Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрон внутримолекулярный

    С помощью законов механики можно также показать, что доля поступательной энергии, передаваемой при столкновении ударяемому телу с одновременным переходом ее в различные виды внутренней энергии (например, во вращательную энергию молекулы, в энергию внутримолекулярного колебания атомов, в энергию электронного внутримолекулярного возбуждения), будет тем больше, чем больше масса ударяемой частицы превышает массу ударяющей. В частности, энергия быстрого электрона может практически целиком передаться во внутреннюю энергию молекулы, в частности в энергию возбуждения электрона, или послужить для ионизации молекулы, т. е. выбить из нее электрон совсем. [c.87]


    Электронные внутримолекулярные взаимодействия. [c.34]

    I. 7, ЭЛЕКТРОННЫЕ ВНУТРИМОЛЕКУЛЯРНЫЕ ВЗАИМОДЕЙСТВИЯ [c.35]

    Изменение внутренней энергии системы представляет собой изменение а) кинетической энергии поступательного и вращательного движения молекул, б) сил притяжения и отталкивания между молекулами, в) внутримолекулярной вибрации и вращения отдельных атомов и электронов в молекуле и т. п. В случае идеальных газовых систем, при чисто физических процессах, изменение внутренней энергии состоит лишь в изменении кинетической энергии молекулярного движения, т. е. в изменении температуры газа. [c.67]

    Молекулы имеют электронные энергетические уровни, колебательные энергетические уровни и вращательные энергетические уровни. Переходы между вращательными уровнями попадают в микроволновую область спектра переходы между колебательными уровнями-в инфракрасную область, а переходы между электронными уровнями-в видимую и ультрафиолетовую области спектра. Инфракрасная спектроскопия и спектроскопия комбинационного рассеяния используются для наблюдения внутримолекулярных колебательных переходов. Поглощение света молекулами в видимой и ультрафиолетовой частях спектра обусловлено электронными переходами. График зависимости интенсивности этого поглощения от длины волны света называется спектром поглощения. [c.596]

    Первый шаг на пути к квантовомеханическому аналогу классического понятия молекулярной структуры состоит в отделении поступательного (трансляционного) и вращательного движений молекулы как целого от внутримолекулярных движений. Это осуществляется посредством перехода от неподвижной (лабораторной) системы координат к координатам центра тяжести молекулярной системы и к относительным координатам . Не останавливаясь на математической стороне дела, заметим, что отделение поступательного движения приводит к радиально-неоднородному распределению электронной и ядерной плотности в молекуле, а отделение вращения обусловливает угловую неоднородность этого распределения. [c.107]

    Зависимость волновой функции от двух наборов динамических переменных к н г) выражает тот факт, что движения электронов и ядер в молекуле строго говоря, связаны между собой. Но, как уже отмечалось, этой связью часто пренебрегают, полагая, что указанные виды внутримолекулярных движений мож-ной разделить, т. е. считать их как бы независимыми. Тогда подсистемы ядер и электронов будут характеризоваться каждая своей волновой функцией и своим уравнением Шредингера. Для электронной оболочки молекулы последнее может быть записано следующим образом  [c.110]


    Под внутримолекулярным движением понимают происходящие изменения состояния молекулы, при которых ее центр масс не изменяет своего положения. При поглощении или испускании квантов света изменяется энергия электронов, энергия колебания атомных ядер и энергия вращения молекулы. Все виды внутримолекулярных [c.141]

    Простейшим ионом карбония является СН3 для образования октета у него недостает пары валентных электронов. Другие ионы карбония являются производными простейшего иона карбония. Ион карбония в отличие от обычных ионов весьма неустойчив вследств(ие электронной недостаточности. Поэтому он подвергается превращению одновременно с образованием или тотчас же после него в результате реакции с молекулами другого вещества или путем внутримолекулярного изменения и изомеризации. Свои теоретические исследования Ф. Уитмор подкрепляет ссылками на правило Марковникова о том, что сдвиг электронов происходит в сторону менее насыщенного углеродного атома. [c.41]

    В активации играет роль как кинетическая, так и внутримолекулярная энергия. Если общая энергия молекул превосходит Е, необходимую для реакции, то молекулы возбуждаются. При этом повышается не только скорость движения молекул, но и энергия колебания составляющих молекулу частиц. Изменяется электронное состояние молекулы, так как электроны переходят на более высокие энергетические уровни. [c.21]

    Внутренней энергией системы называется сумма потенциальной энергии взаимодействия всех частиц тела между собой и кинетической энергии их движения, т. е. внутренняя энергия системы складывается из энергии поступательного и вращательного движения молекул, энергии внутримолекулярного колебательного движения атомов и атомных групп, составляющих молекулы, энергии вращения электронов в атомах, энергии, заключающейся в ядрах атомов, энергии межмолекулярного взаимодействия и других видов энергии. Внутренняя энергия — это общий запас энергии системы за вычетом кинетической энергии системы в целом и ее потенциальной энергии положения. Абсолютная величина внутренней энергии тела неизвестна, но для применения химической термодинамики к изучению химических явлений важно знать только изменение внутренней энергии при переходе системы из одного состояния в другое. [c.85]

    Помимо дезактивации с испусканием кванта света, возбужденные частицы могут дезактивироваться в результате перехода энергии электронного возбуждения в энергию колебаний атомов. Этот переход может происходить как внутримолекулярно, так и в результате соударения возбужденной частицы с другими молекулами. [c.121]

    Дальнейшее поведение возбужденной частицы не зависит от механизма ее образования. Возможно физическое или химическое тушение свечения, перенос энергии на другие частицы или внутримолекулярная безызлучательная дезактивация. Если время жизни возбужденной частицы мало по сравнению со временем релаксации, возможна дезактивация с испусканием кванта (рис. 42), т. е. хемилюминесценция. В зависимости от механизма образования и природы возбуждаемой частицы хемилюминесценция может являться флуоресценцией или фосфоресценцией. Как видно из рис. 42, энергия кванта хемилюминесценции равна /IV а + С, где а — энергия активации Q — теплота, выделяющаяся в элементарном акте. Следовательно, хемилюминесценция должна наблюдаться в соответствующем интервале длин волн. В некоторых реакциях в газовой фазе наблюдается инфракрасная хемилюминесценция, соответствующая колебательному возбуждению молекул. В реакциях, протекающих в жидкой фазе, энергия колебательного возбуждения рассеивается очень быстро. Наблюдающаяся хемилюминесценция соответствует обычно излучению с пулевого колебательного уровня возбужденного электронного состояния и лежит в видимой и реже в ультрафиолетовой областях. [c.119]

    АВС+(- -[-0-(+) Перенос электрона -АВ+-1-С Внутримолекулярный перенос электрона [c.136]

    Взаимодействие (внутримолекулярное) или межмолекулярное) водорода с электроотрицательными атомами, имеющими свободную электронную [c.8]

    Переход органического вещества торфов, бурых углей в раствор в виде гуматов при обработке щелочами резко возрастает при pH > 13 за счет не только ионизации кислых групп, но и окислительно-гидролитического расщепления углерод-углеродных связей, разрыва внутримолекулярных водородных связей, перевода поливалентных катионов в гидроксокомплексы. В сильно щелочной среде по данным электронной микроскопии изменяется структура гуминовых кислот из глобулярной она переходит в фибриллярную. [c.25]

    В дальнейшем было показано, что механизм активации, основанный лишь на увеличении скорости движения молекул, не может объяснить полностью скорости химических реакций. В активации играет роль как кинетическая, так и внутримолекулярная энергия, т. е. энергии активации соответствует избыток общей энергии, благодаря чему молекулы переходят в возбужденное состояние. При этом повышается не только скорость движения молекул, но и энергия колебания составляющих молекулу атомов и атомных групп, а также изменяется электронное состояние молекулы, так как электроны переходят на более высокие энергетические уровни. [c.31]


    Вследствие склонности атома водорода гидроксильной группы внедряться в электронную систему другого атома, имеющего неподе-ленную пару электронов, часто образуются также внутримолекулярные водородные связи, которые оказывают большое влияние на физические и химические свойства вещества (см. например, стр. 642 образование хелатов ). [c.114]

    Представления о так называемых электронных внутримолекулярных взаимодействиях получили чрезвычайно широкое распространение и с успехом используются при анализе самых разнообразных конкретных проблем. Тем ие менее соответствую-щие интуитивные физические иредсгавления не отличаются большой строгостью. Так, взаимодействие, представляемое взятым из арсенала физики термином индукционный (индуктивный) эффект, рассматривается одними авторами как видимый результат тех или иных электростатических взаимодействий между атомными зарядами или диполями связей или групп [6, 7, 46—50]. [c.34]

    Для того чтобы получить не только положение линий в спектре ЭПР трирадикала, но и реальный вид спектра, необходим анализ ширин линий. Основным механизмом уширения линий является модуляция обменного взаимодействия электронов внутримолекулярными движениями и конформационными переходами в трира-дикале. Анализ этого механизма уширения для трирадикалов, как и для бирадикалов, проводили в рамках статической модели [18]. [c.249]

    Современная теория различает три вида энергетических уровней молекул, соответствующих трем типам внутримолекулярного движения движению электронов, колебательному движению атомов и вращательному движению молекулы в делом. Вообще прсдполоя ение о том, что полная внутренняя энергия аддитивно складывается из электронной, колебательной и вращательной энергий [c.293]

    Высказано предположение [21], что изомеризация пентанов и более высокомолекулярных парафинов может протекать через ассоциацию углеводорода с ионизированным комплексом (К А1С14 ), нричем вслед за активацией происходит перегруппировка. Каталитическое действие сводится к одновременной протонно-анионной атаке молекул углеводорода. При этом электрофильная протонная часть катализатора притягивает водород второго углеродного атома углеводородной цепи в результате расшатывания электронов связи углерода с водородом. В то же время нуклеофильная часть катализатора Л1С14 притягивает в противоположную сторону третий углеродный атом. Одновременная атака вызывает общее смещение электронов, в результате чего происходит внутримолекулярная перегруппировка в то время, пока углеводород находится в состоянии ассоциации с катализатором. Реакция диспронорционирова-ния констатируется в тех случаях, когда. активированный углеводород [c.29]

    Облучение к-гептапа силой в 8,7 10 электронвольт (эв) дает смесь, содержащую 16 соединений, включающих к-пептан и 3-метилпентан наиболее тяжелый — н-додекан циклогексан да ет н-гексан и дициклогексан. Интересно, что электронная иррадиация этана и дейтероэтана показывает, что молекулы водорода могут внутримолекулярно разрываться [763]. Образование полимеров сопровождает эту парафиновую иррадиацию этилен, бутадиен образуются от этана вместе с небольшим количеством ацетилена, который в конце выделяется как твердое тело. Реакция, вероятно, представляет собой полимеризацию прибавления, инициированную радикалами. Полиэтиленовые синтетические смолы могут образовываться гамма-лучевой иррадиацией этилена [764,, 765]. [c.151]

    Для химической формы движения, т. е. для химического процесса, характерно изменение числа и расположения атомов в молекуле реагирующих веществ. Среди многих физических форм движения (электромагнитное поле, движение и превращения элементарных частиц, физика атомных ядер и др.) особенно тесную связь с химическими процессами имеет внутримолекулярная форма движения (колебания в молекуле, ее электронное возбуждение и ионизация). Простейший химический процесс—элементарный акт термической диссоциации молекулы имеет место при нарастании интенсивности (амплитуды и энергии) колебаний в молекуле, особенно колебаний ядер вдоль валентной связи между нимн. Достижение известно критической величины энергии колебаний по направлению определенной связи в молекуле приводит к разрыву этой связи и диссоциации молекулы на две части. [c.17]

    Окислительно-восстановительная двойственность. Внутримолекулярное окисление-восстановление. Соединения высшей степени окисленности, присущей данному элементу, могут в окислительновосстановительных реакциях выступать только в качестве окислителей, степень окисленности элемента может в этом случае только понижаться. Соединения низшей степени окислеииости могут Ъыть, наоборот, только восстановителями здесь степень окисленности элемента может только повышаться. Если же элемент находится в промежуточной степени окисленности, то его атомы могут, в зависимости от условий, как принимать, так и отдавать электроны. В первом случае степень окисленности элемента будет поннжй гься, во втором — повышаться. Поэтому соединения, содержащие элементы в промежуточных степенях окисленности, обладают о к и с -лительно -восстанови тельной двойстве нис стью — способностью вступать в реакции как с окислителями, так и с восстановителями. [c.271]

    Многие молекулы, например Н , N3, О2 и 2, образуют молекулярные кристаллы,, потому что все валентные орбитали входящих в них атомов использованы для построения внутримолекулярных связей либо заняты несвязывающими электронами. Вследствие этого межмолекулярные связи, удерживающие молекулы вместе в кристаллах, оказываются намного слабее, чем внутримолекулярные связи в отдельных молекулах. Слабые силы, обусловливающие межмолекулярную связь, называются вандерваальсовыми силами по имени впервые изучавщего их голландского ученого Я. Ван-дер-Ваальса. [c.611]

    Очевидно, — и это следует подчеркнуть особо, — вследствиг однородности и изотропности пространства для изолированной молекулы вероятность найти любой электрон или любое ядро в окрестности любой точки внутримолекулярного пространства одинаков , т. е. величины (г) и (/ у) в действительности от т и RJ. не зависят. Поэтому, в строгой квантовомеханическон теории нет аналога классического понятия молекулярной струк- [c.105]

    Первые две стадии реакций контактного окисления, наряду с изложенными выше механизмами, могут протекать по механизму комплексообразования в тех случаях, когда катионы решетки сохраняют свою индивидуальность. Вервей [241 для обратных шпинелей , а затем Морин [25] — для окислов металлов с незапол- ненными З -уровнями электронов указали на такую возможность, объяснив возникновение в таких соединениях электропроводности присутствием в них ионов одного и того же металла в различных валентных состояниях и в эквивалентных позициях кристаллической решетки. Можно предполагать, что подобного рода механизм электропроводности возможен не только для окислов (в том числе и тройных систем окислов [26]), но и для многих полупроводниковых соединений переходных металлов. Базируясь на этих представлениях, Дауден [27 ] рассматривает хемосорбцию на поверхности и явления замещения одного сорбента другим как реакции образования и превращения комплексов по механизму и 8)у2-замещения. Киселев, [28] также рассматривает адсорбцию как процесс поверхностного комплексообразования, когда при возникновении донорно-акцеп-торных связей неподеленная пара электронов лиганда оказывается затянутой на внутренние орбитали атома решетки, являющегос центром адсорбции. При таком механизме адсорбированные молекулы всегда будут в той или иной мере реакционноспособны. Действительно, затягивание неподеленной пары лиганда на внутренние орбитали центрального атома приведет к деформации адсорбированной молекулы и ослаблению внутримолекулярных связей. Отметим попутно, что трактовка Киселева справедливо распространяет электронные представления и на механизм кислотно-основного гетерогенного катализа. Развивая представления теории поля лигандов, Руней и Уэбб [29 ] показали, что механизм реакций дейтеро- бмена, гидрирования и дегидрирования углеводородов на переходных [c.27]

    В особый тин нефтяных внутримолекулярных металлокомплексов исследователи выделяют так называемые исевдоиорфири-ны. Под этим термином объединяются мономолекулярные тетра-пиррольные лиганды с нарушенным по сравнению с порфином я-электронным сопряжением по макроциклу. Такое нарушение может быть вызвано дополнительной ароматической системой заместителей (I), включением порфинного цикла в конденсированные полиароматические структуры (II), частичным гидрированием с образованием хлориновых (III) или еще более гидрированных циклов, а также полным разрывом макроцикла до линейных структур тппа желчных пигментов (IV) [8, 893]. [c.165]

    Реакции самоокисления — самовосстановления (реакции диспропорционирования, дисмутацин). В отличие от процессов внутримолекулярного окисления—восстановления, их протекание сопровождается одновременным уменьшением и увеличением степени окисления атомов одного и того же элемента. Поэтому эти реакции принципиально осуществимы лишь для тех веществ, в молекулах которых есть атомы со степенью окисления, промежуточной между минимально и максимально возможной. Легкость их протекания при прочих равных условиях связана с близостью энергетических уровней электронов в состояниях атомов, отвечающих разным степеням окисления. [c.91]

    Из табл. 10 видно, что опытные данные, относящиеся к комнатным температурам, в общем хорошо согласуются с этими выводами. Однако обычно обнаруживается некоторая зависимость теплоемкости от температуры. В особенности при температурах очень низких (близких к абсолютному нулю) или, наоборот, при очень высоких эта зависимость становится значительной и наступают систематические отклонения теплоемкости от указанных значений. В области низких температур эти отклонения вызываются тем, что затухает и перестает сказываться (вырождается) вращательное движб1ше молекул. В области же высоких температур эти отклонения вызываются развитием внутримолекулярных колебаний, а также возникновением электронных переходов и некоторыми другими причинами. [c.106]

    В химической термодинамике одну из важнейших величин представляет внутренняя энергия и рассматриваемой системы. Эта величина является параметром состояния. Термодинамически она строго определяется на основе первого закона (см. 68). Физически же этим термином обозначается величина, которая характеризует общий запас энергии системы, включая сюда энергию по ступательного и вращательного движения молекул, энергию внутримолекулярного колебательного движения атомов и атомных групп, составляющих молекулы, энергию вращения электронов в атомах, энергию, заключающуюся в ядрах атомов, и другие виды энергии, но без учета кинетической энергии тела в целом и его потенциальной энергии положения. В настоящее время еще не имеется возможности определить абсолютную величину внутренней энергии какой-нибудь системы, но большей частью можно измерить изменениё энергии Л(7, происходящее в том или ином процессе, что оказывается уже достаточным для успешного применения этого понятия в термодинамике. Величина А11 считается положительной, когда в рассматриваемом процессе внутренняя энергия системы возрастает. [c.181]

    KUX частот (начало при 3500—3200 см и далее). Большой низкочастотный сдвиг полосы позволяет отличать водородную связь от простого ван-дер-ваальсового взаимодействия. Чем выше электронно-донорная способность молекулы, тем прочнее водородная связь, тем сильнее низкочастотный сдвиг. При растворении в неполярном растворителе ( I4, Sa) веществ, у которых молекулы ассоциированы через водородную связь, происходит разрыв водородных связей, и это сказывается на уменьшении интенсивности полосы Н-связи при разбавлении. Напротив, разбавление не влияет на полосы внутримолекулярных Н-связей. Это позволяет спектроскопически отличать от межмолекулярной внутримолекулярную водородную связь, особенно такую сильную, как в хелатах. [c.179]

    В элементарных актах, протекающих с изменением электронных термов системы и получивших название неадиабатических, изменения квантовых чисел и электронной плотности происходят скачкообразно, например при изменении мультиплетности или в результате поглощения квантов /гv. Особенности каждого элементарного акта определяются числом молекул, участвующих в нем, их строением и характером реакционных центров. Рассмотрим некоторые общие закономерности элементарного акта на примере адиабатической бимолекулярной реакции типа А + В О + Е, протекающей в газовой фазе. Молекулы реагентов, находясь в тепловом хаотическом движении, периодически сталкиваются между собой. При столкновении может происходить перераспределение энергии как между сталкивающимися молекулами, так и по внутримолекулярным степеням свободы движения в молекуле. Отдельные молекулы могут переходить в энергетически возбужденное состояние. Тепловое движение столь интенсивно, так велика частота столкновений, что в системе практически мгновенно устанавливается равновесное распределение молекул по энергиям и можно пользоваться уравнением Больцмана (см. 96) [c.558]

    На основании зависимости скорости реакции внутримолекулярного алкилирования фенилалкилхЛоридов [183] от расстояния между фенильным радикалом и реакционным центром, авторы работы [171] считают, что поскольку стабилизация заряда в углеводороде VIII за счет ароматического ядра затруднена, электронный дефицит катионного центра снижается за счет взаимодействия с метиленовой группой, увеличивая тем самым в ней дейтерообмен. В углеводороде IX ароматическое ядро участвует в делокализации заряда и в первую очередь дейтерообмен происходит в этом центре, хотя его степень за счет участия фенильного ядра несколько падает. [c.126]

    В сущности, согласно гипотезе Кошланда, повышение скорости реакции образования лактонов во внутримолекулярной реакции вызвано тем, что нути сближения реагирующих групп ограничены некоторыми вполне определенными направлениями в противоположность статистической ориентации, наблюдаемой при бимолекулярной реакции. Кошланд считает, что орбитальное управление способно объяснить, почему ферменты столь эффективны. Вероятно, ферменты выстраивают связывающие орбитали реагирующих молекул и каталитических групп с точностью, невозможной при обычном бимолекулярном столкновении в растворе. Фермент не только сближает субстраты, (эффект сближения Брюса) существует еще фактор ориентации, связанный с формой электронных орбиталей реагпиюнноспособных атомов. Это-то и должно вызывать уникалы, ю каталитическую активность ферментов. Удивительная каталитическая активность ферментов, следовательно, вытекает не только из их способности приблихоть реагирующие атомы, но также и направлять орби- [c.212]

    Пиридоксальфосфат обладает рядом особенностей, которые делают его великолепным катализатором реакций переамипирования. Во-первых, гидроксильная группа идеально расположена для того, чтобы осуществлять общий кислотный и основной катализ. Будучи внутримолекулярным, такой катализ особенно эффективен. Во-вторых, положительно заряженный азот пиридинового кольца действует как сток (акцептор) электронов, понижая свободную энер- [c.434]

    В о-окспкетопах н других соединениях (см. ниже) Н-атом гидроксильной группы взаимодействует с неподеленной парой электронов карбонильной группы, так что он образует в известном смысле мостик между атомами кислорода гидроксильной и карбонильной групп. Соединения с такими внутримолекулярными водородными мостиками называются X е л а т а м и, или в н у т р и к о м п л е к с и ы м и соединениями. Прочность внутрикомплексиой водородной связи зависит от строениясоедиис-ния. Образование ее оказывает большое влияние на физические свойства соединения (растворимость, спектр поглощения и т. д.) и может даже влиять на его химические свойства (например, процессы замещения). [c.642]

    В предыдущей главе, в разделе, посвященном молекулярным теориям разрушения, почти всегда для описания процесса активацпи разрушения элемента использовалось уравнение Аррениуса. Оказывается, что, как правило, энергия активации <7о равна (или предполагается равной) энергии диссоциации слабейшей основной связи цепи ). Прежде чем продолжить дальнейший анализ кинетики разрушения элемента, а по возможности и цепи, следует дать определение механической прочности связи элемента и цепи. Для этого напомним в данной главе основные результаты квантовой химии [1, 2], которые касаются прочности внутримолекулярных связей, и такие факторы, влияющие на потенциал связи, как электронное возбуждение и ионизация. [c.95]


Смотреть страницы где упоминается термин Электрон внутримолекулярный: [c.494]    [c.374]    [c.348]    [c.161]    [c.7]    [c.149]    [c.559]    [c.242]    [c.321]    [c.99]   
Анионная полимеризация (1971) -- [ c.386 ]




ПОИСК







© 2024 chem21.info Реклама на сайте