Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диффузия гомогенной

    ТЕОРИЯ ДИФФУЗИИ. ГОМОГЕННЫЙ ОДНОСКОРОСТНОЙ РЕАКТОР [c.115]

    Таким образом, при исследовании как гомогенных реакторов, так и реакторов с неподвижным слоем твердых частиц желательно учесть влияние продольной диффузии конечно, в пределе Е - оо мы получим реактор идеального смешения. [c.292]

    При изучении сложных фильтрационных процессов возникает необходимость построения моделей многофазных (гетерогенных) систем, в которых каждая фаза, в свою очередь, моделируется многокомпонентной гомогенной смесью. При этом между компонентами возможны химические реакции, переход компонентов из одной фазы в другую, процессы адсорбции, диффузии и др. [c.253]


    Диффузия реагирующих веществ из гомогенной фазы к поверхности катализатора. [c.535]

    Обычно зарождение цепей в окисляемых углеводородах происходит по обоим механизмам — гомогенному и гетерогенному. Вклад каждого механизма в суммарную скорость зарождения цепей зависит от условий окисления — соотношения объема углеводорода и поверхности реактора, скорости диффузии кислорода к поверхности металла и т. ц. Так, например, при длительном хранении топлив в больших резервуарах зарождение цепей будет происходить преимущественно по гомогенному механизму. При жидкофазном окислении топлива в реакторе в условиях интенсивного перемешивания смеси и барботирования кислорода зарождение цепей с большей вероятностью происходит по гетерогенному механизму. Гетерогенный механизм зарождения цепей остается постоянным при окислении углеводородов как в газовой, так и в жидкой фазе. Иначе обстоит дело при гомогенном зарождении цепей. [c.29]

    Сопротивление в уравнении (1Х-1) для данного процесса также будет характеристической величиной. В случае диффузионного массообмена образуется пленка, через которую и происходит диффузия следовательно, сопротивление будет пропорционально толщине этой пленки. При теплопередаче величина сопротивления пропорциональна толщине стенки, разделяющей. две среды. В случае химической реакции в гомогенной системе с сопротивлением связана энергия активации процесса и т. д. [c.348]

    Константа скорости реакции. Если в системе, наряду с другими процессами, протекает процесс диффузии, определить константу скорости реакции можно только косвенным путем. Один из возможных способов заключается в приготовлении двух отдельных растворов каждого реагента в одинаковом растворителе. Эти растворы затем можно очень быстро перемешать и наблюдать за протеканием соответствующей гомогенной реакции любым из известных методов. Если имеется уверенность, что растворитель сам по себе не влияет на ход реакции, то можно использовать другие растворители вместо того, который употребляется в абсорбционном процессе. Этот прием может оказаться полезным при малой растворимости газа в промышленном растворителе. [c.187]

    Важная проблема растворимости в основе решается для полимеров так же, как и для обычных растворов. Как правило, линейные аморфные полимеры растворимы лучше кристаллических. Большая величина молекул высокомолекулярных веществ и гибкость их цепей, а также малая скорость диффузии приводят к тому, что процесс растворения протекает своеобразно. Первой стадией растворения аморфного полимера является набухание молекулы растворителя проникают в объем полимера и раздвигают полимерные цепи. Одновременно лишь небольшое число полимерных молекул переходит в жидкий растворитель, образуя раствор малой концентрации. Процесс набухания протекает до полного использования растворителя с образованием гомогенного раствора. Это имеет место, однако, лишь при наличии неограниченной взаимной растворимости жидкого растворителя и аморфного полимера. [c.257]


    Зельдович предложил исходить из того, что реакция протекает гомогенно во всем объеме, занятом твердым телом при этом можно также принять, что реагирующий компонент доставляется из другой фазы путем диффузии. Для пористого материала можно ввести эффективный коэффициент диффузии О и с его помощью записать уравнение [c.96]

    Коэффициент диффузии в порах можно записать в виде = = У.О, где В — коэффициент диффузии в гомогенной системе, и — так называемый коэффициент извилистости, учитывающий искривление пор и непостоянство их сечения. Величину у. находят из эксперимента она колеблется от 0,01 до 0,9. Пусть поглощение исходного вещества характеризуется скоростью Юз = кС, отнесенной к единице поверхности катализатора. В элементарном [c.274]

    Растворение твердого металла в жидком состоит из двух последовательных стадий гетерогенной и гомогенной диффузии. Скорость процесса растворения определяется или одной, более заторможенной из этих стадий (первой—при растворении Рев N3, РЬ в сплавах РЬ—8п, рис. 103, а) второй — при растворении Си в РЬ и В1, N1 и РЬ, Ре в Hg рис. 103, б) или обеими (при растворении N1 и Си в РЬ, РЬ в 5п) и в изотермических условиях плавно изменяется от начального максимального значения до нуля при достаточно большой длительности растворения. Повышение температуры и движение жидкого металла увеличивают скорость растворения. Растворение сплавов может быть селективным (избирательным). [c.143]

    Тамман установил, что коррозионная стойкость полностью гомогенных твердых растворов в отсутствие заметной диффузии при легировании менее устойчивого металла более устойчивым изменяется не непрерывно, а скачками (рис. 225). Резкое изменение коррозионной стойкости происходит, когда концентрация легирующего элемента достигает атомной доли, или величины, кратной этому числу, т. е. 8, % и т. д. атомной доли — правило п18 Таммана. [c.327]

    При жидкостной экстракции, кроме чисто физических явлений, какими являются оба вида диффузии и спонтанная турбулентность, могут происходить также и химические реакции между растворенными молекулами и компонентами растворителя или только между первыми. Реакции могут проходить либо в фазе растворителя—и тогда они имеют гомогенный характер, либо на поверхности контакта фаз, как свободно идущие реакции гомогенного характера. Химические реакции оказывают большое влияние на скорость перехода молекул целевого компонента, и в зависимости от характера они могут ускорять массообмен (гомогенные реакции) или заменять его (гетерогенные реакции) вследствие появления дополнительных сопротивлений на межфазной поверхности. [c.62]

Рис. 1-36. Схема распределения концентраций при диффузии и гомогенной необратимой бесконечно быстрой реакции Рис. 1-36. <a href="/info/1442396">Схема распределения концентраций</a> при диффузии и <a href="/info/1498227">гомогенной необратимой</a> <a href="/info/1031240">бесконечно быстрой</a> реакции
    Знаменатель уравнения (1-76) равен обратной величине коэффициента массопередачи при предположении, что диффузия идет через весь пограничный слой фазы экстракта. Из уравнения следует, что в случае почти мгновенной гомогенной реакции интенсивность экстрагирования по сравнению с чисто физической диффузией увеличивается тем больше, чем больше концентрация реагирующего вещества в растворителе. [c.70]

    Каталитическое превращение на твердом катализаторе, в отличие от гомогенных реакций, представляет собой сложный процесс, состоящий из ряда последовательных стадий 1) подведение реагентов к внешней поверхности катализатора 2) диффузия реагентов в порах катализатора к внутренней его поверхности (для пористых катализаторов) 3) адсорбция реагентов на поверхности катализатора 4) собственно химической реакции 5) десорбция продуктов реакции 6) диффузия продуктов реакции с внутренней поверхности катализатора 7) диффузия продуктов реакции с внешней поверхности катализатора. [c.79]

    Основные уравнения. Чтобы понять основные закономерности диффузионного торможения каталитических реакций, начнем с простейшего случая — необратимой изотермической реакции первого порядка [17, 18]. Пусть эта реакция протекает на частице катализатора, имеющей форму пластины толщиной 21, торцы которой открыты для подачи реагента, а боковые грани запечатаны . Если такое зерно однородно, то концентрация реагирующего вещества С будет изменяться только в одном направлении — вдоль оси X, перпендикулярной к торцам пластины. В согласии со сказанным в разделе 1П.1,,будем рассматривать пористый катализатор как гомогенную среду, а перенос вещества в порах характеризовать эффективным коэффициентом диффузии D. Тогда стационарное распределение концентрации реагента по толщине пористой пластины будет описываться одномерным диффузионным уравнением  [c.106]


    Все эти данные, полученные для гомогенных катализаторов, т. е. для условий, не осложненных явлениями диффузии, адсорбции и десорбции, характеризуют явление в более чистом виде, подтверждая, в частности, промежуточное образование л-комплексов. Характерно, что гидрирование бензола на меди, хроме, марганце, ванадии, титане отмечается впервые, оно не наблюдалось на гетерогенных катализаторах. [c.138]

    Гомогенные реакции протекают в одной фазе — жидкой или газовой (соответственно реакторы жидкофазные и газофазные), и не сопровождаются фазовыми переходами. При их расчете основное внимание уделяется учету неравномерности распределения тепла и массы (поперечных и продольных градиентов), конвективного переноса (диффузии) и теплопроводности на селективность и производительность реактора [11]. [c.82]

    В гетерогенной системе может происходить перенос вещества диффузией между разными фазами кроме того, между молекулами в данной фазе может проходить химическая реакция. Если химический процесс является равновесным, то между веществами (концентрациями веществ) в равновесной смеси устанавливается строго определенное распределение. В гомогенной или гетерогенной системах связь между равновесными концентрациями веществ устанавливается с помощью закона действующих масс. [c.156]

    Гомогенной называется реакция, при проведении которой все вещества, участвующие в процессе химического превращения, находятся в одинаковом агрегатном состоянии, образуя при этом одну фазу. Если эта фаза состоит из двух или более химических компонентов (т. е. в реакции участвует более одного реагента), то возможно существование разности концентраций в пространстве, которая уменьшается во времени в результате диффузии. Для получения в реакторе гомогенной смеси реагентов чаще всего достаточно или молекулярной диффузии, или простого перемешивания (течение в скрещивающихся потоках, ввод одних реагентов в поток других). В некоторых случаях, когда скорость реакции превышает скорость молекулярной диффузии и когда требуется хорошая гомогенизация реагентов, применяют специальные перемешивающие устройства. [c.53]

    Реакторы непрерывного действия. Уравнения для реакторов непрерывного действия, приведенные в гл. I, справедливы и в том случае, если такие реакторы используют для проведения гомогенной реакции в жидкой фазе. Реакторы с полным вытеснением применяют реже, чем реакторы с перемешиванием, так как молекулярная диффузия в жидкой фазе протекает медленно и для гомогенизации реагентов необходимо перемешивание. [c.121]

    Механизм гетерогенных процессов сложнее гомогенных, так как взаимодействию реагентов, находящихся в разных фазах,, предшествует их доставка к поверхности раздела фаз и массообмен между фазами. Гетерогенный процесс представляет собой совокупность взаимосвязанных физико-химических явлений и химических реакций. Для количественной характеристики сложного технологического процесса в ряде случаев допустимо расчленение era на отдельные стадии и анализ каждой из них. Такой анализ позволяет, например, установить, в какой области— диффузионной или кинетической — идет процесс, и при расчете пренебречь той стадией, которая оказывает малое влияние, если только скорости диффузии и химических реакций не соизмеримы. [c.153]

    Применение катализаторов дает возможность понизить Е до значений < 170 кДж/моль. Так, при гомогенном окислении SO2 без катализатора Е > 280, на платиновом катализаторе < 70 и на ванадиевом 90 кДж/моль SO2. При окислении аммиака па платиновом катализаторе Е составляет лишь 34 кДж/моль NH3, вследствие чего общая скорость процесса определяется скоростью диффузии аммиака. и кислорода к поверхности катализатора. Для ферментативных реакций, как правило, Е = 35—50 кДж/моль. [c.22]

    Появление сольватированных электронов переносит зону электрохимической реакции восстановления с границы раздела электрод — электролит в раствор, т. е. превращает ее из поверхностной, гетерогенной, в объемную, гомогенную, реакцию, с катодно генерируемым восстанавливающим агентом. В связи с этой основной особенностью нового механизма восстановления роль транспортных ограничений становится несущественной реакция теперь не локализована в определенном месте, а распределена в объеме подвижность электронов выше, чем большинства других частиц кроме того, появление электронов в растворителе приводит к возникновению градиента плотности, а следовательно, к конвективному перемешиванию объема раствора, примыкающего к катоду. Эта особенность оказывается наиболее существенной в случае электровосстановления труднорастворимых органических соединений, которые при обычных условиях из-за крайне медленной доставки восстанавливаются с ничтожными выходами. В водных средах для ускорения подобных процессов применяются медиаторы потенциала — ионные редокси-пары, которые переносят мектроны от катода к восстанавливаемым частицам или от окисляющихся частнц к аноду, а затем сами восстанавливаются или окисляются на соответствующих электродах. Эффективность восстановления сольватированными электронами должна быть существенно выше, чем при применении медиаторов по уже указанным ранее причинам, а также потому, что ионам медиатора приходится проходить двойной путь — до реакции с частицей и после иее. Действительно, найдено, что токи генерации сольватиро-вапных электронов больше чем на три порядка превышают токи диффузии органических соединений к катоду. [c.444]

    Вопросы, рассматриваемые в этой главе, излагаются более подробно и на более высоком уровне в книге Петерсена Анализ химических реакций (см. библиографию, стр. 147). Здесь мы сможем только обсудить простейшие случаи и указать их связь с обш,ей проблемой анализа химических реакторов. В предыдущих главах для описания процесса мы нсио.тхьзовали функцию г (I, Т), которая определяет скорость-реакции в единице объема реактора. Применение этой функции, безусловно, оправдано в случае гомогенного процесса. Однако было бы желательно сохранить тот же способ описания и при расчете гетерогенных процессов, таких, как каталитические газофазные реакции в неподвижном слое таблетированного катализатора. В разделе VI. обсуждаются связанные с этим вопросом трудности и ограничения. Многих затруднений можно избежать, введя понятие об определяющей стадии (раздел VI.2). В последующих разделах будут исследованы некоторые характеристики процессов адсорбции (раздел VI. 2), внешней массопередачн (раздел VI.3) и внутренней диффузии (раздел VI.4). Затем мы постараемся обобщить эти явления (раздел VI.5) и вкратце остановимся на некоторых эффектах, связанных с конечной скоростью теплопередачи (раздел VI.6). Структура главы показана на рис. VI. . [c.119]

    Все реакции, протекающие на поверхности, лимитируются диффузией, и относительное значение их уменьшается с ростом давления (включая /с ,,.), а поэтому возможно, что в области выше второго предела воспламененпя члены /с ,н и /с ,он будут настолько малы, что ими можно пренебречь и до некоторой степени упростить выражение. Однако при этих давлениях становятся значительныш реакции обрыва НО3 [26], по-видимому, в результате того, что вода отравляет активные центры и ингибирует инициирование, или же сильно возрастает сечение соударения для реакции 5 с участием НзО, или, наконец, гомогенный обрыв Н и ОН становится существенным по сравнению с обрывом на стенках, что увеличивает влияние реакции ингибпро- [c.393]

    Роль поверхности в инициировании активных центров, которые ведут цепь главным образом в гомогенной фазе, уже обсуждалась этим далеко но исчерпывается поведение катализатора в каталитических реакциях. Реакцип, которые происходят полностью на поверхности катализатора, встречаются, по-видимому, гораздо чаще. Этот класс реакций отличается от рассмотренных выше тем, что скорость таких реакций прямо пропорциональна количеству катализатора. Когда такая зависимость не подтверждается эксиериментально, то это может означать, что реакция идет по смешанному механизму или же скорость реакции лимитируется диффузией. Объяснение экспериментальных данных с помощью конкретного механизма в таком случае становится исключительно трудным. Если скорость реакции зависит от первой степени концентрации катализатора, то экспериментальные данные по скоростям реакции подвергаются обработке, хотя и в этом случае остается неопределенность, связанная с отсутствием точных данных по изотермам сорбции всех частиц, принимающих участие в процессе. [c.540]

    Ионный обмен — это процесс, в котором твердый ионит реагирует с раствором электролита, обмениваясь с ним ионами. Такой обмен происходит в природе, в живом организме ионообменные процессы имеют важное значение и в технике, где иониты применяют для очистки растворов, для улавливания ценных металлов, для разделения различных веществ. Иониты используют в аналитической, биологической и препаративной химии они являются катализаторами многих органических реакций. Возможность ионитов влиять на органические реакции обусловлена наличием в них подвижных ионов или ОН", поэтому иониты могут быть использованы вместо растворенных электролитов в жидкофазных реакциях кислотно-основного катализа. Существенное отличие катализа ионитами от истинного гомогенного катализа в свободном растворе состоит в том, что реакция происходит в ионите и, таким образом, связана с диффузией веществ в ионит и продуктов реакции — из ионита. Кроме того, на реакцию может влиять каркас ионита и ионогенные группы, закрепленные в нем  [c.142]

    Скорость химических реакций с повышением температуры резко растет. Для гетерогенных реакций температурный коэффициент скорости обычно ниже, чем для гомогенных, так как при этом накладывается влияние других факторов, и наиболее медленной стадией процесса является не сама химическая реакция, а процессы диффузии, адсорбции и т. и. Зависимость скорости гомогенной реакции от температуры приближенно описывается эмииргшеским правилом Вант-Гоффа нри нагревании на 10 констаита скорости увеличивается в два-четыре раза, т. е. [c.338]

    Формально результат воздействия обратной связи на ход каталитического процеса в математических моделях автоколебаний учитывается различными путями. В основу гетерогенно-каталитических моделей обычно полагается механизм Лэнгмюра—Хиншельвуда с учетом формального отражения а) зависимости констант скорости отдельных стадий реакции от степеней покрытия адсорбированными реагентами [93—98] б) конкуренции стадий адсорбции реагирующих веществ [99—103] в) изменения во времени поверхностной концентрации неактивной примеси или буфера [104—107] г) участия в стадии взаимодействия двух свободных мест [108] д) циклических взаимных переходов механизмов реакции [109], фазовой структуры поверхности [110] е) перегрева тонкого слоя поверхностности катализатора [100] ж) островко-вой адсорбции с образованием диссипативных структур [111, 112]. К этому следует добавить модели с учетом разветвленных поверхностных [113] гетерогенно-гомогенных цепных реакций [114, 115], а также ряд моделей, принимающих во внимание динамическое поведение реактора идеального смешения [116], процессы внешне-[117] и внутридиффузионного тепло-и массопереноса I118—120] и поверхностной диффузии реагентов [121], которые в определенных условиях могут приводить к автоколебаниям скорости реакции. [c.315]

    Мембранный перенос массы является результатом сопряжения нескольких процессов, протекающих в мембране, прежде всего диффузии и сорбции компонентов газовой смеси существенно также влияние дополнительных связей, возникающих в мембранной системе при нарушении принципа аддитивности. Только в газодиффузионных пористых мембранах, где удается организовать свободномолекулярное течение, процессы проницания газов независимы. В общем случае процессы в мембранах вза-имно-обусловлены, а такие интегральные характеристики мембран, как проницаемость Л и селективность а, являются результатом сопряжения отдельных процессов. Сорбционно-диффу-зионная модель проницания чистых газов через гомогенные непористые мембраны служит примером сопряжения процессов поверхностной сорбции, растворения и диффузии. Предполагается, что характерные времена этих процессов существенно раз- [c.15]

    Расчет процессов переноса в жидкости. Для осуществления химическс реакции са.мые удаленные от каталитического центра молекулы должны подойт к нему за счет диффузии, войти в каталитическую сферу (соударение) и пр< терпеть химическое изменение (собственно реакция). Учитыва"я, что для ря гомогенных катализаторов отмечена чрезвычайно высокая скорость реакции (иЗ меризация гексена-1 в присутствии соединений N1 заканчивается за доли секу ды), целесообразно оценить скорость физического транспортирования. [c.130]

    В последние годы выполнено много исследований в области промывки фильтровальных осадков. Рассмотрим различные физические модели и соответствующие математические описания промывки осадков на основе закономерностей диффузии растворенного вещества. Отметим, что во всех математических описаниях на уровне микрофакторов (см. с. 16) принимают ряд упрощений и допущений с целью выразить закономерности диффузионной стадии в виде аналитических зависимостей допустимой сложности. Одно из таких обычных допущений состоит в том, что рассматриваются непористые частицы, вследствие чего исключается осложняющее явление молекулярной диффузии растворимого вещества из пор в твердых частицах в поры между частицами. Вторым обычным допущением является признание гомогенности и прочности структуры осадка. [c.250]

    Если гомогенная реакция идет медленно, то она занимает некоторую конечную толщину пограничного слоя и идет параллельно с диффузией. Условия в слое очень сложные. Этот случай разработали для абсорбции Ван Кревелен и Гофтийзер [109, 110] и дали диаграммы, облегчающие определение скорости диффузии. Ими можно пользоваться также и для экстракции, учитывая гидродинамические свойства системы жидкость—жидкость. [c.70]

    Необходимость рсшюпия более общей задачи явствует, в частности, из следующих соображений. В приведенном выше решении задачи о горении водорода, например, пе славился вопрос о судьбе радикалов HOj принималось, что, по крайней мере, при не очень высоких температурах и давлениях эти радикалы погибают иа стенках реакционного сосуда. Однако вследствие большой скорости процессов взаимодействия Н с HOj нужно полагать, что с диффузией радикалов ГГО к стенкам и их гетерогенной гибелью могут успешно конкурировать гомогенные процессы. Поэтому при наличии этих процессов условие второго прелела [в пренебрежении гибелью радикалов HOj на степках и в процессе (20)1 перепишется в виде [c.219]

    Данные о влиянии ироцессов массопередачи на относительно быстрые реакции можно получить, проводя эксперименты при различных температурах. Кажущаяся энергия активации реакцип довольно высока, если скорость процесса определяется химическо11 реакцией однако, когда начинает сказываться торможение Диффузией и массопередачей, величина кажущейся энергии активации снижается. Прн обсуждении экспериментальных данных следует пользоваться методами, рассмотренными на стр. 163 (для гомогенных реакций) и на стр. 171 (для гетерогенных реакций). [c.238]

    Для вывода системы многогрунповых уравнений мы рассмотрим мно-гозопный реактор, к которому применима нижеследующая система уравнений диффузии с замедлением при этом каждая зона считается гомогенной и в каждой зоне, взятой в отдельности, применяются эти уравнения с соответствующим образом определенными константами уравнения же для отдельных зон объединяются в единую систему с помощью надлежащих граничных условий (которые будут обсуждены позже). Итак, согласно (6.54), [c.377]


Смотреть страницы где упоминается термин Диффузия гомогенной: [c.545]    [c.377]    [c.149]    [c.319]    [c.66]   
Явления переноса (1974) -- [ c.466 ]




ПОИСК







© 2025 chem21.info Реклама на сайте