Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции скорость также Константы скоростей реакции

    Благодаря этому оба типа ионных процессов, несмотря па противоположный заряд растущих цепей, имеют общие черты. Это проявляется в существенном влиянии полярности среды на кинетику полимеризации и в зависимости скорости элементарных стадий процесса и микроструктуры полимера от природы противоиона. Известная аналогия между катионной и анионной полимеризацией имеется и в другом отношении, а именно, в возможности полного исключения реакций обрыва, что в свою очередь приводит к близости кинетики процесса в определенных системах анионного и катионного характера. Б то же время различие в заряде активных центров обусловливает избирательную способность многих мономеров полимеризоваться только по одному из двух ионных механизмов. Склонность к анионной полимеризации типична для мономеров ряда СН2=СНХ, содержащих заместители X, понижающие электронную плотность у двойной связи, например КОз, СК, СООК, СН=СН2. В наибольшей степени к анионной полимеризации способны мономеры, содержащие два подобных заместителя, например СН2=С(СК)2 или СН2=С(М02)з. Анионная полимеризация возможна также для насыщенных карбонильных производных и для ряда циклических соединений — окисей, лактонов и др. Инициаторами анионной полимеризации являются щелочные металлы, некоторые их органические и неорганические производные (металлалкилы, алкоксиды, амиды и др.), а также аналогичные соединения металлов II группы. Заключение об анионной природе активных центров основывается не только на качественных соображениях, но и на количественном анализе экспериментальных данных с помощью правила Гаммета. Это правило связывает значения констант скоростей реакци производных бензола с характеристиками их заместителей. Оно формулируется в виде уравнения [c.336]


    При таком рассмотрении вопроса константа К является функцией разбавления с химической точки зрения инертный растворитель становится отрицательным физическим катализатором, так как он уменьшает скорость цепной реакции, а также константу скорости реакции. Влияние физических катализаторов менее специфично [117], что видно и из данного примера. При бесконечном разбавлении [c.94]

    В этой главе дан критический обзор данных по константам скорости реакций, наиболее важных для описания кинетики высокотемпературного горения водорода, окиси углерода и углеводородов с числом атомов С не более четырех. Представлены рекомендуемые механизмы и константы скорости реакций в интервале температур 1200—2500 К таким образом, не рассматриваются холодные пламена, низкотемпературное воспламенение и реакции органических перекисей и перекисных радикалов. Однако в тех случаях, когда имеются трудности с интерпретацией значений констант скорости при высоких температурах, низкотемпературные данные также представлены. Поскольку в настоящее время наши знания по кинетике реакций неполны, предложенный набор реакций не охватывает эксперименты в смесях с большим избытком топлива [404]. В большинстве случаев приводятся только те реакции, скорости которых могут быть важны для моделирования процессов горения. Таким образом, мы исключаем из рассмотрения много второстепенных реакций с участием частиц, присутствующих в таких низких концентрациях, что эти реакции не могут играть важной роли в процессе горения. Эта методология исключения каких-либо стадий ни в коей мере не является исчерпывающей. При анализе литературных данных мы отдавали предпочтение недавним прямым измерениям констант скорости элементарных реакций. Результаты, полученные при математическом моделировании сложных реагирующих систем, рассматриваются только тогда, когда указано, что чувствительность к выбранной элементарной реакции достаточно высока, или когда отсутствуют прямые измерения. Теоретические расчеты не рассматриваются. [c.209]

    Константы равновесия, а также константы скорости реакции для трех катализаторов с различными размерами частиц указаны на рис. 1Х-11. [c.328]

    Как и для других реакций, важно четко указать кинетические уравнения, применяемые для вычисления коистант скорости. Скорости и константы скорости реакций могут быть приведены в расчете на единицу массы, на моль, на единицу поверхности катализатора или адсорбента —во всех случаях следует четко указывать единицы измерения. Там, где это возможно, удобно выражать скорость каталитической реакции как число молекул, реагирующих в секунду на одном активном центре. Также следует указать метод определения активных центров. [c.342]


    Рассчитайте начальное и конечное давление бутадиена, а также константу скорости реакции. [c.14]

    Концентрация спирта 0,5 моль/л. Рассчитайте константу обменного равновесия а также константу скорости реакции фенилизоцианата с ассоциатом спирт — диоксан. [c.44]

    Для практического использования уравнений (16), (19) и (21) необходимо определить адсорбционные коэффициенты или их комбинации, в которых по существу заключается вся информация о состоянии катализатора — его активности и избирательности. Эти величины, а также константа скорости реакции определяются экспериментально. Существующие методики их определения основаны на применении метода активного эксперимента. В этом эксперименте температура поддерживается постоянной и даются возмущения либо по разбавлению, либо по нагрузке столько раз, сколько требуется для составления замкнутой системы уравнений, которая затем решается либо графическим, либо аналитическим методом. [c.216]

    Константа скорости реакции k численно равна скорости реакции при условии, что концентрация всех реагирующих веществ равна единице. Константа зависит от природы реагирующих веществ, температуры, катализатора и его концентрации и от среды, в которой протекает реакция. Числовое значение k зависит также от выбора единиц времени и концентрации (см. ниже). Обычно концентрацию выражают в молях на литр моль , а время—в минутах или секундах. [c.223]

    Здесь величина к также играет роль константы скорости . Однако она может представлять собой более сложное выражение, чем величина, входящая в уравнение закона действующих масс, вследствие возможной зависимости ее от величин констант скоростей стадий. Указанный выще смысл ее как удельной скорости реакции сохраняется, если условие / (с , Сг,. .. [c.11]

    Рассмотрим, как ур. (XIV, 25) применяется для выражения зависимости константы скорости реакции от температуры и для определения энергии активации, а также для расчета константы скорости при различных температурах. Две постоянные в ур. (XIV, 25) могут быть определены, если известны значения константы скорости данной реакции кг, и ктг при двух температурах [c.473]

    Другие типы реакций. До сих пор были рассмотрены только реакции, предшествующие электродной реакции. Можно определить также константы скорости реакций, следующих за электродным процессом (см. [2], гл. 5)  [c.181]

    Этот результат очень важен потому, что если известны пределы давлений, при которых изменяется порядок одной из этих реакций, то следует ожидать, что порядок обратной реакции в этом интервале давлений также меняется. Этим способом были получены кинетические данные относительно реакции диссоциации этана (стр. 133). Додд и Стеси [34] изучили реакцию рекомбинации метильных радикалов при 200 . Они нашли, что при давлениях выше 10 мм рт. ст. реакция подчиняется второму порядку, и измерили ее константу скорости. Отсюда следует, что обратная реакция, реакция диссоциации этана, при этих давлениях имеет первый порядок (высокое давление). Измерив константу скорости реакции взаимодействия этильных радикалов и зная константу равновесия, эти авторы вычислили константу скорости реакции диссоциации этана на радикалы. [c.139]

    Однако все эти недостатки, легко замечаемые современными исследователями, ни в коем случае не могут уменьшить значение цикла работ Бертло и Пеан де Сен-Жиля для развития химии. Кроме того, что авторами на примере наиболее распространенной органической реакции (независимо от Вильгельми) была дана формулировка скорости равновесного превращения, Бертло и Пеан де Сен-Жиль фактически довольно широко применяли константы скорости реакции ( специфические отношения при одинаковых условиях) для установления структурно-кинетических закономерностей, а также попытались количественно определить влияние строения реагентов и температуры превращения на постоянную уравнения (I—3) [57—60]. Термин константа скорости реакции был введен в химию лишь Вант-Гоффом в 1884 г. [61, стр. 97]. [c.18]

    Для сравнения в таблицу включены данные по изомеризации двух ациклических терминальных алкенов [21]. Были измерены также константы скорости катализируемого основаниями бромирования соответствующих циклоалканонов при 0°. Линейность графика lg А зом (ось ординат) — lg А бром (ось абсцисс), построенного для циклов различной величины, была истолкована как доказательство того, что для обоих реакций лимитирующей стадией является отрыв протона основанием и что в каждой паре олефин — кетон отрыв протона как от алкена, так и от кетона регулируется одним и тем же стереоэлектронным эффектом. [c.221]

    Даже в случае обратимого присоединения первого электрона к карбонильной группе в ароматических альдегидах и кетонах 1/2 включает, помимо константы равновесия собственно электродной реакции о, также константу скорости последующей быстрой химической реакции — димеризации свободнорадикальных карбинолов и представляется уравнением [34а]  [c.107]


    В этой таблице приведены также константы скорости реакции полимеризации стирола. [c.47]

    Основные сведения о протекании элементарных химических процессов в традиционной химической кинетике извлекаются из измерений, сводящихся к определению скорости изменения концентрации реагентов или продуктов как функции времени, температуры, концентрации самих реагентов или добавляемых в виде примесей веществ и т, п. Получаемая количественная информация представляет одну или несколько констант скорости реакций или их комбинацию в функции температуры. Из этой зависимости на основе более или менее простой теории определяется энергия активации процесса. Достоверность получаемых данных в значительной мере зависит от правильности постулированного механизма реакции, в который входит данный элементарный процесс, и, в частности, от учета всех возможных побочных процессов, которые (Могли бы исказить измерения. Таким образом, здесь видны два недостатка кинетических измерений. Один из них связан с постулированием простой— чаще всего аррениусовской — зависимости константы скорости реакции от температуры k T)=A ехр —E/RT). С накоплением экспериментальных данных принципиально новыми методами исследований и с развитием теории элементарных реакций становилось очевидным, что константа скорости является весьма грубой характеристикой процесса, примени мость которой ограничена условиями теплового равновесия или его малого нарушения в химической системе. Введенное Аре-ниусом понятие энергии активации характеризовало некоторую эффективную величину энергетического барьера, определяемого из температурной зависимости константы скорости реакции. Другая составляющая аррениусовского выражения — пред-экспоненциальный множитель — обычно представляется в виде произведения газокинетического числа столкновений на так называемый стерический множитель. Величина этого. множителя в рамках классических представлений являлась эмпирической поправкой, обеспечивающей согласие экспериментально определенной константы скорости реакции с рассчитанной на основе теории столкновений для твердых сфер. Теория переходного состояния позволила качественно, а также и количественно объяснить возникновение и величину сферического множителя, однако не оставила каких-либо надежд на обобщение этого понятия на неравновесные ситуации. [c.112]

    Розвир [35] детально рассмотрел иопрособ ошибках, возникающих при вычислении из экспериментальных данных констант скоростей реакций первого и второго порядков. Гуггенгейм [36] предложил такой метод обработки данных реакции первого порядка, который не зависит от достоверности начальных и конечных концентраций, а Штуртевант [37] развил другой метод обработки данных реакций второго порядка, который также не зависит от достоверности первоначальных и конечных концентраций. Анализ методов взвешивания данных для реакций первого и второго порядков был сделан Христиапсеном [38]. [c.86]

    Количественные данные по реакциям рекомбинации метильных радикалов появились в ряде исследований [264, 265]. Как уже отмечалось, изучение реакций взаимодействия СНз-радикалов с молекулами алканов или алкенов показало, что при этих реакциях всегда протекает рекомбинация СНз. [130, 131, 260, 269], при этом стерический фактор реакции рекомбинации принимался равным единице. Исследование реакции рекомбинации СНз-радикалов в широком интеррале температур (434—1087° К) [260] показало, что стерический фактор изменяется почти в 50 раз и даже при комнатной температуре он меньше единицы [262]. Уменьшение стерического фактора реакции рекомбинации с повышением температуры ошибочно принималось за отрицательную энергию активации реакции. Из величины константы скорости реакции рекомбинации радикалов СНз, найденной расчетом [204], в предположении, что каждое столкновение является зффе <-тивным (нет энергии активации), также следует низкое значение стерического фактора порядка 0,01. Наконец, определение стерического фактора по температурной зависимости константы скорости рекомбинации СНз-радикалов при высоких температурах методом меченых атомов [120] дало значение 10 , что хорошо согласуется с рассчитанным выше для него значением. Естественно, что диспропорционирование метильных радикалов с образованием метана и метиленового бирадикала не наблюдалось и может явиться предметом рассмотрения как с энергетической, так и химической стороны. [c.222]

    В процессе волнового воздействия на нефтяной остаток в потоке кислорода воздуха, в оишчие от барботажного способа окисления, происходит не только инверсия сырья, но также звукохимическая реакция окисления [134]. Если суммарная константа скорости реакции окисления для сырья с температурой размягчения (по методу КиШ),равной 14,5°С, составляет 0,07, то для процесса окисления этого сырья при волновом воздействии 0,12. Из сравнения констан7 скоростей реакции окисления видно, что волновое воздействие ускоряет процесс окисления нефтяного остатка почти в два раза. [c.33]

    В.П. Захаров, К С. Минскер, Ал.Ал. Берлин Башкирский государственный университет, г. Уфа, Россия Институт химической физики РАН, г. Москва, Россия Характер протекания быстрых процессов (быстрые химические реакции, смешение жидких потоков, эмульгирование, экстракция и т.д.) во многом определяется диффузионю.ши затруднениями, связанными с использованием высоковязких сред, наличием поверхности раздела фаз, а при протекании быстрых химических реакций - значительной величиной константы скорости реакции. Практически единственным способом оптимизации качества полз чаемых продзпсгов, а также управления протеканием быстрых процессов является интенсификация турбулентного смешения жидких потоков в аппарате. Причем рентабельность производства в целом определяется продолжительностью того или иного процесса, т.е. временем пребывания реагентов в аппарате. Решением этих и многих других проблем является проведение процессов, лимитируемых массообменом, в турбулентных потоках, ограниченных непроницаемой стешсой, т.е. в трубчатых аппаратах вытеснения, но в турбулентных потоках. [c.57]

    На рис. 4.6.7 представлены формы линий сигналов, вычисленные по формуле (4.6.12) для некоторых констант скорости реакции к. Характерными осрбенностями форм линии в случае необратимых химических реакций являются уширение и аномалии фазы линии реагента, а также ярко выраженная дисперсионная форма линии продукта при медленных и промежуточных скоростях реакции. Эта линия имеет форму сигнала дисперсии, поскольку В-намагни-ченность во время спада свободной индукции появляется с некоторым опозданием. Химическая реакция не влияет на ширину линии продукта, поскольку мы предположили, что обратная реакция отсутствует. [c.263]

    Лимитирующей стадией является массоперенос через границ ный слой. На это указывают первый порядок реакции по серебру а также константа скорости реакции, равнозначная коэффиицент) массопереноса частиц в реакторе при интенсивном перемешивЗ НИИ, и энергия активации (17,2 кДж/моль). [c.58]

    Кауфман и Келзо [824] приводят также константу скорости реакции О + N0 = = N -Ь О2, характеризующуюся величинами Е = 40,5 ккал и А = 12,9. Тепловой. эффект этой реакции составляет — 32,5 ккал. [c.231]

    Боденштейн определил также константы скоростей реакций при различных температурах и получил хорошую прямолинейную зависимость логарифма константы от обратной абсолютной температуры. По наклону этой прямой он рассчитал энергию активации, которая оказалась равной 40,0 ктл1моль, и предэкспоненциальный множитель, равный 2x10 л1моль-сек или 2-10 см моль-сек. Таким образом, аналитическое выражение для константы скорости можно записать как [c.104]

    Зеон и Шварц [21] использовали для изучения пиролиза бромистого метила метод с текущим толуолом. Эта реакция также является сложной, и константы скорости реакции первого порядка зависят от давления, но результаты позволяют получить величину энергии активации 67,5 ккал1моль. В случае хлористого метила Шилов и Сабирова [22], используя проточную систему, показали, что при 844 и 874° С образуются в основном хлористый водород, метан и ацетилен в приблизительном соотношении 3 1 0,5. Уравнение скорости ki = 10 ехр (—85000/ЛГ) сек , причем константа скорости реакции первого порядка возрастает с давлением. Этого и следовало ожидать, поскольку в молекуле хлористого метила мало атомов и она не способна разлагаться по мономолекулярному механизму при давлениях, применяемых при исследовании. Судя по величине энергии активации, скорость реакции определяется разрывом связи углерод — хлор, и авторы предлагают в качестве возможного механизма реакции схему 1. [c.134]

    Основополагающей в этом отношении следует рассматривать появившуюся в 1960 г. работу Бассета и Хэбгуда, в которой авторы, предположив линейную изотерму адсорбции, вывели уравнение, позволившее рассчитать константу скорости необратимой гетерогенной реакции первого порядка по измеренной экспериментально степени превращения. Теория реакций в импульсном микрореакторе за последние годы интенсивно развивалась как у нас, так и за границей. Были рассмотрены обратимые и необратимые реакции различных порядков как при мгновенном установлении равновесия газ — твердое тело, так и с учетом конечной скорости достижения адсорбционного равновесия в самое последнее время появились работы, в которых учтено также влияние продольной диффузии в потоке и диффузии реагирующего вещества внутрь поры твердого тела на характер протекания каталитических превращений в импульсном микрореакторе. Решение задач в случае нелинейной изотермы адсорбции требует более широкого использования современных методов вычислительной техники. Некоторые результаты, полученные в последнее время с помощью ВМ, описаны в пятой главе. Там же приведены результаты работ нашей лаборатории, в которых показана возможность измерения констант скоростей адсорбции и десорбции в ходе каталитического процесса по форме пиков реагирующего вещества и продуктов реакции. Пока в этом плане сделаны лишь первые шаги, однако в дальнейшем можно надеяться получить интересные результаты по расшифровке механизма сложных реакций, в особенности в тех случаях, когда скорости адсорбционных процессов явлцются лимитирующими. [c.6]

    В табл. ИЗ приведены средние величины степени конверсии на промышленных катализаторах. На основании результатов исследования активности катализаторов можно по уравнению (48), нриведенному на стр. 523, вычислить также константы скорости реакции для различных температур и использовать эти жонстанты для характеристики катализатора. [c.549]

    Однако между этими ферментами в реакциях с аскорбиновой кислотой, ароматическими аминами и фенолами имеются существенные различия. Все указанные восстановители реагируют со скоростью, которая практически не зависит от pH, по крайней мере вблизи pH 7. И в этих случаях 54 > 43 и для каталазы, и для пероксидазы хрена, однако обе константы скорости в случае каталазы существенно меньше, чем соответствующие константы скорости для пероксидазы. Гваякол и л-аминобензойная кислота восстанавливает Fe -пероксидазу хрена ( 54 = 9-10 и 5-10 л-моль - с 1 соответственно) примерно в 25—30 раз быстрее, чем комплекс Fe того же фермента ( 43 = 3-10 и 2-10 л-моль - "i) [34]. Для каталазы соответствующие константы скорости не получены. Пирогаллол восстанавливает Fe -каталазу ( 54=2,4 10%-моль - с 1) [159] примерно в 30 раз быстрее, чем Ре -каталазу ( 43 = = 80 л -моль -с ) [159]. Однако последняя константа скорости на несколько порядков меньше, чем соответствуюшле константы для пероксидазы хрена ( 43 = 3-10 л-моль 1-с ) или для небелкового комплекса железопротопорфирина в присутствии избытка гистидина (( 43 = 6-10 л-моль" -с ) [219]. Можно также сравнить скорости реакций аскорбиновой кислоты при pH 7 с комплексами Fe -каталазы ( 54 = 300 л-моль -с ) 159], пероксидазы хрена ( 54 = 1,8-10 ) [49] и небелковым Fe -дейтеропорфирином ( 54 10 л-моль 1-с 1) [178]. Реакция с Fe -каталазой идет слишком медленно, чтобы ее можно было практически наблюдать. Таким образом, низкая активность каталазы в реакциях перекиси водорода с пирогаллолом и аскорбиновой кислотой обусловлена необычно низкими значениями констант 54 и 43 (табл. 16). По-видимому, белок в каталазе в действительности подавляет восстановление Fe и Fe такими большими молекулами, как пирогаллол или аскорбиновая кислота (примерно в 1000 раз), но не такими малыми частицами, как нитрит-ион. Как видно из данных табл. 16, эффект ингибирования становится еще больше (примерно в 10 раз) в случае таких реагентов, как гваякол и адреналин. То, что ингибирующий эффект белка обусловлен пространственными за- [c.216]

    В табл. 4 представлены также константы скорости реакции образования гафната неодима при взаимодействии Кс120з с НЮа разной степени дисперсности и кажуш,иеся энергии активации, рассчитанные по уравнению Ерофеева а = 1—и Аррениуса [c.151]

    Установлено, что основная сила различных твердых тел, измеренных по адсорбции паров фенола, коррелирует с их каталитической активностью в дегидрировании изопропилового спирта [140]. Малиновский и др. [141-144] исследовали реакции формальдегида с нитрометаном, ацетальдегидом, ацетоном и ацетонитрилом при 275°С на силикагеле, содержащем различные количества натрия. Они установили [145] линейную зависимость кажущейся константы скорости от количества натрия (рис. 82). Поскольку основная сила катализатора также прямо пропорциональна концентрации натрия (см. разд. 3.1.1 и 3.2.1), этот факт свидетельствует о непосредственном влиянии основности на скорость реакции. С другой стороны, между константами скорости и доноров водорода, как, например, СН3СНО, СН3СОСН3, СНзСК, существует линейная связь [145]. Следовательно, скорость реакции V определяется не только основностью Лр, но и кислотностью (кислотной силой донора водорода). [c.158]


Смотреть страницы где упоминается термин Реакции скорость также Константы скоростей реакции: [c.585]    [c.149]    [c.75]    [c.12]    [c.188]    [c.166]    [c.477]    [c.141]    [c.326]    [c.311]    [c.139]    [c.78]    [c.151]    [c.19]    [c.233]   
Методы кибернетики в химии и химической технологии Издание 3 1976 (1976) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Константа скорости

Константа скорости реакции

Определение констант скорости гетерогенных и поверхностных реакций, а также адсорбционных характеристик деполяризатора

Радикалы и также Электронный спиновой резонанс относительные константы скорости реакций

Реакция константа



© 2024 chem21.info Реклама на сайте