Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ДРУГИЕ ВИДЫ СПЕКТРОСКОПИИ ЭЛЕКТРОНОВ

    В абсорбционной рентгеновской спектроскопии электрон при поглощении рентгеновских квантов не покидает вещества, а переходит в свободные состояния зоны проводимости. Рентгеновская абсорбционная спектроскопия пригодна для изучения газов, расг-воров, твердых тел. Так, спектры поглощения находящихся в растворах ионов, обнаруживают несколько более или менее четких флуктуаций на протяжении нескольких десятков электрон-вольт. В случае комплексных ионов вид этих флуктуаций зависит от типа связи поглощающего атома с его соседями по комплексу. Спектр нона в растворе обусловлен наложением друг на друга серии линий поглощения, ширины которых значительно превосходят ширину внутреннего уровня поглощающего иона. При этом уширение вызвано расщеплением уровней энергии в электрическом поле молекул сольватной оболочки, окружающей ион в растворе, и поэтому зависит не только от поглощающего иона, но и от растворителя. [c.215]


    Установить наличие водородной связи можно различными способами, в том числе измерением дипольных моментов, по особенностям растворимости, понижению температуры замерзания, теплотам смешения, но наиболее важный способ основан на том влиянии, которое оказывает водородная связь на вид инфракрасных [9] и других спектров. Частоты колебаний в ИК-спектре таких групп, как О—Н и С = О, значительно сдвигаются, если эти группы участвуют в образовании водородной связи. При этом всегда наблюдается сдвиг полос поглощения в область более низких частот для обеих групп А—Н и В, причем для первых этот сдвиг более значителен. Например, свободная группа ОН в спиртах и фенолах поглощает в области от 3590 до 3650 см если же эта группа участвует в образовании водородной связи, полоса поглощения смещается на 50—100 см и расположена в области от 3500 до 3600 см [10]. Во многих случаях в разбавленных растворах только часть ОН-групп участвует в образовании водородных связей, а часть находится в свободном состоянии, тогда в спектрах наблюдается два пика. С помощью инфракрасной спектроскопии можно различить меж- и внутримолекулярные водородные связи, поскольку первые дают более интенсивный пик при повышении концентрации. Для определения водородных связей используются и другие виды спектроскопии КР-, электронная, ЯМР-сиектроскопия [11, 12]. Поскольку при образовании водородной связи протон быстро переходит от одного атома к другому, ЯМР-спектрометр записывает усредненный сигнал. Водородную связь определяют обычно по смещению химического сдвига в более слабое поле. Водородная связь меняется в зависимости от температуры и концентрации, поэтому сравнение спектров, записанных в разных условиях, служит для определения наличия водородной связи и измерения ее прочности. Как и в ИК-спектрах, в спектрах ЯМР можно различить меж- и внутримолекулярные водородные связи, так как последняя не зависит от концентрации. [c.115]

    Спектроскопия магнитного резонанса отличается от других видов спектроскопии тем, что расщепление энергетических уровней существует только в присутствии магнитного поля. Для обычно достижимых в лабораторных условиях магнитных полей переходы между уровнями энергии ядер, являющихся магнитными диполями, наблюдаются в радиочастотной области, а переходы между уровнями энергии спинов неспаренных электронов —в микроволновой области. Эти новые спектроскопические методы — ядерный магнитный резонанс (ЯМР) и электронный парамагнитный резонанс (ЭПР) дают богатую структурную информацию, что делает их незаменимыми в химии. [c.495]


    В книге, состоящей из 40 глав, основное место, естественно, уделяется описанию различных методов исследования полимеров. Представлены все методы определения молекулярных весов полимеров, их молекулярновесового распределения, обсуждаются разнообразные спектральные методы, применяющиеся для анализа строения и структуры гомо- и сополимеров УФ-, ИК-, КР-спектро-скопия, эмиссионная спектроскопия, спектроскопия ЯМР, масс-спектроскопия, спектроскопия ЭПР, нейтронное рассеяние, аннигиляция позитронов. Ряд глав посвящен хроматографическим методам, таким, как газовая и жидкостная хроматография, в том числе и при высоких давлениях, тонкослойная хроматография, ионообменная хроматография, ситовая хроматография, включая гель-про-никающую хроматографию, хроматография с обращением фаз. Методы анализа структуры полимеров обсуждаются при рассмотрении электронной микроскопии, рентгеноструктурного анализа, дифракции электронов и ряда других методов. Физические свойства полимеров оцениваются с помощью таких методов, как дилатометрия, определение температур плавления и стеклования полимеров, их электрических характеристик, анизотропии, диффузии и поверхностного натяжения. Представлены также методы исследования различных видов деструкции полимеров. [c.6]

    Трудно разрешимы. В тех случаях, когда структура в спектре существует, определенные переходы могут быть разрешены или запрещены правилами отбора для вращательных и колебательных переходов. Эти правила также основаны на приближении Борна — Оппенгеймера, предполагающем разделение волновых функций отдельных мод. В асимметричной молекуле не существует ограничений на возможные колебательные переходы, так что ее спектр соответственно достаточно сложен. В симметричной молекуле только колебательные уровни той же колебательной симметрии для частиц на верхнем и нижнем электронных уровнях могут сочетаться друг с другом. Это значит, что, хотя все симметричные колебания сочетаются друг с другом, для антисимметричных колебаний возможны лишь переходы с До = 0, 2, 4 и т. д. Вращательная структура в электронной спектроскопии особенно сложна, поскольку вращательный момент молекулы может взаимодействовать с электронным моментом, причем известно несколько типов и случаев такого взаимодействия. Более того, возможные для молекулы вращения зависят от ее формы (линейная, симметричный волчок и т. д.), так что нет смысла приводить здесь отдельные правила отбора для вращения. Достаточно одного известного примера для перехода линейной молекулы правила отбора записываются в виде АЛ = 0, 1. [c.43]

    ДРУГИЕ ВИДЫ СПЕКТРОСКОПИИ ЭЛЕКТРОНОВ [c.161]

    Другие виды спектроскопии электронов [c.163]

    Из предыдущего обсуждения следует, что данное ядро в определенном магнитном поле может совершить только один переход, так что спектр должен состоять только из одной резонансной линии. Однако это не так, потому что магнитное поле, действующее на ядро,— не просто приложенное поле Яо. Все ядра окружены (экранированы) электронами, и Яо индуцирует также циркуляцию этих электронов. Так как двигающиеся электроны сами создают магнитное поле, на ядро действует эффективное поле Яэфф= (1—а)Яо, где а называется константой экранирования. Другие факторы (такие, как магнитное поле, создаваемое соседними ядрами) также оказывают влияние на величину Яэфф. Все это означает, что наблюдаемая резонансная частота зависит от окружения. Ценность спектроскопии ЯМР (как и других видов спектроскопии) обусловлена именно этим эффектом окружения, поскольку в молекуле резонансная частота каждого ядра одинакового типа будет зависеть от химической группы, которой принадлежит ядро. Например, резонансная частота протонов метильной группы будет отличаться от частоты протонов аминогруппы, и, кроме того, частота протонов метильной группы толуола будет отличаться от частоты протонов метильной группы уксусной кислоты. Смещение резонансной частоты, обусловленное химическим окружением, называется химическим сдвигом, [c.485]

    РФЭС, как и другие виды электронной спектроскопии, являются, по существу, методом анализа поверхности, поскольку выбивание электронов из атомов, отстоящих от поверхности образца более чем на 5 нм, маловероятно. Это позволяет применять метод РФЭС в целом ряде областей, связанных с исследованиями свойств поверхности. Но при исследовании образцов больших размеров метод РФЭС применим только в том случае, если поверхность отвечает составу всего образца. Поверхностный слой многих материалов можно постепенно удалять, бомбардируя образец, например, ионами аргона. Источники таких ионов иногда встраивают в ЭСХА-спектрометр. Это позволяет аналитику исследовать образцы послойно, каждый раз снимая электронный спектр после короткой обработки потоком ионов. Позже мы вернемся к этой возможности. [c.255]


    Применение электронной спектроскопии может дать ценную информацию о водородной связи, образованной молекулами, находящимися как в основном, так и в возбужденном электронных состояниях. Для получения такой информации необходимо отделить спектроскопические эффекты, связанные с наличием водородной связи, от эффектов, обусловленных другими видами межмолекулярных взаимодействий. [c.219]

    Для многих молекул однозначно определить структуру по кривой J r) не представляется возможным. Например, если в молекуле имеется несколько близких по величине межъядерных расстояний, которые на кривой /(г) проявляются в виде одного широкого пика сложной формы, или когда в молекуле наряду с тяжелыми атомами присутствуют легкие (водород), которые вследствие малого заряда ядра и, соответственно, малого числа электронов обладают небольшой рассеивающей способностью. Тогда обычно рассматривается несколько моделей структур, при этом в качестве структуры исследуемой молекулы принимается та модель, для которой наблюдается лучшее согласование экспериментальной и теоретической кривых лМ(х). Часто структурную задачу удается решить лишь при анализе электронографических данных совместно с данными других методов (ИК-и КР-спектроскопии, микроволновой спектроскопии). [c.282]

    Характерной особенностью физических методов анализа и аналитических процессов, лежащих в их основе, является высокая разрешающая способность , которая проявляется в дискретности характеристических сигналов (см рис. 4,5), регистрируемых в виде линейных спектров или острых пиков. Эта особенность присуща большинству ядерно-физических (ЯМР, активационный анализ) методов, а также методам рентгеновской, атомно-эмиссионной и абсорбционной спектроскопии. Причина высокой разрешающей способности этих методов — в относительно высоких значениях характеристических квантов энергии, сопровождающих переход из возбужденного состояния в основное (или наоборот) в процессе ядерных превращений и при переходах электронов на близких к ядру уровнях. Следствием высокой разрешающей способности физических методов является их высокая специфичность, проявляющаяся в почти полном отсутствии эффектов наложения сигналов элементов друг нз/друга. Однако нередко на основные сигналы накладываются сигналы сопутствующих процессов. Так, хотя спектральная линия атомного поглощения элемента характеризуется шириной не выше 0,1 нм, на нее часто накладывается спектр молекулярного поглощения соединений, образуемых элементом основы (матрицы) в условиях атомизации. [c.15]

    На чем основаны возможности спектроскопии ЯМР В спектрах ЯМР не видна каждая связь в молекуле (в отличие от ИК-спектров) и не видны неподеленные пары электронов (в отличие от УФ-спектров) ЯМР видит только ядра и только один тип ядер в данном эксперименте (например, ядра Н, или С), Некоторые ядра, весьма обычные в органической химии, например С и 0, вообще не видны в ЯМР, что иногда имеет и свои преимущества. Сигналы в спектрах ЯМР можно легко проинтегрировать (т. е, измерить площадь пика) это позволяет определить относительное количество различных видов протонов и других ядер, активных в спектрах ЯМР (см. последующее обсуждение). Температуру изучаемых образцов можно менять в широком интервале, что позволяет проводить кинетические измерения, трудно осуществимые методами ИК- и УФ-спектроскопии, Наконец, использование вычислительной техники позволяет анализировать и моделировать сложные спектры, а также получать спектры на ядрах, активных в ЯМР , но встречающихся в природе в низкой концентрации, например [c.537]

    При проверке чистоты вещества помимо элементного анализа пользуются определением физических постоянных, если соответствующие величины, а возможно, и их зависимость от температуры точно известны. Наибольшее распространение в лабораторной практике имеют определения температуры плавления, плотности, показателя преломления и давления пара. Если эти методы неприменимы, то можно в качестве испытания на однородность подвергнуть вещество операциям разделения. Для этой цели применяют прежде всего не требующие значительных затрат времени методы газовую, тонкослойную хроматографию нлн хроматографию на бумаге. Высокой чувствительностью по отношению к примесям обладают спектроскопические методы. При этом для характеристики жидкостей (например, растворителей, см. разд. 6) и растворенных веществ наиболее важны электронные спектры. Полезно иметь также инфракрасный и масс-спектр, которые в соответствующем аппаратурном оформлении могут быть сняты для образцов в твердом, жидком н газообразном состоянии. Оба метода дают возможность проводить качественное и полуколнчественное определение примесей, что очень облегчает принятие решения о целесообразности дальнейшей очистки. Например, содержание воды в твердом препарате легко определяется по широким полосам поглощения при 1630 н 3400 см в ИК-спектре. Разумеется, в этом случае следует иметь в виду, что галогениды щелочных металлов, используемые при приготовлении таблеток для ИК-спектроскопии, гигроскопичны. Их применение для съемки гигроскопичных объектов или для определения воды возможно только после нх тщательной осушки и лишь прн полном отсутствии воздуха (отмеривание, растирание с веществом, наполнение пресс-формы проводятся в сухой камере). Другой возможностью является съемка суспензии вещества в сухом нуйоле или в другой подходящей жидкости. Подобные жидкости должны обладать достаточно высокой вязкостью и по возможности малым собственным поглощением в соответствующей области спектра. В качестве материала для изготовления окон кювет для съемки ИК-спектров газов и жидкостей применяют вещества, перечисленные в табл. 26. Если нет необходимости вести съемку в области ниже 600 см , то следует пользоваться сравнительно дешевыми монокристаллами хлорида катрня. Конечно, вещество не должно реагировать с материалом окон (при необходимости предваритель- [c.142]

    Можно полагать, что методы электронного зонда в комплексных исследованиях строения слоев толщиной от долей нанометра до нескольких микрометров практически стоят вне конкуренции. Ни один из других высокочувствительных методов анализа поверхности, как, например, фотоэлектронная спектроскопия или вторично-ионная масс-спектрометрия, не обеспечивает получения комплексной информации, не позволяет изучать одновременно нано- и микрослои (как это делается при электронном зондировании путем выбора вида вторичных сигналов), не дает такой высокой локальности по площади. [c.216]

    Определенную информацию о структуре можно получить и другими методами 1) по данным о дипольном моменте, 2) о магнитной восприимчивости, 3) по интенсивности электронных спектров, 4) с помощью мессбауэровской (гамма-резонансной) спектроскопии и 5) по круговому дихроизму и путем изучения дисперсии оптического вращения. Эти физические методы имеют существенные ограничения в отношении числа и вида молекул, которые можно исследовать с их помощью, и некоторые другие недостатки. Эти методы не дают сведений о длинах связей и углах между ними. Более того, в некоторых случаях из-за сложности интерпретации данных могут быть сделаны неправильные выводы, поэтому эти методы редко используют в структурных исследованиях. [c.294]

    При попытке объяснить другие спектры, найденные в той же самой области, был предложен еще один вид частиц — адсорбированный катион-радикал [39]. Помимо оптической спектроскопии, для изучения радикальных соединений был привлечен метод электронного парамагнитного резонанса (ЭПР) дальнейшая работа по выяснению этой задачи была проведена на молекулярных ситах [20]. Возможно, катион-радикал является не просто продуктом взаимодействия углеводорода с кислотным центром, скорее здесь требуется, кроме того, и кислород. [c.396]

    Хемосорбционные пленки могут быть исследованы различными методами. Важнейшими из них являются инфракрасная спектроскопия, измерение контактных потенциалов и работы выхода электронов, электронная микроскопия, метод ионного проектора, а также дифракция медленных электронов. Если первые три метода дают только интегральные сведения о виде и толщине адсорбционных пленок, то два других обеспечивают прямое определение позиций атомов и тем самым дают сведения о структуре адсорбционных слоев. [c.361]

    Область, охватываемую спектроскопией, можно условно разделить на спектроскопию эмиссионную и абсорбционную. Эмиссионная спектроскопия исследует излучательную способность веществ. Эмиссионные спектры (спектры испускания) получают при сжигании пробы в каком-либо источнике света, например в пламени, электрической дуге или искре и т. п. Испускание энергии связано с первоначальным термическим или электрическим возбуждением атомов, при этом электроны из основного состояния переходят с поглощением энергии на более высокий энергетический уровень. Время существования электронов в этом метастабильном состоянии невелико, и они переходят в какое-либо другое возбужденное состояние с более низкой энергией или в основное состояние поглощенная энергия выделяется при этом в виде света. Обычным примером эмиссионных спектров служит излучение, испускаемое солями некоторых элементов при их нагревании в пламени. Иногда возбужденные состояния существуют заметное время, так что испускание света продолжается после прекращения возбуждения такое явление называется фосфоресценцией. [c.9]

    Имея в виду, что понятие о квантовых переходах является для спектроскопии одним из фундаментальных, можно дать в этой связи другое, более конкретное определение спектроскопии спектроскопия — это физический метод исследования, который позволяет получать сведения о стационарных состояниях атомов и молекул на основании изучения переходов между этими состояниями. Действительно, как будет показано ниже, в зави-( имости от природы комбинирующих энергетических уровней при квантовых переходах может изменяться характер различных видов движения в молекуле ее вращения как целого, взаимного расположения атомов (колебательное движение), распределения электронной плотности (движение электронов) и т. д. [c.7]

    На рис. 2.25,6 показан спектр ПМР этилового спирта, полученный при высоком разрешении, т. е. с помощью спектрометра более высокого класса. Нетрудно видеть, что этот спектр гораздо богаче полосами, чем представленный на рис. 2.25, а. Наблюдающееся при этом расщепление обусловлено так называемым спин-спиновым взаимодействием, т. е. влиянием друг на друга спинов ядер соседних функциональных групп (в данном случае протонов метильной и метиленовой группировок). Эффект спин-спинового расщепления, имеющий важное значение в спектроскопии ЯМР, открывает широкие возможности исследования этим методом взаимного влияния связей и групп в молекулах. То обстоятельство, что постоянная экранирования а определяется электронным окружением ядра, позволило ввести в спектроскопию ЯМР понятие о химическом сдвиге, сущность которого заключается в следующем. Обычно на практике не определяют абсолютные значения напряженностей полей Hn и Яо (это достаточно трудная задача), а измеряют разности напряженностей. В этом случае отсчет напряженностей производится от некоторого значения Яст, относящегося к веществу, выбранному в качестве эталонного или стандартного. Имея в виду, что [c.83]

    В разведочном анализе такой подход к интерпретации масс-спектров возможен, но не исключает применения различных спектроструктурных корреляций, аналогичных известным для других видов спектроскопии. Даже при ионизации электронным ударом около 85% охарактеризованных масс-спектрами органических соединений дают надежно выявляемые сигналы молекулярных ионов. Следовательно, масс-спектрометрия является наиболее надежным методом установления молекулярных масс исследуемых веществ. Для интерпретации совокупностей сигналов осколочных ионов рекомендованы специальные таблицы характеристических массовых чисел и характеристических разностей. Особенности их применения (см., например, [300]) по объективным причинам требуют некоторого опыта работы и масс спектрометрической квалификации аналитика. [c.315]

    Фазовый состав катализаторов. Для общего фазового анализа катализаторов используются в основном два метода — рентгенография и дифракция электронов (электронография), хотя для некоторых специальных задач могут применяться и другие физические методы — магнитной восприимчивости, термография, ЭПР, различные виды спектроскопии. Практически наиболее широко применяется рентгенография, основанная иа дифракции характеристического рентгеновского излучения на поликристаллических образцах. Каждая фаза имеет свою кристаллическую решетку и, следовательно, дает вполне определенную дифракционную картину. На дебаеграмме каждой фазе соответствует определенная серия линий. Расположение линий на дебаеграмме определяется межплоскостными расстояниями кристалла, а их относительная интенсивность эависит от расположения атомов в элементарной ячейке. Межплоскостные расстояния d вычисляются по уравнению Брэгга—Вульфа  [c.379]

    В электронной спектроскопии определяется кинетическая энергия электронов, испускаемых веществом, что позволяет судить о потенциалах ионизации молекул, а тем самым и об энергии связи электронов внутри молекул или входящих в их состав атомов. Для органической химии основное значение имеет фотоэлектронная спектроскопия, получившая такое название потому, что электрон выбивается из молекул квантами высокой энергии при облучении вещества монохроматическим рентгеновским или ультрафиолетовым излучением. Отсюда названия этих видов фотоэлектронной спектроскопии рентгеноэлектронная спектроскопия (РЭС) и молекулярная фотоэлектронная спектроскопия [109] или фотоэлектронная спектроскопия с УФ-возбуждением (УФЭС) [110]. Разновидности электронной спектроскопии, основанные на других способах генерации электронов, не имеют такого значения для органической химии, как фотоэлектронная спектроскопия. [c.259]

    Радикалы очень быстро гибнут в результате реком бийации, поэтому концентрация этих интермедиатов редко достигает величины выше примерно 10 М. Это обстоятельство в большинстве случаев исключает использование ультрафиолетовой, инфракрасной и ЯМР спектроскопии для их обнаружения. Однако спектроскопия электронного парамагнитного резонанса, коюряя очень чувствительна к парамагнитным частицам и позволяет регистрировать концентрации радикалов вплоть до 10 Л1, представляет собой чрезвычайно полезный метод обнаружения частиц с неспаренным электроном (молекулы, в которых отсутствуют неспаренные электроны, не регистрируются в этом виде спектроскопии). Сигнал электронного парамагнитного резонанса является убедительным доказательством присутствия в системе свободного радикала, хотя и ничего не говорит об источнике образования радикала (каким путем, в какой реакции он возник). В случае простых органических радикалов однозначное структурное отнесение часто можно провести на осноВе анализа сверхтонкого расщепления или путем сравнения спектра с известным ЭПР-спектром радикала, который был получен другим путем. . [c.94]

    Проведен синтез углеродных нанотруб мегодом термического газофазного разложения углеводородов. Структура нанотруб (размер, ориента11ия, дефектность, наличие примесей других элементов и т.д.) регулировалась изменением параметров синтеза (температура, исходные углеродсодержащие вещества, вид катализатора и т.д.). Проведено комплексное исследование полученных материалов методами электронной микроскопии, рентгеновской спектроскопии, фотоэлектронной спектроскопии и рентгеновской дифракции. [c.124]

    С другой стороны, тесные контакты коллоидной химии со смежными дисциплинами способствовали обогащению ее экспериментальной базы. Наряду с такими классическими методами эксперимента, родившимися именно в коллоидной химии, как определение поверхностного натяжения и двухмерного давления, ультрамикроскопия, центрифугирование, диализ и ультрафильтрацня, наблюдение разнообразных электрокинетичеоких явлений в дисперсных системах, дисперсионный анализ и порометрия, многочисленные прецизионные адсорбционные методы, изучение рассеяния света (опалесценции) и т. п., в разных разделах коллоидной химии нашли эффективное применение всевозможные спектральные методы ЯМР, ЭПР, УФ- и ИК-спектроскопия, гашение люминесценции, многократно нарушенное полное внутреннее отражение, эллипсометрия (с широким использованием лазерной техники), малоугловое рассеяние рентгеновских лучей и другие рентгеновские методы, радиоактивные изотопы, все виды электронной микроскопии. Большие перспективы открывает привлечение современных физических методов исследования поверхностей с использованием медленных электронов, масс-спектроскопии вторичных ионов и т. п. [c.9]

    Таблицы основных характеристических частот в органических соединениях приведены по источникам [25, 2, 6]. При отнесении полос следует учитывать, что указанные в табл. 6.4—6.7 полосы поглощения являются приближенными, поскольку не только обусловлены характеристическими колебаниями атомов в данной связи, но и зависят от природы окружающих эту связь атомов, электронных заместителей, межмолекулярного взаимодействия, природы растворителя, если запись спектра производилась в растворе. Поэтому заключения о строении вещества, сделанные на основании его ИК-спектра, желате но подтвердить другими физическими и, прежде всего, ЯМР-спектроскопией [15], или химическими методами. При отнесении полос поглощения необходимо иметь в виду ряд обобщений, связывающих характеристические частоты, наблюдаемые в ИК-спектрах, с природой связей и функциональных групп. Наибольшие значения частот (V > 2500 см ) соответствуют частотам связей с легким атомом водорода — ОН, ЫН, СН и др. [c.179]

    Вещества, устойчивые к образованию сульфидов в объеме в лрисутствии НаЗ (10—1000 млн ), могут быть отравлены в ре-зз льтате поверхностной сульфидации. Этот вид отравления изучен недостаточно. Ничего не известно о том, может ли частичное отравление поверхности вызвать общую дезактивацию металла. Разработка катализаторов, обладающих общей стойкостью к отравлению серой, требует долгосрочных исследований в нескольких областях. Первая из них должна касаться химии образования поверхностных сульфидов (возможный метод исследования — электронная спектроскопия), вторая — сильных взаимодействий, включающих активный металл, например никель, и носитель или другое вещество, как средства для улучшения их стойкости к отравлению серой. Если это взаимодействие приводит к образованию соединения, то можно ожидать снижения активности, но оно может быть скомпенсировано нечувствительностью к сере и возможностью работы при высокой температуре. Одним из интересных взаимодействий является изъятие цеолитовыми носителями электронов из металлов группы платины, приводящее к улучшению стойкости к отравлению серой. Достойным внимания является применение этого эффекта к катализаторам метанирования. [c.238]

    В вольтамперометрии с линейной разверткой напряжение изме няется между двумя предельными значениями с постоянной скоростью. Это изменение может быть однократным или циклическим в виде тре угольных волн, причем проводятся измерения соответствующего то ка (см. метод 7, табл. 2). Этот метод часто используется для получе ния количественных или полуколичественных представлений об электродной системе. По вольтамперометрическим кривым можно приблизительно проверить обратимость электродной системы, выяснить, имеет ли место многостадийность, распознать фарадеевский и нефа-радеевский адсорбционно-десорбщонный процессы и с помощью циклической вольтамперометрии определить электроактивные промежуточные соединения [201, 290 общий обзор вольтамперометрии с линейной разверткой содержится в 123, 248, 289, 490, 576]. Вольтамперометрия с линейной разверткой является особенно мощным средством для исследования сложных электродных процессов с участием органических соединений, если она применяется совместно с другими методами, такими, как оптическая абсорбционная спектроскопия [225, 231, 232] и электронно-спиновая резонансная спектроскопия [114, 309, 450]. Используя для контроля спектроскопию при зеркальном отражении, с помощью вольтамперометрии с линейной разверткой также легко изучать адсорбцию различных анионов и образование монослоев окислов или атомов чужеродных металлов [556]. [c.208]

    Данные о кинетике формирования надмолекулярной структуры сетчатых полимеров могут быть получены с помощью различных методов электронной и оптической микроскопии [167—170], электронно- и рентгенографии [171]. Полезную информацию могут дать также и некоторые другие методы [116, 168, 170, 172—176], в частности ИК- и ЯМР-спектроскопия, различные варианты релаксационной спектрометрии, методы парамагнитных и люминесцентных зондов и меток, исследование процессов диффузии различных жидкостей и газов. Эти методы решения указанной выше задачи не имеют принципиальных отличий от приемов решения аналогичных задач для линейных полимеров, однако следует обратить внимание на трудности интерпретации надмолекулярной организации сетчатых полимеров, полученных в виде тонких пленок на различных твердых поверхностях [177]. Эти исследования приобрели большой размах, поскольку сетчатые полимеры широко используются в качестве связующих для композиционных материалов, клеев, покрытий, лаков и т. п. Формирующаяся в процессе синтеза сетчатого полимера на поверхности твердого тела надмолекулярная структура в значительной мере будет определяться не только химическим строением исходных мономеров (олигомеров) и условиями синтеза, но и наличием твердой поверхности. Дифференциация этих факторов является трудной задачей, а пренебрежение влиянием твердой поверхности на процесс С1штеза сетчатого полимера и формирование его надмолекулярной организации может привести к серьезным ошибкам в интерпретации экспериментальных данных [176]. [c.36]

    Разумеется, большую часть упомянутых выше сведений можно получить и другими спектроскопическими методами. Однака некоторые присущие методу ЭПР особенности делают его уникальным. Во-первых, при помощи методов УФ- и ИК-спектроскопии наблюдают переходы между энергетическими уровнями, отде.тен-ными друг от друга величинами энергий порядка нескольких килокалорий на моль, а в методе ЭПР мы имеем дело с уровнями, разделенными по энергии только калориями на моль. Такилг образом, небольшие эффекты, связанные с характером окружения, которые трудно обнаружить методами ИК-и УФ-снектроскопии, отчетливо наблюдаются методом ЭПР. Во-вторых, несмотря на то что теория, связывающая данные ЭПР с эффектом окружения. достаточно с.тожна, ее часто проще применить, чем соответствующие теории оптических спектров. Третья особенность метода ЭПР является более тонкой. Из того, что было сказано до сих пор, ясно, что этот метод исследует неспаренные электроны. Отсюда можно сделать вывод, что он непри.меним к веществам, которые обычно считаются диамагнитными. Однако если в диа-.магнитном веществе содержатся пара.магнитные частицы дажр в. миллионных долях в виде дефектов или посторонних атомов, то такие дефекты или посторонние атомы будут наблюдаться. методом ЭПР. Таким образом, вследствие чувствительности спектров к характеру окружения они. могут оказаться чувствительны.м зондом для исследования твердого тела. [c.435]

    Диссоциативная адсорбция водорода изучена достаточно хорошо, что нельзя сказать об адсорбционных состояниях других молекул, тогда как, чтобы объяснить механизм каталитической реакции, необходимо в первую очередь представить структуру адсорбированного на активных центрах реагента или промежуточных продуктов реакции. Рассмотрим, например, адсорбцию моноксида углерода СО. Как показано на рис. 5.4, электроны высшей заполненной молекулярной орбитали (ВЗМО) 5а могут переходить на незаполненные уровни поверхности металла, а одновременно с заполненных уровней поверхности электроны переходят на 2тг-орбиталь молекулы СО. В результате связь углерод—кислород несколько ослабевает (вследствие растяжения) и меняются эйергетические уровни орбиталей 1тги 4а. Изменение в разности энергий орбиталей 1тг и 4а (величина составляет 2,6 - 3,5 эВ в зависимости от вида адсорбирующего металла. На рис. 5.5 показаны полученные методом вакуумной УФ-фо-тоэлектронной спектроскопии спектры молекулы СО, адсорбированной на поверхности Ре (ПО). Положения пиков для орбиталей 4а, 1тт и 5а соответствуют энергиям 10,5 7,2 и 6,2 эВ. [c.113]

    Метод измерения пролетного времени, разработанный Стюартом и Ве нером [76, 77], основан на эмиссионной спектроскопии. На мишень, помещенную в плазму низкого давления и высокой концентрации, подается импульс отрицательного напряжения длительностью 1 мкс, так что атомы мишени распыляются в виде пакета. Испускаемые атомы в основном нейт ральны и находятся в невозбужденном состоянии, однако в результате столкновений с электронами плазмы они возбуждаются и испускают свои характеристические спектры. Пакет атомов, перемещаясь в определенном направлении, вследствие распределения атомов по скоростям размывается в пространстве. Это рассеяние атомов наблюдается в виде временного распределения фотонов, испускаемых распы тенными атомами в момент их прохождения через малый объем, находящийся на известном расстоянии от мишени (6 см). Распределение фотонов по времени можно легко перевести в распределение распыленных атомов по скоростям или по энергиям. Подтверждение данных, полученных методом пролетного времени, оказалось возможным с помощью другой спектроскопической методики, а именно путем наблюдения допплеровского сдвига спектральных линий распыленных и возбужденных атомов, когда они двигаются в направлении к спектрографу. Распределение атомов по скоростям от нуля до 10 см/с привело как к уширению, так и к смещению спектральной линии в пределах от О—0,1 А в сторону более коротких волн. [c.380]

    Применение лазеров в аналитической спектроскопии связано с обнаружением и измерением оптических сигналов, т. е. излучения самого лазера или возникающего под действием лазерного излучения процесса рассеяния или флуоресценции. Мы не будем рассматривать здесь оптические приборы, а сосредоточим наше внимание на преобразовании оптических сигналов в электрические и на последующей их обработке. Упрощенная блок-схема электронной обработки, представленная на рис. 7.1, показывает соответствующие взаимосвязи между различными стадиями процесса измерепия. Из данной схемы можно видеть, что случайные флуктуации и нежелательные систематические изменения, которые обычно носят названия шумов и фона соответственно, возникают на ранних стадиях преобразования и тем самым влияют на качество проводимых измерений. Обрабатываемые данные могут быть в форме аналоговых (непрерывных) или цифровых (дискретных) переменных в электронных системах обычно имеются соответствующие преобразователи данных одной указанной формы в другую — аналого-цифровой преобразователь и цифро-аналоговый преобразователь (АЦП и ЦАП соответственно). В практической деятельности, конечно, наблюдаются некоторые отклонения от данной схемы, например наличие в тщательно отработанных системах смешанной аналоговой и цифровой обработки. Всеобъемлющая и полная картина всего процесса измерений является достаточно сложной (и как таковая не будет рассматриваться) вследствие возможных искажений (нелинейного характера и т. д.) в фотодетекторах, усилителях, процессах преобразования и т. д. [c.449]


Смотреть страницы где упоминается термин ДРУГИЕ ВИДЫ СПЕКТРОСКОПИИ ЭЛЕКТРОНОВ: [c.167]    [c.171]    [c.596]    [c.557]    [c.29]    [c.43]    [c.614]    [c.531]    [c.702]    [c.85]    [c.702]   
Смотреть главы в:

Фотоэлектронная спектроскопия -> ДРУГИЕ ВИДЫ СПЕКТРОСКОПИИ ЭЛЕКТРОНОВ




ПОИСК





Смотрите так же термины и статьи:

Спектроскопия электронная



© 2025 chem21.info Реклама на сайте