Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теория промежуточной ионизации

    Разницу в скорости рацемизации можно было бы попытаться объяснить либо теорией промежуточной ионизации , либо выдвигавшимся Вернером и Голлеманом предположением о возможности непосредственного перескока заместителей без предварительного их отщепления. [c.296]

    Более реальным следует считать представление о преимущественном развитии механохимического эффекта в областях выхода линий скольжения, которые в обоих случаях находятся в возбужденном состоянии и вносят подавляющий вклад в величину прироста тока по сравнению со всей остальной поверхностью (активной или пассивной). Этот вклад, равный деформационному приросту тока реакции ионизации металла, определяется деформационным сдвигом химического потенциала атомов металлического электрода, одинаково влияющим на первичный акт перехода для активного и пассивного состояний, различающихся последующими промежуточными стадиями. Как в пленочной, так и в адсорбционной теориях пассивности считается установленным образование поверхностных хемосорбционных (промежуточных) соединений. На первичный акт перехода ион-атома металла при образовании такого промежуточного соединения оказывает влияние механическое воздействие на металлический электрод. [c.86]


    Иное поведение обнаруживают твердые тела с достаточно узкой запрещенной зоной, по ширине сравнимой с энергией тепловых колебаний атомов. В этих кристаллах, являющихся изоляторами при низкой температуре, при повышении температуры становится возможной собственная ионизация под действием тепловых колебаний, что приводит к появлению в них электронной проводимости. Такие вещества называются собственными полупроводниками, поскольку по величине электропроводности они занимают промежуточное положение между проводниками (металлами) и изоляторами. В принципе же полупроводники с точки зрения зонной теории не отличаются от изоляторов, точнее, отличие носит лишь количественный характер и заключается в меньшей ширине запрещенной зоны. [c.32]

    При ионизации атом стремится принять наиболее устойчивую конфигурацию ближайшего восьмиэлектронного элемента нулевой группы (или гелия). Поэтому литий легко теряет один электрон — это резко выраженный электроположительный металл, а фтор легко приобретает электрон — резко выраженный электроотрицательный металлоид. Труднее теряет два электрона бериллий и приобретает два электрона кислород. Металлические свойства первого и металлоидные второго менее отчетливы. Еще менее отчетливы они у бора и азота. Первый может в некоторых случаях не только терять 3 электрона, но и приобретать 5 электронов, играя роль металлоида, а второй терять 5 электронов, играя роль металла. Углерод занимает ясно выраженное промежуточное положение. Способность терять я электронов отвечает положительной л-валентности, а способность приобретать т электронов— отрицательной т-валентности. Очевидно, что т- -п = 8. Изложенные представления легли в основу теории сродства [c.312]

    Предполагалось, что большая вторичная эмиссия сложных кислородно-цезиевых катодов [491—493, 496, 527—532, 567 —570] так же, как и фотоэффект, обусловливается низким потенциалом ионизации адсорбированных в поверхностной плёнке атомов цезия. Однако параллельное исследование фотоэффекта и вторичной эмиссии кислородно-цезиевых катодов показывает, что это не так [503—505, 536, 537]. При утомлении кислородно-цезиевых катодов путём их интенсивного освещения, а также при изменении толщины поверхностей плёнки цезия путём дополнительного прогрева всего прибора ход изменения коэффициента вторичной эмиссии далеко не соответствует ходу изменения фототока. Максимумы обеих кривых не совпадают. Точно так же не совпадают изменения вторичной эмиссии и фототока и при изменении структуры промежуточного слоя сложного катода. Поэтому при построении теории вторичной электронной эмиссии из сложных катодов их надо рассматривать как примесные полупроводники ) (как и в случае других видов электронной эмиссии со сложных катодов). При этом надо учитывать, что вторичные электроны вылетают не с самой поверхности сложного катода, а с некоторой глубины и что основной причиной, тормозящей их движение, является взаимодействие их с электронами полосы проводимости. Таким образом, влияние факторов, приводящих к увеличению числа этих электронов, должно отзываться на вторичной эмиссии более сложным образом, чем при термоэлектронной эмиссии. Возрастание числа электронов проводимости сверх некоторого оптимального значения должно уменьшать вторичную эмиссию из примесных полупроводников. [c.185]


    К настоящему времени выпущен ряд монографий и справочник по газовой хроматографии. В зарубежной и отечественной периодической литературе опубликовано большое число статей как по теории, так и по практическому применению метода газовой хроматографии. Поэтому в I главе книги приведены лишь общие сведения по газовой хроматографии, дающие возможность выбрать оптимальные условия хроматографирования и наиболее подходящий метод идентификации веществ. Особое внимание обращено на методы количественного анализа, наиболее важные при практическом использовании метода газовой хроматографии. В гл. И, П1 и IV приведены методы анализа, сырья, промежуточных продуктов и готовых полимеров в производстве полиолефинов, полистирольных и поливинилацетатных пластиков. Гл. V посвящена,анализу сточных вод и промышленных воздушных сред. В гл. VI включены методы анализа различных веществ, используемых в малотоннажных производствах некоторых полимеров. В приложении приведены некоторые полезные сведения по определению диапазона линейности детектора ионизации в пламени, таблица констант полярности неподвижных фаз, справочная таблица давления паров воды и таблица коэффициентов чувствительности некоторых веществ е детектором ионизации в пламени, рассчитанных с учетом числа углеродных атомов в молекуле. [c.4]

    Диссоциативная рекомбинация. В последние годы было показано, что скорость процесса диссоциативной рекомбинации е+АВ - -А+В может быть существенно больше скоростей всех остальных рекомбинационных процессов, если только в плазме имеется достаточное число молекул. Для сложных атомных систем коэффициент диссоциативной рекомбинации может достигать 10" —10 см сек . Расчет безызлучательного диссоциативного захвата электронов молекулярными ионами 0 , и Не в полуклассическом приближении выполнен в работе [183], в которой установлено соответствие с экспериментальными данными. Б работах 184—186 ] в рамках теории возмущения проведено последовательное рассмотрение диссоциативной ионизации водорода. Результаты удовлетворительно согласуются с экспериментальными данными. Обсуждается возможность обобщения этих расчетов на случай тяжелых молекулярных ионов. Задача расчета диссоциативной рекомбинации иона водорода решена также методом Монте-Карло [187] по схеме с образованием промежуточного возбужденного комплекса Нд и распадом его на атомы. [c.70]

    Теория промежуточной ионизации, выдвинутая еще в 1913 г. Гадамером з, была позднее применена Фрейденбергом для объяснения рацемизации хлористого борнила. Фрейденберг считает, что рацемизация этого соединения протекает через промежуточное образование катиона (X)  [c.296]

    Протолитическая теория была применена к истолкованию закономерностей реакций кислотно-основного катализа разложение нитра-мида, инверсия сахаров, омыление сложных эфиров и т. п. Скорость этих процессов зависит от природы и концентрации кислот и оснований, присутствующих в растворе, причем сами кислоты и основания в ходе реакции не расходуются, т.е. выступают в роли катализаторов. Реагирующее вещество можно рассматривать как слабую кислоту пли слабое основание, которые вступают в реакцию с катализатором основанием или кислотой с образованием некоторого промежуточного комплекса. Последний затем распадается на конечные продукты с регенерацией катализатора. Сила кислот и оснований (константы их ионизации) и их каталитическая активность связаны между собой. Я. Брёнстед установил, что если в качестве катализаторов использовать ряд однотипных слабых кислот, то между константой скорости катализируемого ими процесса и константой ионизации кислот Ка существует следующее соотношение  [c.84]

    Твердое состояние является предельным для всякого вещества ири низких температурах или высоких давлениях. Газовое состояние также является предельным, но при высоких температурах и низких давлениях. В гл. XVIII мы рассмотрим плазму как четвертое состояние вещества при еще более высоких температурах, при которых происходит ионизация. Жидкое состояние является не предельным, а промежуточным между газовым и твердым. Очевидно, что при температурах, близких к критическим, исчезают отличия между жидкостью и газом, а при близких к температуре плавления некоторые свойства жидкости приближаются к свойствам твердого тела. Эти обстоятельства обусловливают трудность построения теории жидкого состояния. Для газов существует идеальное предельное состояние — идеальный газ, которое точно и просто описывается теоретически. При описании реальных газов рассматриваются отклонения от законов идеальных газов. Подобное идеальное состояние — монокристаллическое — имеется и у твердых тел. Это состояние также служит основой для описания реальных кристаллов. [c.205]


    Следует отметить, что кроме воды известно огромное число самых различных растворителей. И так же, как при образовании водных растворов, центральную роль играют процессы сольватации—взаимодействие молекул растворителя с растворяемым объектом. Значение процессов гидратации при электролитической диссоциации в водных растворах отмечалось впервые в работах И. А. Каблукова (1891) и В. А. Кистяковского (1888—1890), положивших начало развитию теории электролитов, один из важнейших вопросов которой является изучение структуры растворов и характера распределения в них ионов. Установлено, что не только молекулы воды влияют на структуру раствора (поляризация, ионизация), но и растворяемое вещество в свою очередь влияет на структуру воды (растворителя). Как заряженные частицы, ионы обладают электрическим полем, напряжен юсть которого достигает величин порядка 10 В/см. Это поле определяет сильное электростатическое взаимодействие между ионом и полярными молекулами воды. Молекулы воды, находящиеся в непосредственной близости к иону, могут связываться с ним силами химической связи, образуя химическое соединение. Непосредственно присоединенные к иону молекулы воды строго ориентированы, их расположение напоминает структуру кристалла. Следовательно, при растворении электролита структура воды становится неоднородной. Часть молекул воды, которая далека от иона, остается в прежнем состоянии, это собственная структура воды HjO ,, другая часть—псевдокристаллическая структура, характерная для ионной зоны Н О , . В переходном слое между этими зонами вода имеет промежуточную [c.109]

    КУПМАНСА ТЕОРЕМ А орбитальная энергия занятой молекулярной орбитали, взятая с обратным знаком, равна потенциалу ионизации молекулы с этой орбитали при сохранении ядерной конфигурации молекулы. Утверждает, что молекула и ее ион описываются единым набором мол. орбиталей (МО). Однако значения потенциалов ионизации, рассчитанные на основе К. т., как правило, завышены по сравнению с эксперим. данными. Поправки обычно основаны на учете эффектов электронной корреляции, изменении МО иона по сравнению с МО молекулы и м. б. рассчитаны на основе возмущений теории или рассмотрения МО гипотетич. системы, промежуточной между молекулой и ионом (т. н. метод переходного оператора). В простых вариантах метода МО теорема позволяет определять сродство к электрону по значению орбитальной энергии наинизшей из виртуальных МО. Теорема сформулирована Т. Купмансом в 1933. КУПФЕРОН (аммониевая соль К-нитрозо-М-фенилгидро-ксиламина), Гш, 163—164 С (с разл.) раств. в воде, бензоле, эф., СП. При хранении разлаг., особенно быстро на свету. Реагент для разделения экстракцией и осаждением для гравиметрич. и фотометрич. определения Си(П), Ре(П1), В1(П1), металлов П1я и 1Уа подгрупп перио-элементов, с к-рыми образует внутри-ком и.чсксные соединения. [c.293]

    Эта концепция дает новые модели и для промежуточных форм катализа (включая и переходные комплексы) и позволяет привлечь к изучению хемосорбции и катализа закономерности больших и хорошо изученных разделов химии комплексных и хелатных соединений и кристаллохимии. Однако механический перенос этих закономерностей на хемосорбцию и гетерогенный 1 атализ был бы такой же крайностью, как использование одних лишь коллективных макроскопических характеристик твердого тела (уровень Ферми, загиб зон, величина электропроводности и т. д.) во многих построениях электронной теории катализа на полупроводниках [27, 28]. Вызывает сомнение реальность универсальных рядов каталитической активности у металлов и сплавов или окислов элементов различной валентности с экстремумами при определенном числе -электронов (например, при одном или пяти -электронах) у атома (иона) комплексообразующего элемента. Это вытекает из следующих соображений а) обычно нет уверенности даже в сохранении поверхностным ионом металла объемного числа -электронов на 1 атом б) даже при правильной оценке валентности и числа -электронов у соответствующего элемента на поверхности данного образца совсем не обязательно считать (как это делают обычно), что экстремальная каталитическая активность появляется при числе -электронов, соответствующем экстремальным значениям энергии ионизации (сродства) или связи лигандов с центральным ионом в) для некоторых окислов прямыми опытами показано, что активные центры образованы ионами металла, имеющими валентность, резко отличающуюся от стехиометрической. Неудивительна поэтому противоречивость результатов последних экспериментальных работ [29], которые не могут служить серьезным подтверждением предсказапий, основанных на аналогии с прочностью комплексов. В частности, можно указать, что один из дауденов-ских максимумов (для №0 и С03О4), по-видимому, обусловлен частичным восстановлением до металлов. [c.25]

    Действие пламенно-ионизационного детектора связано с ионизацией органических молекул в водородном пламени. Когда органические пары поступают в водородное пламя, проводимость пламени повышается. Обнаружено, что это увеличение проводимости больше предсказываемого на основании ионизационных потенциалов молекул (8—12 эв [7]). Истинный механизм ионизации в пламени недостаточно изучен. Теория, выдвинутая Штерном [14], предполагает, что в пламени образуются агрегаты углеродных атомов, которые ведут себя подобно твердому углероду. Твердый углерод, имеющий чрезвычайно низкую работу выхода (4,3 эв), легко ионизируется в водородном пламени. Наблюдаемая пропорциональность сигнала детектора числу углеродпмх атомов в молекуле подтверждает эту теорию. Следует, однако, изучить промежуточные реакции, предшествующие образованию конечных продуктов горения (СОг и НгО). [c.46]

    По теории Малликена [1], полный перенос электронов от донорной к акцепторной молекуле с образованием ионной пары обусловливает появление новой полосы поглощения. Однако опыт часто показывает, что во многих случаях реакции не являются ни ионными, ни радикальными в том смысле, что исходные и конечные химические соединения, а также промежуточные продукты не являются ни ионами, ни радикалами, а представляют собой молекулы, чаще комплексные соединения с частичным перемещением электронов от электронодонорной к электроноакцепторпой молекуле, т. е. с частичной ионизацией. [c.81]

    Первоначально Н. Бьеррум провел элементарные электростатические расчеты применительно к дикарбоновым кислотам с обшей формулой НООС(СН2)пСООН. В табл. 7 приведены полученные им результаты для кислот, у которых п=0, 1. .. 7. Сравнивая величины первой и второй констант ионизации, можно оценить влияние отрицательного заряда на отщепление второго протона. При этом следует пользоваться константами ионизации, экстраполированными к нулевому значению ионной силы, так как присутствие солей изменяет электростатические взаимодействия, в результате чего коэффициенты активности становятся отличными от единицы. Разности Ар/Со — log4, приведенные в третьем столбце табл. 7, определяют вклад электростатических взаимодействий в изменение константы второй ступени ионизации. В отсутствие электростатического взаимодействия в третьем столбце должен стоять 0. В столбцах 4 и 5 приведены расстояния г между центром отрицательного заряда молекулы и отщепляемым протоном, найденные соответственно из предположения о максимально вытянутой конфигурации молекулы и из предположения о свободном вращении вокруг всех связей. В столбце 6 приведены значения г, вычисленные на основании теории Бьер-рума. Для глутаровой кислоты и кислот с еще большим молекулярным весом эти значения, промежуточные между значениями г в столбцах 4 и 5, вполне правдоподобны однако для низших кислот величина г оказывается, так же как и для глицина, слишком малой. [c.98]

    Рассмотрим теперь несколько примеров приложения этой теории. В согласии с классической точкой зрения, если НС1 и NHg одновременно растворяются в воде, то NHg будет сначала гидратироваться в NH4OH. Затем кислота и основание прореагируют через стадию ионизации, давая соль и снова выделяя молекулу воды, которая перед этим послужила в процессе гидратации. Согласно теории Брёнстеда-Лоури, эта гидратация аммиака является скорее побочной, чем промежуточной реакцией. Такая точка зрения кажется правдоподобной, так как и в бензольном растворе безводные НС1 и NHg быстро реагируют друг с другом, образуя хлористый аммоний. В этом случае NH4OH, очевидно, не мог образоваться. Изобразив эту реакцию в согласии с уравнениел 8, мы получим [c.501]

    Вольфенден изучал критические потенциалы водорода, адсорбированного на катализаторах никеле и меди. Кистяковский пользуясь видоиз-менением того же аппарата, исследовал потенциалы ионизации азота и водорода на железе и других металлах. Он пришел к выводу, что положительная ионизация, наблюдающаяся на железе, меди и платине при П и 13 V, принадлежит соответственно адсорбированному азоту и водороду. Кроме того он нашел, что П-вольтный потенциал для азота относится к возбужденным молекулам азота или атомному aaoTy, скорее всего к последнему. Впрочем, суДя по другим экспериментальным исследованиям адсорбированных газов на металлических поверхностях, кажется невероятным, чтобы азот, адсорбируясь в атомном состоянии, мог сохранять в этом виде свойства газообразного состояния. Наблюдения этого рода могут дать сведения относительно сил сцепления, удерживающих атомы или молекулы на поверхности, независимо от того, рассматривать ли их как причину образования малоустойчивых адсорбционных комплексов или промежуточных соединений вроде нитридов, гидридов или окислов, которые часто принимаются в теории поверхностных реакций. [c.74]

    При ионизации нитросоединений образуются сильно сопряженные нитронат-ионы, в которых отрицательный заряд в основном находится на атоме кислорода нитрогруппы. Таким образом, анионы нитросоединений лишь формально относятся к карбанионам . Отрыв протона от нитроалкана должен, следовательно, проходить через переходное состояние, структура которого будет промежуточной между структурой нитроалкана и анионом яг и-формы. Поэтому следует ожидать, что этот процесс будет иметь относительно высокую энергию реорганизации (структуры и растворителя). Из теории Маркуса следует, что аномальные коэффициенты Бренстеда более вероятно обнаружить в серии псевдокислот, чем в серии обычных, например, ОН- и NH-кислот [13]. [c.230]

    Как видно из изложенного, теория Кабанова, хорошо экспериментально обоснованная, касается главным образом самого явления внедрения щелочных металлов в катоды. Определенное внимание в работах Кабанова уделяется влиянию внедрения на перенапряжение водорода. Значительно меньше затрагиваются вопросы растворения металлов в связи с проблемой внедрения в них разряжающихся катионов щелочных металлов. Очевидно, что эти вопросы тесно связаны с теорией растворения интерметаллических соединений. В соответствии с представлениями, развитыми Маршаковым и сотр., а также Пикерингом и Вагнером [22, 205], растворение интерметал-лидов может происходить либо в полном соответствии с их составом, либо таким образом, что в результате растворения образуется новая фаза из более благородного компонента или промежуточная фаза, обогащенная этим компонентом. В свете этого можно предположить, что при катодном образовании таких интерметаллических соединений со щелочным металлом, которые растворяются целиком (без преимущественного перехода в раствор одного из компонентов), растворение металла может ускориться, поскольку весьма вероятно снижение перенапряжения растворения подобного интерметаллида по сравнению с перенапряжением ионизации металла катода. В случае же преимущественного растворения щелочного металла из интерметаллида кинетика ионизации исследуемого катода принципиально может остаться неизменной. В этом случае аномальное растворение вследствие внедрения может иметь место лишь за счет механического разрушения решетки металла в результате внедрения и последующего удаления из нее щелочного металла. [c.41]

    По теории Дебура процессы утомления и восстановления объясняются так. При фотоэффекте часть атомов поверхностной плёнки цезия превращается в ионы. При непрерывном освещении и сравнительно плохо проводящем промежуточном слое нейтрализация этих ионов электронами, проходящими к ним через слой окиси, задерживается число атомов цезия с малым ионизационным потенциалом в поверхностном слое уменьшается. Вызванная этим эффектом доля утомления исчезает после прекращения освещения, так как при отсутствии дальнейшей ионизации все наличные в поверхностном слое ионы нейтрализуются. С другой стороны, электрическое поле, возникающее в промежуточном слое между положительными ионами в поверхностной плёнке и отрицательно заряженной серебряной подкладкой, втягивает часть положительных ионов внутрь слоя. Положительный ион цезия, втянутый в промежуточный слой, рано или поздно нейтрализуется одним из электронов, двигающихся ему навстречу. Образовавшийся при этом нейтральный атом может вернуться в поверхностный слой лишь путём диффузии, что далеко не для всех атомов имеет место отсюда — необратимая доля утомления. [c.170]

    Согласно теории стримеров, необходимым условием искрового пробоя является прорастание положительного стримера через весь искровой промежуток от анода вплоть до катода или же встреча в какой-либо промежуточной точке положительного и отрицательного стримера. После этого через искровой канал про-хекают очень сильные токи, приводящие к очень высокой температуре газа в канале и таким образом к термическому возбуждению и термической ионизации. [c.397]

    Данная теория рассматривает первичную реакцию крекинга как внутримолекулярную перегруппировку молекулы с последующим распадом ее на две готовые дтолекулы меньшего размера. При крекинге парафинового углеводорода никаких промежуточных нестабильных соединений не образуется. В качестве первичного акта принимается активация молекулы углеводорода, происходящая за счет перескока электронов, образующих С—С-связь. Такой перескок приводит как бы к внутренней ионизации двух соседних атомов углерода [170], накоплению при одном углеродном атоме двух валентных электронов. При колебаниях атом углерода, получивший отрицательный заряд, перетягивает к себе атом водорода от соседнего углеродного атома, после чего молекула парафинового углеводорода непосредственно распадается на молекулу парафина меньшего размера или водорода и молекулу олефина по уравнению  [c.171]

    Случай 1. r iпромежуточный продукт (карбанион) взаимодействует с молекулой уксусного альдегида (карбонильным компонентом), значительно больше, чем скорость обратного превращения карбаниона в альдегид. Лг 1 можно пренебречь, причем уравнение (2) становится тождественным приведенному выше уравнению (1) (см. уравнение 26, стр. 171). Этот случай осуществляется в альдольной конденсации ацетальдегида. В соответствии с теорией опыт показывает, что медленной реакцией, определяющей скорость процесса, является образование карбаниона в реакции метиленового компонента со щелочным катализатором (реакция ионизации). [c.649]

    Результат обсуждавшихся в данном разделе исследований может быть кратко обобщен следующим образом классическая химия в своих опытах объяснить вагнеровскую перегруппировку дошла в начале 20-х годов до предела своих возможностей. Являющаяся первопричиной нерегруннировки классическая ионизация не могла служить для объяснения собственно механизма перегруппировки средствами тогдашней теории. Точно так же эти теоретические средства не позволяли объяснить перегруппировку по трициклеповой теории, одиако хорошо описывали формальный ход перегруппировки. Нынешние теоретические нредставления и новые экспериментальные данные ведут к принятию неклассических катионных промежуточных продуктов вагнеровской перегруппировки, формулировка которых равноценна новому истолкованию трициклеповой гппотезы. [c.196]


Смотреть страницы где упоминается термин Теория промежуточной ионизации: [c.250]    [c.293]    [c.64]    [c.452]    [c.276]    [c.79]    [c.298]    [c.146]    [c.124]    [c.85]    [c.218]    [c.181]    [c.218]   
Основы стереохимии (1964) -- [ c.296 ]




ПОИСК







© 2025 chem21.info Реклама на сайте