Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Барий соли, анализ

    Наиболее универсальными методами являются восстановительная минерализация в токе водорода или аммиака до сероводорода и сожжение в трубке или в колбе в атмосфере кислорода [724]. Последний метод получил в настоящее время широкое распространение в связи с синтезом многочисленных металлоиндикаторов, применяемых при прямом титровании образующихся сульфат-ионов солями бария. При анализе органических веществ на серу применяются торон [709, 1337, 1402], карбоксиарсеназо [340], нитхромазо [50, 127, 256, 304], ортаниловый К [168, сульфоназо III [1287], хлорфосфоназо III [3, 277]. Хлорфосфоназо III использован для микроопределения серы в щелочных солях арилсульфо- и полисульфокислот [147], сульфоназо III — для определения неорганических сульфатов в диспергирующихся в воде сульфонатах [1287]. [c.211]


    Метод может быть использован для определения стронция в процессе производства и очистки солей бария при анализе некоторых минералов бария и в других исследованиях. Определение основано на реакции стронция с реагентом нитхромазо в среде 40%-ного ацетона с предварительным маскированием бария в количествах, не превышающих 100—500 мкг/10 мл, сульфатом натрия при pH 3,7. Присутствие в солях бария наряду со стронцием до 3% Са не мешает определению. При концентрации Зг 3,0 мкг в 10 мл (соотношение Зг Ва = 1 160) относи- [c.133]

    При анализе некоторых минералов, руд, минеральных красок и т. п. приходится отделять свинец от бария. Для этой цели используют обычно растворимость сернокислого свинца в растворе уксуснокислого натрия или аммония. Из такого раствора свинец затем осаждают в виде хромовокислой соли. [c.174]

    Значительно труднее отделить магний, так как для этого необходимо предварительно удалить аммонийные соли выпариванием раствора и прокаливанием сухого остатка. После этого магний отделяют от щелочных металлов путем осаждения раствором гидроокиси бария или, удобнее, спиртовым раствором углекислого аммония. Осадок углекислого магния отфильтровывают, фильтрат выпаривают, прокаливают и взвешивают сульфаты щелочных металлов. Ниже подробнее описан ход анализа этим методом. [c.470]

    На заключительной стадии анализа осадок (форму осаждения) после фильтрования и промывания высушивают или прокаливают и получают в результате такой термической обработки гравиметрическую форму — соединение, пригодное для взвешивания. Высушивание или прокаливание осадка продолжают до тех пор, пока его масса не станет постоянной, что обычно рассматривается как критерий достигнутой полноты превращения формы осаждения в гравиметрическую форму и указывает на полноту удаления летучих примесей — растворителя, адсорбированных солей аммония и т. д. Осадки, полученные в результате реакции с органическим осадителем (диметилглиоксимом, 8-оксихинолином и др.), обычно высушивают, осадки неорганических соединений, как правило, прокаливают. В зависимости от физико-химических свойств осадка при прокаливании он остается неизменным или претерпевает существенные химические превращения. Неизменным при прокаливании остается, например, сульфат бария. Осадок гидроксида железа переходит в оксид  [c.151]


    При электро-гравиметрическом анализе в осадок выделяют металл из раствора его соли. Чаще же искомое вещество выделяют из раствора в виде какого-либо соединения определенного химического состава, которое образуется в результате ионной реакции. Например, серную кислоту определяют, осаждая из ее раствора сульфат бария добавлением раствора хлорида или нитрата бария. Соединение определенного состава образуется при взаимодействии в растворе ионов, содержащих искомое вещество, с ионами реактива-осадителя. Получаемый осадок должен иметь постоянный химический состав и обладать физическими свойствами, позволяющими производить его дальнейшую обработку с целью практически полного выделения из раствора промывание, сушку и прокаливание для получения из осажденной формы анализируемого вещества его весовой формы. [c.291]

    На процессах осаждения основаны многие методы разделения, которые широко применяют в качественном и в количественном анализе. Так, действуя на исследуемый раствор раствором сульфида аммония можно выделить в осадок нерастворимые в воде сульфиды никеля, кобальта, марганца, цинка, железа и отделить их таким способом от растворимых в данных условиях солей бария, стронция, кальция и магния. [c.28]

    Отложения с наружной стороны низкотемпературных поверхностей нагрева мазутных парогенераторов, например с пластин регенеративных воздухоподогревателей, с трубок водяных экономайзеров, содержат сернокислые соли железа, никеля, ванадия, меди и свободную серную кислоту. Коррозионные образования в трубках пароперегревателей кроме окислов железа содержат хром, марганец, молибден и другие вещества. Эти материалы отличаются исключительной стойкостью, и обычно их удается перевести в раствор лишь нагреванием в смеси серной и фосфорной кислот. Сплавление с содой, едкими щелочами, пирофосфатом или гексаметафосфатом натрня практически не приводит к разложению этого материала. Отложения из парогенераторов высокого давления содержат в различных соотношениях окислы железа и алюминия, кремниевую кислоту, фосфаты железа, алюминия и кальция, металлическую медь, а иногда соединения цинка и магния. В качестве менее существенных примесей, а иногда и следов в накипи присутствуют марганец, хром, олово, свинец, никель, молибден, титан, вольфрам, стронций, барий, сурьма, бор, ванадий и некоторые другие элементы. При обычном анализе ограничиваются определением фосфатов, кремниевой кислоты, железа, меди, алюминия, натрия, кальция, магния и сульфатов. [c.411]

    Метод атомно-абсорбционного анализа применяли для определения натрия в хлориде натрия [596], иодиде калия [171], фториде магния [504], карбонате бария [339], фториде кальция [505], хлориде цинка [1225], а метод атомно-эмиссионного анализа — для определения натрия в бихромате [251] и перманганате [396] цезия, перрена-тах аммония, калия, магния и щелочноземельных элементов [563], карбонате марганца [515], сульфате и хлориде цинка [514], препаратах рения [430], солях магния [480], полый катод — для определения натрия в алюмоаммонийных квасцах [369]. [c.172]

    Можно было бы предположить, что в остатке будет содержаться большая часть бария при анализе тех пород, в которых этот элемент присутствует вместе с сульфидами или сульфатами. Однако это не так, потому что сульфат бария заметно растворим в горячей соляной кислоте, и в большинстве горных пород барий встречается лишь в очень незначительных количествах. Если часть BaSOi присутствует в остатке, то его выделение и определение в этой стадии анализа не является необходимым, так как его гораздо лучше определять позже вместе с кремнекислотой, сопровождающей осадок окисей алюминия и т. п. (стр. 954). Если в самом начале разложение породы было полным, кальций очень редко входит в состав этого остатка. Когда анализ проводится надлежащим образом, остаток после растворения его затем количественно осаждается аммиаком в присутствии аммонийной соли. Этот факт, а также специальные исследования, произведенные одним жз нас (В. Ф. Гиллебранд), опровергают утверждение некоторых, что остаток может содержать кальций, магний и щелочные металлы. Магний находили случайно, но количество его не превышало 0,3 мг MgO. Утверждение, что присутствие хлорида натрия является одной из причин наблюдаемых иногда небольших потерь в массе при прокаливании кремнекислоты, опровергается нашими исследованиями, а также наблюдениями других авторов Противоположные результаты опытов, проведенных некоторыми исследователями следует, вероятно, приписать неполному разложению породы при сплавлении ее с карбонатами щелочных металлов. [c.946]

    Метод с применением а-фурилдиоксима [2, 3]. В растворах чистой соли рений определяют следующим образом. К 10 жл анализируемого раствора добавляют 3 жл 5 н. НС1, 6,5 жл 0,01 М раствора а-фурилдиоксима в ацетоне, 2,5 мл 10%-ного раствора Sn l2 2НгО в 6 н. НС1, доливают водой до 25 мл и перемешивают. Через 45 мин экстрагируют приблизительно в течение 1 мин двумя порциями хлороформа (8 и 4 мл). Объединенные экстракты разбавляют изоамиловым спиртом до объема 25 жл и фотометрируют при X = 530 нм. Определению рения мешают Bi, Сг, W, V и Мо. Определение рения в молибденовых или медных кощентратах проводят аналогичным способом после отделения молибдена в виде молибдата кальция и сульфат-ионов в виде сульфата бария. При анализе вольфрамовых или молибденовых сплавов рений выделяют электролитически на платиновых электродах. [c.365]


    Действие нитрата бария и анализ полученного осадка. Если при предварительных пробах был обнаружен арсенат-ион, следует проводить осаждение солями бария. Если ASO4 в растворе отсутствует, можно после отделения осадка солей стронция осаждать в центрифугате (1) анионы II группы солями серебра. [c.545]

    Для контроля работы печи необходимо периодически производить анализ плава. Количество ВаЗ в плаве колеблется в пределах 65—75%. Кроме ВаЗ в плаве содержится невосстановленный барит, кислоторастворимые соли бария, окислы железа и алюминия и несгоревшая коксовая мелочь. Восстановление Ва304 продолжается 1 — 1,5 ч. [c.156]

    По окончании прокаливания тигель охлаждают, а его содержимое переносят в стакан, где обливают 75—80 мл горячей дистиллированной воды. Приставшие к тиглю частицы смеси снимают при помощи стеклянной палочки и смывают в стакан. Если эти частицы не смываются, то их растворяют в нескольких каплях разбавленной соляной кислоты, и раствор присоединяют к содержимому стакана. Стакан ставят на кипящую водяную баню и нагревают, периодически перемешивая его содержимое в течение 1 часа (не менее). После этого водный раствор сливавэт с осадка на фильтр, через который фильтруют его в другой стакан, а осадок промывают два раза горячей дистиллированной водой, фильтруя каждый раз промывную жидкость вместе с частью осадка через тот же фильтр. Затем на этот фильтр смывают остатки осадка и снова промывают весь осадок на фильтре горячей дистиллированной водой. Промытый осадок на фильтре проверяют на присутствие в нем сернокислых солей. Для этого стеклянной палочкой переносят небольшое количество осадка в пробирку, где растворяют его в разбавленной соляной кислоте (растворять осадок в концентрированной соляной кислоте нельзя, так как при этом может выпасть в осадок хлористый барий и данные анализа будут неправильно забракованы), и добавляют несколько капель 10%-ного раствора [c.416]

    При наличии сернокислых солей в имеющейся смеси Эшка анализ проводят так же, но с 3 3 смеси Эшка, взвешенаой с точностью до 0,01 з, и устанавливают таким образом поправку (число граммов сернокислого бария, осажденное 3 з смеси Эшка), значение которой записывают на банке со смесью Эшка. [c.417]

    Известно, что большинство солей сильных кислот (азотной, серной, соляной) хорошо растворяется в воде. Исключениями являются некоторые сульфаты (бария, стронция, кальция, свинца и закисной ртути), а также некоторые хлориды (серебра, закисной ртути и свинца). Часть этих соединений используют в количественном анализе для осаждения соответствующих ионов применение их описано в практической части. Однако большинство труднорастворимых соединений являются солями слабых кислот, кроме того, трудно растворимы также гидроокиси металлов. Поэтому для осаждения катионов в большинстве случаев их переводят в гидроокиси, а также в соли слабых неорганических или органических кислот. Из неорганических соединений наиболее широко используют сульфиды и гидроокиси металлов. [c.92]

    Из табл. 14 видно, что для большинства приведенных солей значения ПР, а следовательно, и их растворимость ( в моль/л) умеиынаются 01 км. и.цпя к барию, особенно это относится к хро-матам. Так, растворимость хроматов при переходе от кальция к барию уменьшается почти в 1600 раз, в то время как для сульфатов и фосфатов эти цифры соответственно составляют 460 и 80. Растворимость оксалатов в том же направлении увеличивается приблизительно в 7 раз. Различия в растворимости хроматов и сульфатов используются в систематическом ходе анализа для отделения друг от друга катионов II группы. Различия же в растворимости меньшего порядка существенного значения не имеют. [c.247]

    Ионитовые мембраны применяют также для изготовления селективных мембранных электродов, используемых в потенциометрическом анализе. Мембранный электрод представляет собой трубку, в один конец которой вклеена мембранная пленка. Трубку заполняют раствором электролита, ионами которого заряжена ионитовая пленка. Если такой электрод погрузить в раствор, содержащий такие же ионы, то на ионитовой мембране возникает концентрационный потенциал, величина которого зависит от разности концентраций ионов по обе стороны мембранной пленки. Так, потенциал катионитового электрода, заряженного ионами бария и содержащего раствор соли бария, зависит от концентрации (активности) ионов Ba + во внешнем растворе. После калибровки такой электрод пригоден для потенциометрического определения концентрации ионов бария. Основным недостатком мембранных электродов, что ограничивает их применение в анализе, является искажение их потенциала другими нонами, присутствующими в растворе и вытесняющими из ионитовой пленки определяемые ионы. [c.206]

    Различия в растворимости сульфидов лежат в основе их определения в качественном анализе. Нерастворимые в воде сульфиды имеют разнообразную яркую окраску ( dS — желтый, ЗЬгЗз — оранжевый, PbS — черный и т. д.), что объясняет их широкое использование в качестве пигментов при производстве красок. Сплавы, полученные в результате прокаливания сульфидов щелочно-земельных металлов с добавками флюса (плавиковый шпат, бура) и следами солей тяжелых металлов, применяют для изготовления светящихся красок. В кожевенной промышленности сульфиды натрия, кальция, бария нужны для обезволашивания шкур, а в медицине ванны с раствором сульфида калия применяют для лечения кожных заболеваний. [c.243]

    При выполнении анализов имеют дело с большим количеством различных реактивов, среди них имеются ядовитые, огнеопасные и взрывоопасные. К ядовитым относятся аммиак, бром (пары) сероводород, соли ртути, мышьяка, хлорид бария, цианиды, ща велевая кислота и ее соли. Огнеопасные вещества ацетон бензол, спирты, эфиры, хлороформ и другие органические раство рители. Взрывоопасные вещества аммиачный раствор нитра та серебра, концентрированная хлорная кислота при контакте с органическими веществами. [c.243]

    В России ценные нсследования по аналитической химии выполнил Т. Е. Ловиц Он предложил метод качественного кристаллохимического определения вещества с помощью микроскопа (1798). Т. Е. Ловиц установил, что соляные налеты, получаемые путем выпаривания на стекле капель растворов различных солей, дают картины, характерные и строго индивидуальные для различных видов солей. Он разработал также метод разделения бария, стронция, кальция и нашел, что в абсолютном этиловом спирте ВаСЬ нерастворим, Sr b очень мало растворим, а СаСЬ хорошо растворим. Им был предложен метод растворения силикатов в щелочах В 1800 г. Т. Е. Ловиц указал на различие между карбонатом и гидрокарбонатом калия (К2СО3 и КНСОз), провел многочисленные анализы различных руд и минералов. [c.63]

    Изоморфизм 2-го рода наблюдается при одновременном замещении катионов и анионов, если образующие их соли имеют одинаковые химические формулы, хотя зарядность замещенных ионов может быть различной. Например, перманганат калия образует смешанные кристаллы с сульфатом бария, селенатом бария, хроматом бария и сульфат бария — с КВ 4 (твердые растворы). Смешанные кристаллы выделяются из раствора, содержащего две изоморфные соли. При этом образуются однородные кристаллы переменного состава в зависимости от соотношения двух изоморфных солей. Изоморфизм карбонатов магния и кальция с карбонатами марганца, железа, цинка и кадмия может способствовать совместному осаждению этих ионов в 3-й аналитической группе катионов. Вследствие этого катионы магния, кальция и кадмия могут выпасть вместе с марганцем (И), железом (Н), цинком в осадок в виде карбонатов. Образование твердых растворов сильно затрудняет ход качественного, гравиметрического и микрокристаллоскопи-ческого анализов ( 39). [c.79]

    Карбонат аммония (NH4)2 03 является групповым реактивом на катионы II аналитической группы и используется в качественном анализе для их отделения от катионов I аналитической группы. При взаимодействии с растворами- солей кальция, стронция и бария (М Н4.)2008 осаждает соответствующие карбонаты  [c.164]

    Растворимость большинства солей с повышением температуры повышается. Так, растворимость сульфата кобальта увеличивается почти в два раза с повышением температуры раствора от 15 до 100 °С. Аналогичная зависимость характерна и для хлорида серебра, сульфата бария и других солей. В качественном анализе увеличение растворимости солей с повышением температуры иногда используют для обнару-л<ения и разделения некоторых ионов. Так, ионы свинца отделяют от ионов серебра, переводя их в хлориды, а затем нагревают раствор с осадком до температуры кипения. При этом осадок РЬС1г практически полностью растворяется, а АдС1 остается в твердой фазе. Зависимость растворимости солей от концентрации реагирующих компонентов рассмотрена ниже. [c.161]

    Поскольку в реальных промысловых условиях при закачке ал-килированной серной кислоты часть ее расходуется на реакции с минералами горной породы, часть взаимодействует с растворенным в пластовой воде кальцием и барием с образованием малорастворимых солей, часть непродуктивно разбавляется пластовой и закачиваемой водой, достаточно трудно предположить, какая доля кислоты реагирует с соединениями нефти. Чтобы определить характер произошедших изменений состава нефти, мы провели детальный анализ группового состава серосодержащих компонентов нефти поверхностных проб из 10 скважин и 3 резервуаров (табл. 5.1). Анализы были проведены в лаборатории И.К. Ляпиной в институте органической химии УНЦ РАН по методикам, описанным в [35, 72-73]. [c.122]

    При анализе растворимых роданидов соль растворяется в воде, и осторожно прибавляемся раствор брома в азотной кислоте до тех пор, пока месь не станет красной. Затем смесь кипятят несколько минут и, наконец, выпаривают досуха, после прибавки небольшого количества раствора хлористого натрия для предотвращения возможной потери серной кислоты от улетучивания. Остаток смачивается соляной кислотой и снова аыпаривается досуха для разрушения азотной кислоты. В заключение он извлекается водой, подкисляется соляной кислотой, фильтруется, и сера осаждается хлористым барием. [c.87]

    Известно, что уреазный метод является специфичным для мочевины. Цианамид, дицианамид и гуанилмочевина не оказывают никакого влияния. В присутствии кальциевых солей кальций должен быть удален при помощи углекислого натрия, а избыток карбоната разложен подкисле-нием и продуванием воздуха перед прибавлением уреазы. При анализах удобрительных смесей, содержащих растворимые фосфаты-, последние должны быть удалены гидратом окиси бария, а избыток бария — углекислым натрием. Избыток углекислого натрия затем удаляется подкис-лением. [c.113]

    Для определения аммонийных солей можно непосредственно применить отгонку с магнезией или метод аэрации Folin a. Если хотят применить титрование формолом, растворимые фосфаты должны быть удалены следующим образом Отвешивают в стакан на 400 см3 пробу, содержащую не свыше 3 г Р205. Прибавляют 150 см3 насыщенного раствора азотнокислого бария и размешивают в течение 10 минут. Помещают стакан в ледяную ванну и прибавляют из бюретки насыщенный раствор гидрата окиси бар я до тех пор, пока смесь не станет щелочной по лакмусу, и затем прибавляют еще 2 см3 избытка.-Пробуют на полноту осаждения фосфата небольшим количеством раствора азотнокислого бария. Фильтруют и промывают осадок, доводя объем фильтрата и промывочных вод до 500 см3. Помещают 25 см3 приготовленного таким образом раствора в стакан, добавляют одну каплю индикатора метилрот и делают раствор точно кислым прибавлением соляной кислоты. Продолжают анализ, как описано на стр. 115. [c.118]

    Если анализу подлежит калиевая соль легко летучей кислоты, то ее нетрудно перевести в хлорид выпариванием с конц НС1 Карбонат или фторид калия можно перевести в хлорид также и выпариванием с избытком NH4 I и последующим прокаливанием [1552]. Чтобы получить хлорид из сульфата калия, к раствору последнего прибавляют избыток хлорида бария, и осадок сульфата бария отфильтровывают. Из фильтрата осаждают избыток соли бария карбонатом аммония, фильтрат выпаривают досуха с соляной кислотой и прокаливают [127, 1271]. Другой способ получения хлорида калия из сульфата заключается в добавлении избытка ацетата свинца при нагревании, от-фильтровывании и промывании осадка сульфата свинца разбавленным раствором ацетата свинца. В фильтрат пропускают H2S до насыщения, осадок отфильтровывают и промывают разбавленной уксусной кислотой, насыщенной сероводородом. [c.26]

    За меру селективности определения элементов методом атомноэмиссионного анализа Полуэктов и сотр. [402] предлагают принимать факторы специфичности , которые являются характеристиками прибора, позволяющими оценить спектральные помехи при определении элемента в присутствии посторонних солей. В табл. 44 приведены факторы специфичности при определении натрия в присутствии солей калия, лития, стронция, кальция и бария для различных пламен в зависимости от класса прибора. [c.120]

    Л1М0ЛЯ высушенной в вакууме натриевой соли кислоты в 0,3 мл 100%-ной серной кислоты [6], при температуре 15° добавляют 0,050 г (0,77 л1Моля) азида натрия и встряхивают колбу до полного растворения осадка. Затем колбу соединяют с ловушками, нагревают ее в течение 30 мин. при температуре 35— 70°. В течение 10 мин. пропускают через систему воздух, yJia-вливая для анализа двуокись углерода осаждением в виде карбоната бария. После этого раствор перманганата в первом сосудике заменяют 5,0 мл 0,2 н. раствора серной кислоты, а в реакционную колбу через трубку для введения воздуха прибавляют 5 н, раствор едкого натра. Нагревают колбу при темпе  [c.28]

    После удаления свободного SO2 путем выпаривания сульфитного щелока из сернистых соединений остается сульфит. Остаток растворяют в-воде и определяют в нем сульфит титрованием йодом, как и при определении общего SO2. Содержание свободного SO2 находят по разности между содержанием общего SO2 и SO2 в виде сульфита. Содержание серы, связанной в лигносульфоновом комплексе, вычисляют как разность между содержанием всей серы в сульфитном щелоке и суммой общего SO2, легкоотщепляемого SO2 и 50 , выраженных в процентах SO2. Сульфат-ионы 50 определяют при осаждении их в виде сульфата бария в кислой среде весовым методом или комплексометрически. Для определения суммы кальция и магния предназначен метод, основанный на реакциях кальция и магния с трилоном Б (кислая динатриевая соль этилендиамин-тетрауксусной кислоты). Образуется растворимое в воде комплексное соединение, которое разлагается в кислой среде, но устойчиво в щелочной. Реакцию проводят при pH 12. Титрование трилоном Б проводится в присутствии индикатора эри-хрома черного Т. Содержание натрия в сульфитных щелоках на натриевом основании рассчитывают по содержанию сульфита. В сульфитных щелоках на смешанном основании содержание натрия рассчитывают по разности между сульфитами кальция и натрия и сульфитом кальция, содержание которого находят расчетом по результатам трилонометрического анализа. [c.331]

    После спекания тигель охлаждают на воздухе. Охлажденный спек не рекомендуется оставлять длительное время на воздухе, так как это ухудшает разделение молибдена и рения при анализе молибденитов за счет перехода окиси кальция в карбонат [376]. Остывший спек вьщелачивают водой при нагревании раствора до кипения в течение 20—60 мин. В полученном растворе (щелоке) содержатся перренат- и в небольших количествах (1—12 мкг/мл) молибдат-, вольфрамат-, ванадат-, сульфат- и другие ионы в осадке — нерастворимые соли молибдена(У1), вольфрама(У1), кремния и др., гидроокиси железа(1П), алюминия, титана(1У), меди(П), марганца(1У) и других элементов. Щелок фильтруют через бумажный фильтр, осадок па фильтре промывают горячей водой. Фильтрат при стоянии мутпеет вследствие образования осадка карбоната, который, однако, не мешает определению рения. Для предотвращения образования этого осадка рекомендуется собирать фильтрат в сосуд, содержащий небольшое количество соляной кислоты ( 1 мл). Для уменьшения содержания в фильтрате молибдат-, вольфрамат- и сульфат-ионов при выщелачивании плава в раствор добавляют соединения бария, образующего с названными ионами малорастворимые в воде соединения [133, 384, 576]. Иногда для удаления из фильтрата кальция к нему прибавляют карбонат аммония [501]. В результате всех этих процедур рений эффективно отделяется также от Са, d, Bi, Sb, Hg, Se, Te и As. [c.236]

    Затем был прибавлен раствор БПА в серной кислоте, в результате чего была осаждена вторая фракция лигносульфоновой кислоты, которая была превращена в бариевую соль В. Маточник этой фракции был обработан ПАА, и осадок лигносульфоно-вон кислоты превращался в бариевую соль С. Выходы и анализы лигносульфонатов бария приведены в табл. 13. [c.123]

    Эти бариевые соли освобождались от бария на катионобмен-ной смоле н превращались в их кальциевые соли. Последние подвергались нормальной сульфитной варке с 5% общего, 1 /о связанного сернистого ангидрида, в течение б ч при 135°. Затем эти соли снова изолировались в виде бариевых лигносульфонатов I, П, П1 и IV. Данные анализов исходных и ресульфированных бариевых солей приведены в табл. б. [c.383]


Смотреть страницы где упоминается термин Барий соли, анализ: [c.619]    [c.144]    [c.167]    [c.393]    [c.248]    [c.445]    [c.263]    [c.418]    [c.67]    [c.242]    [c.172]    [c.180]    [c.591]   
Методы анализа чистых химических реактивов (1984) -- [ c.98 , c.108 , c.113 ]




ПОИСК





Смотрите так же термины и статьи:

Соли, анализ



© 2025 chem21.info Реклама на сайте