показано на рис. XI. 1, где приведено сечение поверхности потенциальной энергии, соответствующее минимальным величинам 17 для различных величин Ь. Все состояния слева от о являются состояниями А или А, правее — В или В. Как следует из рис. XI.1, реакция эндотермична, так как минимум энергии для В располагается выше, чем минимум энергии для А. Разность этих двух энергий соответствует тепловому эффекту реакции А . [c.204]

    Массопередача между газом и поверхностью твердых гранул часто определяет механизм гетерогенной реакции, особенно в промышленных условиях, когда ограничения потери напора, вызванные экономическими соображениями, заставляют выбирать такую скорость потока, при которой ни скорость адсорбции, ни скорость реакции на поверхности катализатора не являются определяющими. В процессах с псевдоожиженным слоем скорость потока ограничивается из-за необходимости свести к минимуму унос твердых частиц. [c.283]

    Можно привести много других примеров самопроизвольно протекающих процессов, которые сопровождаются поглощением теплоты. Однако невозможно определить положение равновесия путем поиска минимума энтальпии. Энтальпия не является мерой способности реакции к самопроизвольному протеканию. [c.68]

    Критерий направления процесса. Для решения вопроса о возможности протекания реакции недостаточно обладать химической интуицией , необходим количественный критерий принципиальной осуществимости процесса. С помощью такого критерия можно определить, насколько далеко идет процесс нельзя ли добиться (и как это сделать) увеличения степени превращения если данное вещество не реакционноспособно, то можно ли создать условия, при которых оно может взаимодействовать с другими веществами как влияют на течение процесса температура, давление, разбавление инертным газом, варьирование концентрации реагентов можно ли заставить изучаемую реакцию протекать в обратном направлении и т. д. В механике большое значение имеет принцип стремления потенциальной энергий к минимуму. Тенденция тела к перемещению сверху вниз определяется разностью уровней в его начальном и конечном положениях независимо от траектории падения. Движение прекращается, когда гравитационный потенциал достигает минимума. Произведение массы тела на изменение гравитационного потенциала равно работе падения тела, которая от пути перемещения не зависит. [c.182]

    Вычисляя ошибки с использованием найденных производных, определяем оптимальные соотношения начальных концентраций реактивов. Не исключено, что для некоторых реакций в противоположность приведенным выше примерам будет выявлена оптимальная область концентраций, соответствующая минимуму дисперсии константы. Если такой области не обнаружится, то полезно изучить характерные особенности уменьшения опшбки с ростом концентраций. Выявление концентраций, начиная с которых это уменьшение резко замедляется, позволяет определить естественную нижнюю границу области концентраций реагентов. Может быть, что такая граница соответствует неприемлемо высоким или просто недопустимым концентрациям. Тогда выбор метода можно поставить под сомнение. Метод отвергаем, если его ошибки слишком велики во всей области концентраций. [c.173]

    Нами использован для термодинамических расчетов универсальный метод определения состава равновесной смеси сложной реакции - метод минимума энергии Гиббса. При моделировании равновесного состава использован известный в термодинамике постулат о том, что состояние термодинамического равновесия не зависит от пути химических превращений и определяется только энергетикой исходных веществ и конечных продуктов реакций. Отсюда очевидно, что результаты расчета химического равновесия также не должны зависеть от реакционного маршрута. [c.156]

    Трубчатые проточные реакторы, в отличие от кубовых, не имеют перемешивающих устройств, в них перемешивание среды сведено к минимуму. Приближенной теоретической моделью такого аппарата является реактор идеального вытеснения, в котором среда движется с постоянной скоростью подобно поршню. Отсутствие перемешивания и поступательное (порщневое) течение среды определяют одинаковое время пребывания различных частиц или элементарных объемов реакционной смеси в таком аппарате. Концентрации веществ, участвующих в реакции, плавно изменяются по длине аппарата, и это изменение обусловлено только реакцией. В таком аппарате не происходит разбавления поступающих в него исходных веществ продуктами реакции. В связи с этим при одинаковых начальных и конечных концентрациях средние концентрации реагирующих веществ и скорость реакции больше, а время реакции и необходимый объем реактора меньше, чем в условиях идеального смешения. [c.244]


    На практике для того, чтобы свести к минимуму крекинг исходного сырья, температуру реакции поддерживают не более 400° С. При этом объемная скорость определяется требующейся производительностью и временем пробега. В этих условиях фронт абсорбированной серы получается размытым, и хотя катализатор в лобовом слое полностью насыщается серой, проскок серы может происходить прежде, чем слой на выходе будет отработан полностью. В этом случае, когда концентрация серы, определенная на выходе, превышает определенную величину, например 0,5 ч/млн, то говорят, что в сероочистном аппарате произошел проскок серы. [c.68]

    Гидродинамика газовых потоков в вихревом реакторе определяет условия течения реакции хлорирования, несмотря на ее скоротечность. Действие поля центробежных сил и устойчивость струйной структуры позволяет усилить положительный эффект реакции и свести к минимуму выход побочных продуктов, образование которых обусловлено более длительным временем контактирования хлора с пропиленом и хлористым аллилом. Перемещения молекул С1г И С3Н, не тормозят процесс реакции. Скорости реакции хлорирования можно определить по формуле (при Тр = 773 К) [c.260]

    Не следует предполагать, что приведенный выше довод основан исключительно на выводах, вытекающих из кривых, иллюстрирующих подверженность текстильных волокон действию деформации во времени. Правда, чаше всего ссылаются именно на эти кривые, но это делается потому, что обычно имеется тенденция избегать упоминание факторов формы. Следует однако уяснить себе, что реакция тканей, сотканных из пряжи, не может быть исчерпывающе определена на основании лишь реакции волокон. Известно, например, что камвольные ткани способны принимать четко выраженные складки и хорошо сохранять их. С другой стороны, фланель и похожие на нее шерстяные ткани туго поддаются образованию складок и плохо сохраняют таковые. Факторы формы, играющие в данных случаях влиятельную роль, весьма тщательно изучены Бэкером (см. ссылку 218), который пришел к заключению, что для достижения максимума изгибаемости, сопротивления усталости и сопротивления образованию морщин требуются обеспечение минимума трения между волокнами, а также наличие свобод- ной структуры. Этим путем можно довести до минимума растягивающие напряжения, возникающие при изгибании крученых структур. Свобода движения волокон внутри пряжи может почти полностью предотвратить напряжение, сопутствующее образованию самых разнообразных изгибов пряжи. [c.231]

    Этап I. Представить схематически электроды II рода, в состав которых входят предложенные труднорастворимые соединения. Выбрать для каждого электрода II рода подходящий электрод сравнения, с тем чтобы свести к минимуму диффузионные потенциалы. Для составленных элементов написать суммарную токообразующую реакцию и определить число участвующих в ней электронов г. [c.84]

    На закономерностях электропроводности растворов основан к о н-дуктометрический метод, который состоит в измерении электропроводности исследуемых систем. Этот метод позволяет найти содержание индивидуального вещества в растворе, если предварительно построить соответствующую калибровочную кривую для зависимости электропроводности от концентрации этого вещества. При помощи этого метода с высокой точностью определяют растворимость труднорастворимых соединений и константы ионных равновесий. В методе кондуктометрического титрования измерения электропроводности используют для определения конечной точки титрования. Например, при титровании сильной кислоты сильным основанием вместо ионов Н3О+ в растворе появляются катионы основания с более низкой электропроводностью, т. е. добавление щелочи к кислоте вызывает уменьшение электропроводности раствора. При дальнейшем добавлении щелочи в растворе появляются ионы гидроксила и электропроводность снова возрастает. Таким образом, в точке нейтрализации система обладает минимумом электропроводности. Кондуктометрическое титрование применяется и при реакциях, [c.228]

    Для отыскания условий равновесия (V,31) нужно определить минимальное значение данной функции, причем в системе могут изменяться любые переменные, кроме фиксированных. Так, если принять в качестве критерия равновесия энергию Гиббса, то следует найти ее минимум, предполагая, что в системе изменяются не температура и давление, а другие параметры (например, концентрация) веществ. Тогда энергия Гиббса системы будет уменьшаться до достижения минимума вследствие перехода вещества из одной фазы в другую или же вследствие протекания химических реакций. Подобные рассуждения применимы и в других случаях. [c.117]

    Метод переменнотоковой полярографии сводится обычно к измерению фарадеевского импеданса или соответственно фарадеевского переменного тока в зависимости от приложенного потенциала постоянного тока. Как было отмечено в разд. 4.5.1 и показано на рис. 4.28, минимум фарадеевского импеданса, т. е, максимум фарадеевского переменного тока, наблюдается при потенциале полуволны постояннотоковой полярографии. Кривая переменнотоковой полярограммы деполяризатора в идеальном случае имеет вид первой производной постояннотоковой полярограммы (рис. 4.28). Переменнотоковую полярограмму формально можно рассматривать как усиление характеристической кривой триода (которая в данном случае соответствует вольтамперной кривой). Но следует учесть, что скорость процесса определяется скоростью передачи ионов (диффузии) или самих реакций. [c.156]

    Чувствительность реакции определяют наименьшим количеством вещества, которое может быть обнаружено данным реактивом (открываемый минимум). Реакция тем чувствительнее, чем меньше открываемый минимум. Например, ион К+ можно обнаружить с помощью хлороплатината в виде K2[Pt l6] при разбавлении раствора до 1 10000 (открываемый минимум). При меньшей концентрации ион К+ этой реакцией определить уже невозможно. [c.26]

    НОВЫХ результатов потребовались новые объяснения. Ола впервые рассмотрел переходные состояния так, что в общепринятом энергетическом профиле он перевернул максимумы, соответствующие я- и о-комплек-сам. Однако он подчеркнул, что разделение на отдельные энергетические максимумы, приводящее к разделению я- и а-комплексов, не обязательно. Он обсудил такую возможность, что, например, при нитровании и бензилировании отдельные минимумы, соответствующие некоторым промежуточным соединениям, могут не появиться, и на профиле энергии будут находиться только два максимума. Первый максимум будет соответствовать переходному состоянию, которое так рано появляется на координате реакции, что становится похожим на ориентированный я-комплекс. Второй максимум соответствует отщеплению протона. Реакции с очень сильными электрофильными агентами имеют ранние переходные состояния, которые могут быть сходными с я-комплексами это согласуется с точкой зрения Дьюара. Можно также думать, что эти реакции включают отдельные переходные состояния одно из них соответствует образованию я-комплекса и определяет скорость реакции, а другое — образованию а-комплекса и определяет характер продуктов реакции [117а, 134]. Возможность образования такого я-комплекса, как лимитирующей стадии реакции, обоснована для очень реакционноспособных субстратов, а также и для описанной Меландером [91 реакции обмена водорода (см. рис. 1). Если эти реакции протекают, как изображено на рис. 1, то стадия, определяющая скорость реакции, настолько удалена от стадии разрыва связи С — Н, что исключается возможность появления первичного изотопного эффекта. Согласно Ола, небольшие эффекты, которые наблюдались во всех этих реакциях, должны быть определенно отнесены ко вторичным изотопным эффектам. [c.492]

    Одновременно с числом стехиометрически независимых реакций определяется равное ему число ключевых веществ, по которым можно составить материальный баланс реакций. В простой реакции ключевое вещество одно. В сложных реакциях выбор независимых реакций и ключевых веществ взаимосвязан и определяется тем, чтобы в каждой независимой реакции участвовало хотя бы одно ключевое вещество и, кроме того, выбранные ключевые вещества участвовали бы в одной или в некотором минимуме реакций. Так, в предыдущем примере в качестве ключевых можно выбрать аммиак, азот и диоксид азота. [c.166]

    Из этого отнюдь не следует, что катализатор может вызвать термодинамически невозможный процесс. Поскольку катализатор Е1Х0ДИТ в состав лишь промежуточного соединения, термодинамическая возможность процесса определяется разностью уровней свободной энергии конечного и начального состояний. Таким образом, химический процесс и в присутствии катализатора идет в направлении минимума свободной энергии в системе, а катализатор лишь ускоряет (или замедляет) этот процесс, т. е. не способен смещать положения равновесия. Это же заключение можно сделать и на оснонании рассмотрения следующей модели представим себе изотермическую систему, состоящую из газообразных компонентов, в которой термодинамически аошожна реакция с изменением числа молей. Предположим, что существует катализатор, смещающий положение равновесия. Тогда, попеременно вводя в систему и выводя из нее катализатор, можно будет при отсутствии разности температур неограниченно получать работу расширения и сжатия газов. Следовательно, сделанное предположение о возможности смещения равновесия в присутствии катализатора приводит к возможности построения вечного двигателя второго рода, т. е. к нарушению второго закона термодинамики. [c.273]

    Зависимость размерной скорости распространения фронта м = ии от скорости фильтрации немоното нна и имеет отрицательный минимум, а 0ц > 0. При ао = максимальная температура и скорость распространения фронта полностью определяются всеми прочими параметрами и, в частности, параметром X. Но как видно из оценок (3.48) и (3.49), всегда можно подобрать такое значение Я, при котором фронт распространяется навстречу потоку газа. В то же время при конечном значении параметра ао скорость распространения меньше, чем при бесконечном, а значит, тем более она отрицательна. О структуре фронта реакции — его профиле — можно судить на основании выражений (3.42), показывающих, что в зоне прогрева (охлаждения) температурные профили имеют экспоненциальный характер, а также на основании оценок максимальной температуры и ширины зоны химической реакции. Хотя структура теплового фронта в зоне реакции существенно зависит от кинетической модели процесса, такие характеристики, как максимальная температура и ширина реакционной зоны, вполне достаточны для практических целей. В частности, анализ приведенных оценок позволяет сделать вывод о том, что для реакторов с неподвижным слоем катализатора при низких входных температурах и малых адиабатических разогревах реакционной смеси можно всегда подобрать такие условия ведения процесса, при которых в нестационарном режиме будет достигнута достаточно высокая максимальная температура, обеспечивающая большую скорость химического превращения, причем достигнута она будет на небольшом участке слоя катализатора [16]. Реальные ограничения на максимальную температуру связаны только с величиной допустимого гидравлического сопротивления слоя катализатора. [c.89]

    Максимальный выход промежуточного продукта в последовательных реакциях достигается при вполне определенном времени пребывания (контакта) [78, с. ПО] отсюда следует, что в отношении выхода промежуточного продукта оптимальным является периодический процесс, в котором все молекулы реагируют одинаковое время. В любом типе реактора непрерывного действия, как указывает Денбиг [78], неизбежны колебания времен пребывания и даже если среднее время пребывания в реакторе будет равно оптимальному, всегда найдутся элементы потока, которые пройдут через систему со временем пребывания, большим или меньшим оптимального. Чем шире диапазон изменения времен пребывания, тем меньше максимально возможный выход. Дифференциальная функция распределения времени контакта для каскада реакторов смешения становится более компактной с увеличением числа последовательно соединенных реакторов (например, см. [83]), и селективность реакции должна в этом случае увел ичиваться. Нахождение разумного числа аппаратов в каскаде (в смысле минимума затрат) зависит от квалификации проектировщика [78, с. 84], так как определяется стоимостью аппаратов, затратами на их эксплуатацию и выходом целевых продуктов. Очевидно, число аппаратов в каскаде 3—4 и среднее время контакта 40—60 мин должны обеспечить достаточно высокий выход глицерина (35—40% при гидрогенолизе глюкозы). [c.142]

    Взаимодействие карбамида с и-парафинами осуществляется в основном в первые минуты контактирования, однако для полноты вовлечения соответствующих углеводородов в комплекс время контакта обычно доводят до 1 ч. А. М. Гранат с сотр. [60] показал, что при депарафинизации фреонового масла из эмбенских нефтей комплексообразование происходит весьма быстро для снижения температуры застывания масел с —5 до —47° С достаточно 15 мин контактирования. Н. И. Черножуков с сотр. [54] считает необходимым при депарафинизации масел устанавливать продолжительность перемешивания порядка 30 мин. Фрейнд и Батори [74] показали, что время реакции и длительность индукционного периода при проведении процесса с водным раствором карбамида во многом определяются размерами кристаллов карбамида с увеличением их время реакции и индукционный период возрастают. Б. В. Клименок и Э. М. Игнатов [138] установили, что с увеличением продолжительности перемешивания температура застывания депарафината сначала проходит через некоторый минимум. Так, при перемешивании в течение 0,5 1 2 и 4 мин температура застывания равна соответственно —65, —77, —66 и —66° С. Значительно ускорить комплексообразование можно применяя коллоидную мельницу [50, 139, 140]. [c.75]

    Тяжелые нефтяные остатки (гудрон и др.) представляют собой очень сложные смеси углеводородов различных классов и их гетеропроизводных, состав которых во многом зависит от природы нефти. В процессе окисления этих продуктов, с целью получения битумов, протекает ряд параллельных и последовательных реакций, приводящих, в конечном счете к накоплению наиболее высокомолекулярных соединений асфальтенов. Механизм этих реакций в настоящее время изучен, однако для практических целей часто достаточно знать только количественные превращения основных комхюнентов, входящих в состав битумов. Опыты [84] показали, что процесс окисления битума протекает в два периода первый до температуры размягчения 50°С и второй от- 50 до 90°С. Согласно данным этих же авторов, наиболее интенсивно кислород воздуха расходуется в первый период процесса, который длится значительно меньше времени, чем второй. Полученные ими данные, а также элементарный анализ указанных фракций, позволивших определить их структурно-групповую характеристику по методу Корбетта [82], показали, что количество ароматических колец в процессе окисления в моно- и бициклоароматических углеводородов уменьшается, а в бензольных смолах и асфальтенах растет, тогда как в спиртобензольных смолах наблюдае гся минимум ароматичности на границе двух периодов окисления. [c.34]

    Для того чтобы реагенты могли вступать во взаимодействие и образовывать продукты, они должны обладать определенным минимумом энергии, который называется энергией активации. При значительной энергии активации лишь очень небольшая часть всех столкновений между реагентами обеспечивает их энергией, необходимой для преодоления энергетического барьера активации и образования продуктов реакции. По характеру зависимости константы скорости реакции от температуры можно определить энергию активации данной реакции для этого пользуются уравнением Аррениуса lg/ = = % А - Е,/2,30ЯТ. [c.32]

    Другой аргумент в пользу разряда анионов через катионные мостики, когда вытекает из температурной зависимости тока в минимуме на 1, -кривой. Поскольку в этой точке (д 1п ИдЕ)т= -0, то в соответствии с уравнениями (49.15) — (49.17) в минимуме Б-кри-вой А=Ш. Таким образом, по температурной зависимости минимального тока можно определить идеальную энергию активации Для реакции восстановления на ртутном электроде в присутствии катионов На+ W= , кДж/моль, а в присутствии катионов =—8,4 кДж/моль. В присутствии ионов Ыа+ скорость реакции возрастает с температурой, хотя и значительно медленнее, чем этого можно было бы ожидать для реакции, контролируемой скоростью разряда. В присутствии ионовС5+ скорость реакции падает с ростом температуры. Этот результат можно объяснить разрушением ионных пар с ростом температуры, что эквивалентно уменьшению поверхностной концентрации реагирующих анионов при размазывании заряда по внешней плоскости Гельмгольца. Таким образом, регистрируемая энергия [c.269]

    Другой аргумент в пользу разряда анионов через катионные мостики, когда ф)] Ф ф>о, вытекает из температурной зависимости тока в минимуме на г, ф-кривой. Поскольку в этой точке ф in Ид ф )т= = д In Ид( )т = О, то в соответствии с уравнениями (49.18) — (49.20) в минимуме /, ф-кривой А = W. Таким образом, по температурной зависимости минимального тока можно определить идеальную энергию активации W. Для реакции восстановления SjOj на ртутном электроде в присутствии катионов Na+ W = 4,1 ккал моль, а в присутствии катионов s W = —2 ккал моль. В первом случае скорость реакции возрастает с температурой, хотя и значительно медленнее, чем этого можно было бы ожидать для реакции, контролируемой скоростью разряда. Во втором случае скорость реакции падает с ростом температуры. Этот результат можно объяснить разрушением катионных мостиков с ростом температуры, что эквивалентно уменьшению поверхностной концентрации реагирующих анионов при размазывании заряда по внешней плоскости Гельмгольца. Таким образом, регистрируемая энергия активации W по существу является эффективной величиной, отражающей сумму двух противоположных эффектов ускорения стадии разряда за счет снижения высоты потенциального барьера и уменьшения скорости в результате сдвига истинного значения ф>1 в отрицательную сторону при разрушении катионных мостиков. При разряде анионов SjOr в присутствии Na+ преобладает первый эффект, а на фоне s — второй. [c.286]

    Из этого уравнения следует, что и для реакции окисления катионов аналогично реакции восстановления анионов первой группы поляризационная кривая в разбавленных растворах имеет сложную форму с максимумом тока при <7<0 и минимумом при <7>0, причем скорость реакции зависит от 1 гП0тенциала, величина и знак которого определяются составом раствора и потенциалом электрода. [c.175]

    Это значит, что стандартный потенциал электрода содержит контактный и неучтенный диффузионный потенциал, т. е. содержит неизмеримые величины и поэтому не является абсолютным. Однако он точно определяет при стандартных условиях (р= 1,013-10 Па и Т = 298 К) стандартную энергию Гиббса той окислительно-восстановительной реакции, которая протекает на электроде. Таким образом, за стандартный потенциал (относительно СВЭ) принимают потенциал электрода с активностью ионов, равной единице, при стандартных условиях. Так как фконт входит в стандартный потенциал электрода, а Фдифф сводят к минимуму с помощью солевого мостика, то выражение для ЭДС элемента принимает вид [c.173]

    Окончательный выбор условий требует учета их влияния на скорость процесса (см. часть III). В связи с этим различают теоретическую и практическую степени полноты реакции. Первая отвечает уст шовлению в системе равновесия (абсциссы минимумов на кривых рис. 22, 30 и 34), т. е. степени превращения, которую легко определить на основании выражения для константы равновесия данного процесса. Однако далеко не всегда реакция доходит до равновесия мешает этому медленность многих процессов. Правда, с помощью катализаторов реакции можно ускорить, однако и в этих случаях их часто не доводят до равновесия. В связи с этим надо иметь в виду [c.89]


Смотреть страницы где упоминается термин Определяемый минимум реакции: [c.93]    [c.239]    [c.107]    [c.425]    [c.372]    [c.50]    [c.31]    [c.15]    [c.348]    [c.385]    [c.195]    [c.72]   
Техника неорганического микроанализа (1951) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Минимум



© 2025 chem21.info Реклама на сайте